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Abstract. A collection of 10 “rules of thumb” is presented that helpdeter-
mine the decidability and complexity of a large number ofrRett problems.

1 Introduction

The topic of this paper is the decidability and complexityvefification problems for
Petri nets. | provide answers to questions like “is there lgnrighm to decide if two
Petri nets are bisimilar?”, or “how much time is it neededtfia worst case) to decide
if a 1-safe Petri net is deadlock-free?”

My intended audience are people who work on the developnfaigorithms and
tools for the analysis of Petri net models and have some haslerstanding of com-
plexity theory. More precisely, | assume that the readeamifiar with the notion of
undecidable problem, with the definitions of deterministici nondeterministic com-
plexity classes like NP or PSPACE, with the notion of hard eochplete problems for
a complexity class, and with the use of reductions to provdriress and completeness
results. Theoreticians acquainted with the topic of thisquaare warned: They won'’t
find much in it that they didn’t know beforeOn the other hand, they might be inter-
ested in the paper’s unified view of complexity questionsifarafe and general Petri
nets, and in a few simplifications in the presentation of sproefs.

When | was invited to write this paper, | hesitated for a whileemembered the
statement of the Greek scepticist Gorgias:

Nothing exists;
if anything does exist, it is unknowable;
if anything can be known, knowledge of it is incommunicable.

and imagined a Greek chorus advising me not to write the gdageause, in their opin-
ion:

All results about decidability and complexity of Petri netere already ob-
tained in the early eighties;

* Work partially supported by the Sonderforschungsbereth ‘3Verkzeuge und Methoden fiir
die Nutzung paralleler Rechnerarchitekturen”.

1 Only one result has not been published before, namely a PERAgbrithm for the model-
checking problem of CTL and 1-safe Petri nets, presenteeatiGh 4.



if there are new results, you have included them for sureénpidwer “Decid-
ability issues for Petri nets — a survey” you wrote with Mogé¥ielsen in 1994
[10];

if you haven't included them in the survey, they are only dEnest for spe-
cialists; moreover, these results just show that all irsing problems are in-
tractable — finer classifications, like NP-, PSPACE- or EXRSP-hardness
have no practical relevance.

Since, as you can see, | still decided to write the paper, lavitke to anticipate my
answer to these three possible criticisms.

e There have been important recent developments about deliigand complexity
guestions, of interest for the whole Petri net community.

During the late seventies and early eighties there was duasitof theoretical work
on decidability and complexity problems for (Place/Tréiogi) Petri nets. Well-known
computer scientists, like Rabin, Rackoff, Lipton, Mayr, }e and Kosaraju, just to
mention a few, obtained a very impressive collection of itss'he decidability of
most problems, like boundedness, liveness, reachaldityuage equivalence, etc. was
settled, and in many cases tight complexity bounds werdrodda

However, while these results were being obtained, two dgreénts in computer
science opened new problems:

e In the late seventies, temporal logic was proposed as a daeguage for the
specification of reactive and distributed systems; a fews/keder, model-checking was
introduced as a technique for the verification of arbitraynporal properties. How-
ell, Rosier, and Yen were the first to study the decidabilitg @omplexity of model-
checking problems for Petri nets in the second half of thateg [17, 19, 20]. Today
most questions in this research field have been answered][9, 1

e In the early eighties, process algebras were introducethé&formal description
of concurrent and reactive systems. It was seen that lamgeqgivalence was not an
adequate equivalence notion for this class of systemse §iménstance it may consider
deadlock-free systems as equivalent to systems with deleslldlew equivalence rela-
tions were introduced, like bisimulation and failures egignce. In the early nineties,
the decidability of these equivalences for systems withitgistate spaces started to
receive a lot of attention, and led to renewed interest imi Rets. Jancar proved only
a few years ago a fundamental result showing the undecitafuil Petri nets of all
equivalence notions described in the literature [22, 21].

These two developments still had another effect. Duringdighties, many re-
searchers started to study the relationship of procesbr@geo Petri nets. Net models
in which a place can carry at most one token, like conditioerié systems or elemen-
tary net systems, turned out to be particularly useful festhstudies. These nets, which
have by definition a finite number of states, became even moeeeisting after the in-
troduction of automatic model-checkers, when it was redlihat they could be used to
model a large number of interesting systems which were withé reach of automatic
verification. The questions that had been asked and modtigafor Place/Transition
nets were now asked again for these models. In the last yeacetplexity of classical
properties (reachability, liveness. ), model-checking problems for different temporal



logics, and equivalence problems for different equivadamations, has been completely
determined [2, 23, 31].

