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Abstract

This is a small survey on the exciting world of Perfect Graphs. We will
see when a graph is perfect and which are families of graphs that are
perfect. The notion of perfect graph is due to the French mathemati-
cian Claude Berge. He formulated two conjecture on perfect graphs,
and the stronger one stood for 40 years.

1 What is it a perfect graph?

The first formalization of “perfect graph” is due to the French mathematician
Claude Berge in 1963, even if there were some other studies in that direction
before.
A starting point to introduce the rich family of perfect graphs is the notion
of chromatic number χ(G) of a graph G. This is the minimum number of
colors needed to color all the vertices of a graph, so that every two adjacent
vertices get different colors. In other words, the minimum number of colors
needed to properly color the graph G. Let’s reflect about it.
It’s well known that determining the chromatic number of a graph is a hard
problem, NP-hard, and seems to be also very hard to get lower bounds.
Obviously, given a graph G, one lower bound is ω(G), the size of the biggest
complete graph (or clique) of G. Why? Well, it’s pretty easy to see. If a
graph contains four pairwise adjacent vertices, surely we need at least four
colors to color it.
There are some graphs for which χ(G)=ω(G) holds. This is a first clue on
the way that will bring us to talk about perfect graphs.

1.1 The importance of an inheritance condition

The condition just stated before, picked alone, is not enough to say that a
graph is actually interesting in some senses. The reason is the following. Let’s
consider the complete graph of three vertices, K3 (also called “triangle”), and
the cycle of five vertices, C5. Now take the disjoint union of the these two.
The chromatic number of the obtained graph is three. Indeed, you need three

1



colors to color K3 and the same quantity holds also for C5. Moreover, the
largest clique in the graph is the triangle. So the graph satisfies χ(G)=ω(G),
but it is definitely not interesting in general.
To avoid such graphs and, at the same time keep the interesting ones, Berge
used the following method: make the χ(G)=ω(G) property hereditary.

Definition 1. A graph G is perfect if χ(H)=ω(H) for every induced sub-
graph H of G.

Thanks to this definition, we can “discard” graphs like the last considered
because they are not perfect.

1.2 Imperfect graphs and minimal imperfect graphs

It’s not hard to see that any odd cycle of length at least five is imperfect.
Indeed, it holds that,

Proposition 1. If t ≥ 2, then χ(C2t+1) > ω(C2t+1).

Proof. First of all, observe that any such graph G has ω(G) = 2. So, at
least, we need two colors. Let’s assign a numeration, from 1 to 2t+ 1, to the
vertices of the graph and then, assign the first color to odd vertices and the
second one to even vertices. In this way, we know that two adjacent vertices
have different colors. But now, the vertex 1 and the vertex 2t+1 are adjacent
and they are odd. So we need a third color, thus, χ(G) = 3.

Actually, the proposition holds also for the complement of such graphs. That
is, χ(C̄2t+1) > ω(C̄2t+1).
The following is a special family of imperfect graphs.

Definition 2. A graph G is minimally imperfect if G is not perfect, but all
its proper induced subgraphs are.

A classical example is C5 and it is also the smallest of this family (obviously,
its complement too because they are the same graph).

Lemma 1. In a minimal imperfect graph, no stable set intersects every
maximum clique.

Proof. Consider G a minimal imperfect graph. Now suppose that there exists
a stable set S intersecting every maximum clique of size ω(G). Consider
G−S, it is smaller than G and then, by definition of minimal imperfect graph
for G, is perfect. By definition of perfection, χ(G − S) = ω(G − S). Since
S intersects every maximum clique at least with one vertex, by hypothesis,
and at most with one, otherwise it cannot be a stable set, it is clear that
ω(G−S) = ω(G)−1. Since G−S is perfect, it can be colored with ω(G)−1
different colors. But now, it easy to see that G can be properly colored. Since
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S intersects all the maximum clique, it is enough to color the vertices of S
with a new color to obtain a ω(G)-coloring of the graph. So we have that
χ(G) = ω(G). Now, by definition of G, each its proper induced subgraph
H is perfect and thus χ(H) = ω(H). Thus G is perfect, contradicting the
hypothesis.

As we have discussed before, there exists an imperfect graph G that verifies
χ(G) = ω(G). The problem of its imperfection comes from the fact that
there exists at least one of its proper induced subgraph that it does not inherit
this property. It is nice to determine the smallest connected imperfect graph
with this property.