¢ This paper has a different approach than the '94 survey papet has been written
to complement it.

Research on the decidability and complexity of verificatiooblems for Petri nets
has produced well over 100 papers, maybe even 150. Manymftiage been published
in well-known journals, and are thus available in any gobdHry. My survey paper with
Mogens Nielsen [10] summarises many results, and providathar comprehensive
list of references.

Petri net researchers often need information about the o4ty of a particular
problem (the Petri net mailing list receives now and thertipgs with this kind of
requests). In most cases, a similar problem has already ¢tadied in the literature,
and pointers to relevant papers can be found in [10]. If orfarsliar with a number
of basic techniques, it is easy to apply these existing tesulthe new problem. How-
ever, acquiring this familiarity is at the moment a ratherdhask, specially for Ph. D.
students: one has to go through many papers and distill aerstaoshding which is not
explicitly contained in the papers themselves. The purpdsbese pages is to make
this task a bit easier. Instead of listing results and refegs, | concentrate on a few
general results of broad applicability. | also provide &sibf thumb”, which | think can
be more useful than formal theorems.

¢ All researchers interested in the development and impléstien of analysis algo-
rithms for Petri nets can greatly profit from some basic kremlgle on the computational
complexity of analysis problems.

All researchers are regularly confronted with the probleithaving to prove or
disprove a conjecture. Should one first try to find a proof ooanterexample? The
wrong choice can make one lose precious time. Complexityrshean often help by
showing that the truth or falsity of the conjecture impliesumlikely fact, like P=NP
or NP=PSPACE. | present here some examples in the form of threlestiaken from
my personal experience:

Story |. After graduating in Physics, | became a Ph. D. student of edergscience.
At that time | knew very little about theoretical computeresice, and there were no
theoreticians in my environment. | started to work on thelysia of free-choice Petri
nets, a net class for which there was hope of finding efficierification algorithms, and
more precisely | began to investigate the liveness problMynhope was to efficiently
transform the problem into a set of linear inequations tloata be solved using linear
programming. ‘Efficiently’ meant for me that the number anzksof the equations
should grow quadratically, say, in the size of the net.

During the next four months | could not find any encoding, btgdd some text-
books on theoretical computer science. | came across Gaky@hnson’s book on
the theory of NP-completeness [12], and | found the problevad working on (more
precisely, its complement) in the list of NP-complete pewb$ at the end of the book.
Since there exist polynomial algorithms for Linear Prognaimg but the complement of



the liveness problem for free-choice nets was NP-compile¢ssxistence of an efficient
encoding would imply BNP, and so it was highly unlikely.

The NP-completeness of the non-liveness problem for fresee Petri nets is proved
in Section 10.

Story Il. Some years ago | refereed a paper submitted to the Petri nétreoce.
The paper contained a conjecture on the reachability pnolite Petri nets that can
be stated as follows. LeY” be a net, and led/y and M be markings of\ such that
M is reachable from/,. Conjecture:M can be reached from/, through a sequence
of transition firings which only visits intermediate margmof sizeO(n + mq + m),
wheren, mq, m are the sizes o, M, and M, respectively. The author of the paper
had constructed a random generator of nets and markingsaahbted the conjecture
in one thousand cases, always with a positive answer.

It is certainly possible to disprove the conjecture by eithig a counterexample,
but it is faster to use a complexity argument. | show this argnt in Section 7.

Story lll. | have recently come across a paper containing a charatierioof the set
of reachable markings of 1-safe Petri nets. A simple comiylexalysis shows that the
characterization is most probably wrong, although | havémind a counterexample
yet. In order to formulate the characterisation we need soefi@itions and notations.
A siphonof a net is a subset of placds satisfying®* R C R*®. A trap is a subset of
placesR satisfyingR* C *R. Givenanet\' = (S, T, F) and a setU C T, we define
the net\y as the result of first removing all transitions &f not belonging td’, and
then removing all places that are not connected to any tranginymore.

Now, letN = (S, T, F) be a net, and let/, andM be markings ofV" such that the
Petri net(\V, M) is 1-safe. The characterization stafe'sis reachable froni/, if and
only if there exists a mapping : T — IN satisfying the following three properties:

(1) forevery places, M(s) = Mo(s) + > _,cp(F(t,5) — F(s,1)) - X(t),
(2) every nonempty siphon df’; x is marked atV/y, and
(3) every nonempty trap of/rx is marked at\/.

whereTX is the set of transitionssuch thatX (¢) > 0.
| strongly believe that the proof of this result contains atatke, and that a coun-
terexample exists. | show why in Sectior 3.

e The classification of a problem as NP-, PSPACE- or EXPSPA&I&-tioes have
practical relevance

The complexity of Petri nets was first studied in the seventihen NP-complete
problems were really intractable: computer scientistsawgrable to deal even with very
small instances due to the lack of computing power and of gbedretical results.
At that time it probably didn't make so much difference for iagtitioner whether a
problem was PSPACE-hard or only NP-complete. In my opintoday’s picture is
very different:

2 After | wrote this paper, but before its publication, Stephdelzer found a counterexample
with 5 places and 3 transitions.



— NP-complete problems are no longer “intractable”. It idaiy true that all known
algorithms that solve them have exponential worst-caseptexity. However, to-
day there exist commercial systems for standard NP-compietblems, like sat-
isfiability of propositional logic formulas or integer liae programming problems,
that routinely solve instances of large size.

— The last years have witnessed a proliferation of modelddhgdools, like COSPAN,
PEP, PROD, SMV, SPIN, and others (see [11] and [30] for cohgmeive informa-
tion). Although the problems they solve are PSPACE-coneptbey have been suc-
cessfully applied to the verification of many interestingtérstate systems. Com-
mercial versions are starting to appear.

— Experimental tools for the analysis of timed-systems aaetisag to emerge. Ex-
amples are Hy-Tech, KRONOS, UPPAAL [11]. Many of the probdesnlved by
these tools are EXPSPACE-complete. The size of the instaheg can handle is
certainly much smaller than in the case of model-checkeitsthe results are very
promising.

— Theorem provers like HOL, Isabelle, PVS, and others areghapplied with good
success to the verification of systems with infinite statespalhey use heuristics
to try to solve particular instances of undecidable analpsbblems.

My conclusion is that the old “tractable — intractable” déisation has become too
rough. A finer analysis provides very valuable informatidioat the size of instances
that can be handled by automatic tools, and about the pbissifiapplying existing
tools to a particular problem.

Organisation of the paper

The paper is divided into two parts. The first is devoted tafe $etri nets, which are
Place/Transition Petri nets having the property that nahrable marking puts more
than one token in any place. Nearly all results hold fiesafe Petri nets (at most
tokens on a place) too, assuming that the algorithms reeeiggpart of the input, which
implies in particular thah must be known in advance. The second part is devoted to
general Place/Transition nets. Both parts are dividedtimtosame four sections. Each
section contains one or more “rules of thumb”. These are igé¢irgormal statements
which try to summarise a number of formal results in a conaigeessarily informal,
but informative way. They could also be called “useful liestatements which do not
tell all the truth and nothing but the truth, but are more uktifan a complicated formal
theorem with many ifs and buts. There is a total of 10 ruleshafb in the paper;
with their help | can solve most of the complexity questiom®ine across in my own
research.

Rules of thumb are displayed in the text like this:

Rule of thumb 0:
To find the rules of thumb, look for pieces of text within a box.




This is only a rule of thumb, because other pieces of text laesurrounded by a box,

in fact by adoublebox. They are fundamental formal results used to deriveulesof
thumb.

x

Fundamental results are displayed within a double bﬁ)

The first section contains a universal lower bound for “iagting” Petri net prob-
lems. The second section deals with upper bounds: for 1Pstie nets it is possible
to give an almost universal upper bound, whereas the casenefrgl Petri nets is more
delicate. The third section deals with equivalence probtare two given nets equiva-
lent with respect to a given equivalence notion? Upper aweidounds are considered
simultaneously. Finally, the fourth section gives infotina about how far one can go
with polynomial time algorithms.