Figure 1: The graph G exhibits χ(G) = ω(G), but it’s not perfect

Proposition 2. The graph G in figure 1 is the smallest connected imperfect
graph such that χ(G) = ω(G).

Proof. First of all, observe that the maximum clique in G has size three
and we need three colors to color the entire graph. So χ(G) = ω(G). It’s
imperfect because of the induced subgraph C5. Let’s call it H. Now, H is
the smallest minimal imperfect graph with χ(H) = 3 and ω(H) = 2. So
to adjust the latter value to the former, we have to add a triangle to H, but
avoiding to insert a chord (otherwise, H will become perfect). It is clear
that to use the least total number of verteces, a good way is to attach a
side of the triangle to a side of H so that they share two vertices. But now,
χ(H) = ω(H) and H = G.

The reader should beware of the fact that we have not proved that given a
imperfect graph G, then there must exists in G an induced subgraph that
is an odd cycle (or its complement) of length at least five. This is a much
stronger result, first conjectured by Berge.
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1.3 Berge’s conjectures

Let’s first recall some standard parameters of undirected graphs that will
be often used through all the report. Given an undirected graph G, we will
identify:

• ω(G) as the clique number of G : the size of the largest complete sub-
graph of G.

• χ(G) as the chromatic number of G : the fewest number of colors needed
to properly color the vertices of G.

• α(G) as the stability number of G : the size of the largest stable set of
G.

• k(G) as the clique cover number of G : the fewest number of complete
subgraphs needed to cover the vertices of G.

Since the operation of graph complementing converts clique to stable sets and
vice versa, it holds that ω(H̄)=α(H), for any graph H. Moreover, properly
coloring H̄ means that the vertices of H can be expressed as a union of
cliques in H. In this case, such set of cliques is called a clique covering of H.
In his works, Berge defined two types of perfection for a graph G :

1. γ-perfection (he used γ(G) for chromatic number), G is γ-perfect if
χ(G[A])=ω(G[A]), for all A ⊆ V (G).

2. α-perfection, G is α-perfect if k(G[A])=α(G[A]), for all A ⊆ V (G).

where, for the sake of completeness, G[A] means the subgraph induced by
the set of vertices A. Our definition seems to not consider α-perfection, but
we will see that it does.
In 1961, Berge proposed two conjectures about perfect graphs:

• (The Weak Perfect Graph Conjecture, later Lovász theorem) A graph
G is γ-perfect if and only if G α-perfect.

• (The Strong Perfect Graph Conjecture) A graph G is perfect if and
only if G is Berge, that is, it contains no odd hole or antihole1.

2 The Weak Perfect Graph Theorem

By duality, it is clear that a graph G is γ-perfect if and only if Ḡ is α-perfect.
Moreover, Lovász2 proved the first conjecture made by Berge on perfect

1A hole means an induced subgraph which is a cycle of length at least four, and an
antihole is the complement.

2He shocked the world of combinatorics at the age of 22!
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graphs. Thus, the following is another way to state Berge’s first conjecture:
“G is perfect if and only if Ḡ is perfect”, w.r.t. our first definition for perfect
graphs.
Now, we are going to show a graph manipulation that enlarges the size of
graph preserving its γ-perfection and α-perfection.

Definition 3. Duplicating a vertex x of G produces a new graphG′ = G ◦x,
by adding a new vertex x′ and then fastening it to the neighborhood of x
(N(x′) = N(x)).

Obviously, this operation can be iterated.

Definition 4. The vertex multiplication of G by the non negative integer
vector h = (h1, . . . , hn) is the graph H = G ◦ h whose vertex set consists
of hi copies of each xi ∈ V (G), where copies of xi are adjacent to xj in H
if and only if xi is adjacent to xj in G.

Let’s see an example of vertex duplication. In figure 2, there is a generic
graph G. By duplicating the vertex x5, the set of vertices is enlarged by one,
x5′, and the latter vertex is fastened to the neighborhood of x5 (figure 3).
Note how the operation does not enlarge any clique.

x1

x2

x3

x4

x5 x6

Figure 2: A graph G

x1

x2

x3

x4

x5'

x5 x6

Figure 3: Vertex duplicating: G ◦ x5

Remark 1. The definition of vertex multiplication permits hi = 0, in which
case the final graph is obtained from G by removing xi. Thus, every induced
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subgraph of G can be obtained by an appropriate vertex multiplication with
a (0,1)-valued vector.