Only some of the results mentioned in the paper are provedtfers the reader
is referred to the literature. The results with a proof a@sthfulfilling two conditions:
they are very general, applicable to a variety of problemd, @mit relatively simple,
non-technical proofs. | have devoted special effort to @néiag proofs in the simplest
possible way. My goal was to produce a paper that could bestaight through from
beginning to end. | don’t know if the goal has been achievatl| tried my best.
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2 Preliminaries

We assume that the reader is acquainted with the basic saifaret theory, like firing
rule, reachable marking, liveness, boundedness, etcalandvith other basic compu-
tation models like Turing machines. This section just fix@mnes notations.

Petri nets. A netis a triple N = (S, T, F'), whereS andT are finite sets oplacesand
transitions andF' C (S x T') U (T' x S) is theflow relation We identify F' with its
characteristic functioS x T') U (T' x S) — {0, 1}. Thepresetandpostsedf a place
or transitionz are denoted byx andz®, respectively. Given a seX¥ C SU T, we
denote*X = J,.x *zandX* = |J, .y =*. A markingis a mappingM/: S — IN.

A (Place/Transition) Petri neis a pairN = (N, My), where is a net andV/, is
the initial marking. A transitiort is enabledat a markingM if M (s) > 0 for every

s € *t. If tis enabled ai/, then it carfire or occur, and its firing leads to the successor
marking M’ which is defined for every placeby

M'(s) = M(s) + F(t,s) — F(s,t)

The expressiod/ —L5 M’ denotes that/ enables transition, and that the marking
reached by the occurrence bfs M’. A finite or infinite sequencé/, AN VAT

M, --- is called afiring sequenceThe maximal firing sequences of a Petri net (i.e.,
the infinite firing sequences plus the finite firing sequendeshvend with a marking

that does not enable any transition) are caligs Given a sequence = t1ts ... t,,
M s M' denotes that there exist marking$, , M-, ... , M,,_; such that\/ AN
My ... My_y = M’
A Petri netisl-safeif M (s) < 1 for every places and every reachable markirdg.
We encode a nétS, T', F') as two|S| x |T'| binary matricesPre and Post. The entry
Pre(s,t) is 1if there is an arc frons to ¢, and0 otherwise. The entryost(s,t) is 1 if
there is an arc fromto s, and0 otherwise. Theize of a neis the number of bits needed
to write down these two matrices, and is therefOréS| - |T'|). Thesize of a Petri neis
the size of the net plus the size of its initial marking. Maks are encoded as vectors



of natural numbers. Thsize of a markindgs defined as the number of bits needed to
write it down as a vector, where each component is writteniriady. Observe that the
size of a 1-safe Petri net@(|S| - |T|), since the initial marking has siz&(|.S|).

A labelled neis a fourtuplg(S, T, F, \), where(S, T', F') is a netand\ is a mapping
that associates to each transitioa label\(¢) taken from some given set of actions
Act. Givena € Act, we denote byM %+ M’ that there is some transitigrsuch that

M -5 M’ andA(t) = a. A labelled Petri nets a pair(\', M), where\ is a labelled
net andMj, is the initial marking.

Turing machinesin the paper we use single tape Turing machines with one-mfayte
tapes, i.e., the tape has a first but not a last cell. For oyrqaas it suffices to consider
Turing machines starting on empty tape, i.e., on tape coimgonly blank symbols. So
we define gnondeterministic) Turing machires a tupleM = (Q, I, 4, qo, F'), where

Q is the set of stated] the set of tape symbols (containing a spebiaink symbol),

0: (@xTI') = P(Q xI'x{R, L})the transition functiong, the initial state, and" the
set of final states. Theize of a Turing machinis the number of bits needed to encode
its transition relation.

Linearly and exponentially bounded automaté/e work several times with Turing
machines that can only use a finite tape fragment, or equitrgjevith Turing machines
whose tape has both a first and a last cell. We call tbeunded automatdf a bounded
automaton tries to move to the right from the last tape cdlist stays in the last cell.
A function f: IN — IN induces the class gf(n)-bounded automatavhich con-
tains for allk > 0 the bounded automata of sizeghat can usef (k) tape cells. Notice
that we deviate from the standard definition, which says #immautomaton isf(n)-
bounded if it can use at mog{(k) tape cells for arinput wordof length%. Since we
only consider bounded automata working on empty tape, #vedsrd definition is not
appropriate for us. Wherf(n) = n and f(n) = 2" we get the classes dihearly
boundedandexponentially bounded automataspectively.

Complexity classes and reductionis the paper we use some of the most basic com-
plexity classes, like P, NP, and PSPACE. We also use the EM¥BSPACE, defined
by
EXPSPACE = | J DSPACE(2"")
k>0

We always work with polynomial reductions, i.e., given astancer of a problem A
we construct in polynomial time an instangeof a problemB. Many of the results
also hold for logspace reductions, or even log-lin redutgjdout we do not address this
point.

% Notice that some books (for instance [1]) define
EXPSPACE = (5, DSPACE(k - 2").
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We study the complexity of analysis problems for 1-safeiPelis. Given a 1-safe
Petri net(\, M), whereN' = (S, T, F'), we say that thgpossible markings ot/ or
just themarkings of\/ are the set of markings that put at most one token in a place.
Clearly, there ar@!°! possible markings. Each of the markings can be identified wit
the set of places marked at it. Observe that the size of a n@ikilinear in the size of
the net.

3 A universal lower bound

In this section we obtain a universal lower bound for the claxipy of deciding whether
a 1-safe Petri net satisfies an interesting behaviouralgotgp

Rule of thumb 1:
All interesting questions about the behaviour of 1-safgiRts areg
PSPACE-hard.

Notice that a rule of thumb is not a theorem. There are belazig@roperties of 1-
safe Petri nets that can be solved in polynomial time. Fdaimse, the question “Is the
initial marking a deadlock?” can be answered very efficigriibwever, it is so trivial
that hardly anybody would consider it really interesting.&8more careful formulation
of the rule of thumb would be that all questions describet@literature as interesting
are at least PSPACE-hard. Here are 14 examples:

— Is the Petri net live?

— Is some reachable marking a deadlock?

— Is a given marking reachable from the initial marking?

— Is there a reachable marking that puts a token in a given place

— Is there a reachable marking that does not put a token in a glaee?

— Is there a reachable marking that enables a given tran®ition

— Is there a reachable marking that enables more than onétitbafs

— Is the initial marking reachable from every reachable megki

— Is there an infinite run?

— Is there exactly one run?

— Is there a run containing a given transition?

— Is there a run that does not contain a given transition?

— Is there a run containing a given transition infinitely ofeen

— Is there a run which enables a transition infinitely oftendasttains it only finitely
often?

The PSPACE-hardness of all these problems is a consequ&ane single funda-
mental fact, first observed by Jones, Landweber and Lien 17 124]:

)

A linearly bounded automaton of sizecan be simulated by a 1-s3
Petri net of size&)(n?). Moreover, there is a polynomial time procedyre
which constructs this net.




The notion of simulation used here is very strong: a 1-safe Fet simulates a Tur-
ing machine if there is bijectiofi between configurations of the machine and markings
of the net such that the machine can move from a configuratibma configuratiorn
in one step if and only if the Petri net can move from the maykfite; ) to the marking
f(e2) through the firing of exactly one transition.

LetA = (Q,I,X,0,q0, F) be alinearly bounded automaton of sizeThe compu-
tations of M visit at most the cellgy, . .. , ¢,. Let C be this set of cells. The simulating
Petri netN (A) contains a place(q) for each state € @), a places(c) for each cell
¢ € C, and a place(a, c) for each symbok € I' and for each celt € C. A token
on s(g) signals that the machine is in stateA token ons(c) signals that the machine
reads the celt. A token ons(a, ¢) signals that the celt contains the symbat. The
total number of placesi®)| + n - (1 + |X|).

The transitions ofN(A) are determined by the state transition relation4oflf
(¢',a',R) € d(q,a), then we have for each cella transitiont(q, a, ¢) whose input
places ares(q), s(c), ands(a, ¢) and whose output places ary’'), s(a’, ¢) ands(c’),
wherec' is the cell to the right of (this signals that the tape head has moved to the right)
unlessc is the last cell, in which cas€ = c¢. The last cell is an exception, because by
assumption the machine cannot move to the right from thére/' la’, L) € d(q,a)
then we add a similar set of transitions; this time the firfitis¢he exception. The total
number of transitions is at mo2t |Q|* - |I')? - n, and so0(n?), because the size of
is O(QI> - [T

The initial marking of N(A) puts one token oRr(qo), on s(c1), and on the place
s(B,¢;) for 1 < i < n, whereB denotes the blank symbol. The total size of the Petri
netisO(n?).