In figure 4, there is an example of vertex multiplication.

x2

x3

x4

x5 x6

x5'

Figure 4: Vertex multiplication: G ◦ (0, 1, 1, 1, 2, 1)

Lemma 2. Vertex multiplication preserves γ-perfection and α-perfection.

Proof. First of all, observe that G ◦ h can be obtained from an induced
subgraph A of G by iterating vertex duplications. Starting from G[A], we
obtain G ◦ h by iterating vertex duplication of xi up to hi times, for all i.
Indeed, each vertex duplication preserves the property that every copy of xi
is adjacent to xj if and only if xi is adjacent to xj in G.
If G is α-perfect but G ◦ h is not, then there must be at least one operation
of vertex duplication that from G[A] produces a graph that is not α-perfect
from an α-perfect one. The same holds for γ-perfection. So, observing that
every proper induced subgraph of G ◦ x is either an induced subgraph of G
or a vertex duplication of an induced subgraph of G, it suffices to prove that
χ(G ◦ x) = ω(G ◦ x) when G is γ-perfect and that α(G ◦ x) = k(G ◦ x)
when G is α-perfect.
Case 1.(G is γ-perfect): this is the easy case. As observed before, dupli-
cating a vertex does not enlarge any clique. But then, it’s easy to extend a
proper coloring of G to a proper coloring of G ◦ x by giving the color of x to
x′. Since x and x′ are disjoint, by definition of vertex duplication, no clique
contains both and so ω(G ◦ x) = ω(G).
Hence, χ(G ◦ x) = χ(G) = ω(G) = ω(G ◦ x).
Case 2.(G is α-perfect): we have to consider two cases.

1. x belongs to a maximum stable set in G. In this case, duplicating x
enlarges the maximum stable set where x belongs to and then α(G ◦
x) = α(G) + 1. Since k(G) = α(G), it’s easy to obtain a clique
covering of this size by adding x′ as a 1-vertex clique to some set of
(̨G) cliques covering G.
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2. x does not belong to any maximum stable set in G. In this case,
duplicating x does not enlarge the size of any maximum stable set, and
so α(G ◦ x) = α(G). Let Q be the clique containing x in a minimum
clique cover of G. Since k(G) = α(G), Q intersects every maximum
stable set of G. Now, since x doesn’t belong to any maximum stable
set, Q′ = Q − x also intersects every maximum stable set. We obtain
that α(G − Q′) = α(G) − 1. Now, by α-perfection of G, the induced
subgraph G − Q′ is α-perfect.

Consider Q′ ∪ x′. We know that it’s a clique3 and then, by adding
it to a set of α(G) − 1 cliques covering G − Q′ yields a set of α(G)
cliques covering G ◦ x.

Let’s show the main theorem of this section, actually of the entire report.

Theorem 1 (Lovász 1972). A graph is perfect if and only if its complement
is perfect.

Proof. It suffices to show that α-perfection of G implies γ-perfection of G
because then, applying this to Ḡ yields the converse. Suppose that the claim
fails. Then we consider a minimal graph G that is α-perfect but not γ-
perfect. But then, G is a minimal imperfect graph. By the lemma 1, we may
assume that every maximal stable set S in G misses some maximum clique
Q(S). Now, we will design a special vertex multiplication of G.
Let S = {Si} be the list of maximal stable set of G. We weight each vertex
by its frequency in {Q(Si)}, letting hj be the number of the stable sets
Si ∈ S such that xj ∈ Q(Si). By the lemma just proved, H = G ◦ h is
α-perfect, yielding α(H) = k(H). Now, we will use counting arguments for
α(H) and k(H) to obtain a contradiction.
Let A be the 0,1-matrix of the incidence relation between {Q(Si)} and V (G);
we have that ai,j = 1 if and only if xj ∈ Q(Si). By construction, hj
is the number of 1s in column j of A, and n(H) is the total number of
1s in A. Since each row has ω(G) 1s, also n(H) = ω(G) |S|. Since ver-
tex duplication cannot enlarge cliques, we have ω(H) = ω(G). Therefore,
k(H) ≥ n(H)/ω(H) = |S|.
We obtain a contradiction by proving that α(H) < |S|. Now, every stable
set in H consists of copies of elements in some stable set of G, so a maximum
stable set in H consists of all copies of all vertices in some maximal stable set
of G. Hence α(H) = maxT ∈S