It follows immediately from this definition that each movefcorresponds to the
firing of one transition. The configurations reached Adylong a computation corre-
spond to the markings reached along its corresponding rhasd@ markings put one
token in exactly one of the placds(q) | ¢ € @}, in exactly one of the places
{s(¢) | ¢ € C}, and in exactly one of the placds(a,c) | a € X} for each cell
ce€ C.SON(A) is 1-safe.

In order to answer a question about a linearly bounded autmm& we can con-
struct the netV(A), which is only polynomially larger thani, and solve the corre-
sponding question about the runs 4f For instance, the question “does any of the
computations ofd terminate?” corresponds to “has the Petri Ngtd) a deadlock?”

It turns out that most questions about the computationsnefally bounded au-
tomata are PSPACE-hard. To begin with, (ampty tape) acceptance problésw SPACE-
complete:

Given: a linearly bounded automatain
To decide: ifA accepts the empty input.

Moreover, the PSPACE-hardness of this problem is very roiuemains PSPACE-
complete if we restrict it to

— deterministic bounded automata,
— bounded automata having one single accepting state,



— bounded automata having one single accepting configuration

Many other problems can be easily reduced to the acceptanbéem in polyno-
mial time, and so are PSPACE-hard too. Examples are:

— doesA halt?,

— doesA visit a given state?,

— doesA visit a given configuration?

— doesA visit a given configuration infinitely often?

We obtain in this way a large variety of PSPACE-hard probleBisce N(A) is
only polynomially larger tha, all the corresponding Petri net problems are PSPACE-
hard as well. For instance, a reduction from the problem &ddeever visit a given
configuration?” proves PSPACE-hardness of the reachalpititblem for 1-safe Petri
nets. Furthermore, once we have some PSPACE-hard probterhsshfe Petri nets we
can use them to obtain new ones by reduction. For instaneéollowing problems can
be easily reduced to the problem of deciding if there is alvable marking that puts a
token on a given place:

— is there a reachable marking that concurrently enables twendransitions; and
12%4

— can a given transitionever occur?

— is there a run containing a given transitibmfinitely often?

13 out of the 14 problems at the beginning of the section (aadynothers) can be
easily proved PSPACE-hard using these techniques. Theelsgeproblem, the first in
our list, is a bit more complicated. The interested readerfiral the reduction in [2].

The solution to Story IlI

Recall the conjecture of Story Ill: LeY = (S, T, F) be a net, and led, and M be
markings of V" such that the Petri neV/, My) is 1-safe.M is reachable from\/, in
N if and only if there exists a mapping : T — IN satisfying the following three
properties:

(1) forevery places, M(s) = Moy(s) + ), .7 (F(t,s) — F(s,t)) - X(t),
(2) every nonempty siphon dfrx is marked atV/,, and
(3) every nonempty trap of/rx is marked at\/.

whereT X is the set of transitionssuch thatX (¢) > 0.

We show that if the conjecture is true, then the reachalglibplem for 1-safe Petri
nets belongs to NP. Since we know that this problem is PSPA&H; the truth of
the conjecture implies NPPSPACE, which is highly unlikely. So, very probably, the
conjecture is false; one should look for a counterexamgtead of trying to prove it.

We need a well-known result (see for instance [16]):



There is a polynomial time nondeterministic algorithm FelegS) for the
problem of deciding if a system of linear equatighsvith integer coefficients
has a solution in the natural numbers.

It is easy to decide if every siphon of a n&tis marked at a given marking/.
The following (deterministic) algorithm, due to Starke [33 does it for you. It first
computes the largest siphdticontained in the set of places not markedAtClearly,
all nonempty siphons are markedZtif and only if R is empty.

Algorithm All _SiphonsMarked(\V/, M):
variable: R of type set of places;

begin
R := set of places ofV unmarked undebt/;
while thereiss € R andt € *s such that ¢ R*® do
R: =R\ {s}
od;
if R =0 then returntrue
else return false
end

The algorithm AlLTrapsMarked is very similar: just change the loop condition to:
there iss € R andt¢ € s® such thatt ¢ °R. Clearly, these two algorithms run in
polynomial time.