∑
i:xi ∈T hi. The sum counts the 1s in A that

appear in the columns indexed by T . If we want to count these 1s instead
by rows, we obtain α(H) = maxT ∈S

∑
S ∈S |T ∩ Q(S)|. Since T is a stable

set, it shares at most one vertex with each chosen clique Q(S). Moreover, T
3Remember that x′ is a copy of x and the latter is member of a clique.
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is disjoint from Q(T ). But then we have done because with |T ∩ Q(S)| ≤ 1
for all S ∈ S, and |T ∩ Q(T )| = 0, we have α(H) ≤ |S| − 1.

Inside the proof we talk about a 0,1-matrix, in particular, a clique-vertex
incidence matrix. This can be seen as the first clue with the actual relation
with linear programming, but we will not discuss about it in this survey.

3 Families of graphs that are perfect

Perfect graphs have come to be recognized as having a natural place in the
world. Indeed, many well known families of graph are perfect.

3.1 Which subclasses?

The following it’s a brief list of families of perfect graphs. There is much
more out there, sure.

• Bipartite graphs

• The line graphs of bipartite graphs

• Interval graphs4

• Chordal graphs

• Split graphs5

• . . .many more.

3.2 Trees and Chordal graphs

The very basic class of graphs that are obviously perfect is the class of trees.

Lemma 3. Trees are perfect.

Proof. It suffices to observe that, for any tree (forest) T , it holds χ(T ) =
ω(T ) = 2.

Lemma 4. Chordal graphs are perfect.

Proof. (With the strong perfect graph theorem)
Let G be a chordal graph.

• There is no hole in G, by definition of a chordal graph.
4Vertices represent line intervals; and edges, their pairwise nonempty intersections.
5Graphs that can be partitioned into a clique and an independent set.
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• Can there be an odd anti-hole? Since we do not have the property G
chordal ⇔ G chordal (see the “square”), we can’t use the complement.
Suppose G contains an odd anti-hole.

– Either it is of size 5. Then C5 is an induced subgraph of G. But
C5 = C5. So C5 is an induced subgraph of G. Contradiction.

– Or it is of size 5 + 2k. Then P5 is an induced subgraph of G. But
P5 is not chordal. Contradiction.

Proof. (Without the strong perfect graph theorem)
Since every induced subgraph of a chordal graph is chordal too, we need only
to check that ∀G chordal, χ(G) = ω(G).
We know that χ(G) ≥ ω(G) (a clique needs a color per vertex)
Let G be a chordal graph. Let (a1, ..., an) be an elimination scheme. If we
color each ai (from an to a1), according to the colors of its neighbors already
colored, those form a clique with ai so there is always a color suitable for ai
that is ≤ ω(n). So G is ω(G)-colourable. This means χ(G) ≤ ω(G).
We then have χ(G) = ω(G).

3.3 Computing the chromatic number

Let’s see how to calculate the chromatic number for trees and chordal graphs
and how much it costs.

Lemma 5. Finding the chromatic number of a tree can be done in constant
time.

Proof. If it has exactly one vertex, its chromatic number is 1. Otherwise it
is 2.

Lemma 6. Finding the chromatic number of a chordal graph can be done in
quadratic time.

Proof. Let G be a chordal graph. We use Lex-BFS to find (a1, ..., an), an
elimination scheme (this is linear in the number of edges). If we color each ai
(from an to a1), according to the colors of its neighbors already colored, those
form a clique with ai, we pick the smallest available color for ai (the smallest
that is not taken by the already colored neighbors). We keep track of the
largest color used. When a1 is colored, the largest color used corresponds to
the chromatic number of the graph. This computes the chromatic number in
quadratic time in the number of edges (which is actually not optimal, there
exists a linear algorithm). Indeed, since every time we use a new color, it
means that all the already-colored neighbors (which form a clique) used all
the others. So we have a clique of size the new color.
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3.4 Split graphs

Given an undirected graph G = (V, E), this is a split graph if there is a
partition of its vertices such that the first subset of vertices is a stable set
and the second one is a clique. Namely, V = S + K. An example of split
graph is in figure 5.
There isn’t any restriction on edges between vertices of S and vertices of
K. In general, there is no one unique partition, neither will S (resp. K)
necessarily be a maximal stable set (resp. clique).
Since a stable set in G is a clique in Ḡ, and vice versa, we obtain a neat
result.

Theorem 2. An undirected graph G is a split graph if and only if its com-
plement Ḡ is a split graph.

The next theorem brings us many interesting information of split graphs.

Theorem 3. Let G be a split graph whose vertices have been partitioned into
a stable set S and a clique K. Exactly one of the following conditions holds:

1. |S| = α(G) and |K| = ω(G) (in this case the partition S + K is
unique)

2. |S| = α(G) and |K| = ω(G) − 1 (in this case there exist an x inS
such that K + x is complete)

3. |S| = α(G) − 1 and |K| = ω(G) (in this case there exist an y inK
such that S + y is stable)

Proof. Admitted. For a detailed proof look at [MCG].

Figure 5: A split graph G

The next theorem is the main of this section. From it, we will conclude that
split graphs are perfect.

Theorem 4. Let G be an undirected graph. The following conditions are
equivalent:
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1. G is a split graph

2. G and Ḡ are chordal graphs

3. G contains no induced subgraph isomorphic to 2K2, C4, or C5.

Proof. 1. implies 2. Let G = (V,E) have a vertex partition V = S + K
with S stable set and K clique. Now, suppose that G contains a chordless
cycle C of length ≥ 4. At least one, at most two adjacent vertices of C
would be in K.
Both cases would imply that S contains a pair of adjacent vertices, a con-
tradiction. Therefore, G must be chordal. By the theorem 2, Ḡ is split, so
Ḡ is chordal.
2. implies 3. Trivial.
3. implies 1. LetK be a maximum clique of G, chosen among all maximum
cliques, so that G[V − K] has fewest possible edges. We must show that
S = V − K is stable.
Suppose, on the contrary, that G[S] has an edge xy. By the maximality of
K, no vertex of S could be adjacent to every vertex of K. Moreover, if both
x and y are adjacent to every vertex of K with the exception of the same
single vertex z, then K−{z}+{x}+{y} would be a complete set larger than
K. Thus, there must exist distinct vertices u, v ∈ K such that xu /∈ E and
yv /∈ E.
Since G contains neither an induced copy of 2K2 nor C4, it follows that ex-
actly one of the edges xv or yu is inG. Assume, w.l.g., that xv /∈ E and yu ∈
E. For any w ∈ K−{u, v}, if yw /∈ E and xw /∈ E, then G[{x, y, u, w}] ∼=
2K2, whereas if yw /∈ E and xw ∈ E, then G[{x, y, u, w}] ∼= C4. Thus, y is
adjacent to every vertex of K −{v}, and K ′ = K −{v}+ {y} is a maximal
clique.
Since G[V −K ′] can’t have fewer edges than G[v −K] has, it follows from
the fact x is adjacent to y but not to v that there exist a vertex t 6= y in
V −K which is adjacent to v but not to y. Now tx must be and edge of G,
for otherwise {t, x, y, v} would induce a copy of 2K2. Similarly,tu /∈ E, for
otherwise {t, x, y, u} would induce a copy of C4. However, this implies that
{t, x, y, u, v} induces a copy of C5, a contradiction. Therefore, S = V −K
is stable, and G is a split graph.

But then, if a split graph G is also chordal then it holds

Proposition 3. A split graph G is perfect.

Proof. From theorem 4, G is chordal. Because chordal graphs are perfect,
so is G.
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4 The Strong Perfect Graph Theorem

Paul Seymour and his work associates have proved in 2002 the second con-
jecture made by Berge. The conjecture has stood for 40 years. Berge has
died in 2002, but he was alive when the conjecture was proved. For further
information, look at [Sey].

Theorem 5. (The Strong Perfect Graph Theorem)
A graph G is perfect if and only if G is Berge, that is, it contains no odd

hole or antihole6.

4.1 On trees, chordal graphs and split graphs

Let’s see how to apply the latter theorem on the studied families of graphs.
Since trees have no cycles, they are trivially Berge.
By definition, chordal graphs have no cycles of length ≥ 4. Then they are
Berge. And finally, split graphs are also chordal graphs, and so they are
Berge too.
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