The following nondeterministic algorithm checks conditsq(1), (2) and (3). It first
guesses the sétX of transitions, and checks that (2) and (3) hold. Then, ickkef
condition (1) holds for a vectok such thatTX = {¢t € T | X (¢) > 0}. For that, it
checks if the system of equatio§scontaining the equations of condition (1) plus the
equationX (¢t) > 1 for everyt € TX, and the equatioX (¢) = 0 for everyt € T'\ TX
has a solution.

Algorithm CheckConditions{V', My, M):

begin
guess a subset of transitiofi{ of A
if All _SiphonsMarked(Nrx, M)
and All _TrapsMarked(Ntx, M)
and Feasible§)
then return true fi
end

Since the system of equatio§shas linear size in the nét, Feasiblef) runs in poly-
nomial time in the size of the net. So CheCknditions runs in polynomial time, and
the problem of checking if conditions (1), (2), and (3) ho&ldngs to NP.



Remark Even if we didn’t know about the AlSiphonsMarked algorithm, we could
still conclude that the conjecture is probably false. Omtyni the existence of the pro-
cedure Feasibl&Y) we can already conclude that the reachability problem feafe
nets belongs ta’f, the second level of the polynomial-time hierarchy (seerfstance
[1]). The general opinion of complexity theorists is thaf = PSPACE is almost as
unlikely as NP=PSPACE.

4 A nearly universal upper bound

In this section we obtain a nearly universal upper bound hiatcthe PSPACE-hard
lower bound of the last section:

Rule of thumb 2:
Nearly all interesting questions about the behaviour oafe ®etri nets
can be decided in polynomial space.

Observe that the rule of thumb says “nearly all” and no lorfgélf. The reason is
that the literature contains at least one interesting guestquiring more than polyno-
mial space. This exception to the rule is described at theoétite section.

We substantiate the rule of thumb with the help of tempomgids. Since their first
application to computer science in the late seventies byelPand others, temporal
logics have become the standard query languages used &sexpoperties of reactive
and distributed systems. A good introduction to the apfiticaof temporal logics to
computer science can be found in [6].

Temporal logics can bknear-time andbranching-time linear-time logics are in-
terpreted on the single computations of a system, whiledbriaig-time logics are in-
terpreted on the tree of all its possible computations. Thsstnpopular linear and
branching-time temporal logics are LTlifear-time propositional temporal logjand
CTL (computation tree logic Most of the safety and liveness properties of interest
for practitioners, like deadlock-freedom, reachabiliiyeness (in the Petri net sense),
starvation-freedom, strong and weak fairness, etc. caxpessed in LTL or in CTL
(often in both).

We show that all the properties expressible in LTL and CTL lsadecided in poly-
nomial space. Actually, we even show that they canmi®rmlydecided in polynomial
space, i.e., we prove that the degree of the polynomial doedepend on the property
we consider. More precisely, |eV| denote the size of a Petri nat, and let|¢| denote
the length of a formula (its number of symbols). For each of LTL and CTL we give
an algorithm that accepts as input a Petri feaind a formulap, and answers “yes”
or “no” according to whether the net satisfies the formula at; the algorithm uses
O(p(|N| + |¢|)) space, wherg is a polynomial independent & and¢.

4.1 Linear-time propositional temporal logic

The formulas of LTL are built from a seé®rop of atomic propositions, and have the
following syntax:



¢ ::=p € Prop
¢
1 N\ P2
X¢ (¢ holds at the next state)
01 Uds (41 holds untilg, holds)

Usual abbreviations ateue = p vV —p, F'¢ = trueU¢ (eventuallyp), andG¢o =
-F-¢ (alwaysg).

LTL formulas are interpreted ooomputationsA computation is a finite or infinite
sequence = P(0)P(1)P(2) ... of sets of atomic propositions. Intuitivel§ (i) is the
set of propositions that hold in the computation aftsteps. For a computationand a
pointi in the computation, we have that:

i Ep iff pe P(i)

T, = ¢ iff not(m,i = @)

71',2":(;5]/\(1)2 iff 71',2":@25] andw,i\:qﬁg

m,i = X¢ iff there exists a point + 1 in the computation, and
mi+1E¢

7,1 = ¢ Ugpo iff for someyj > i, we haver, j &= ¢, and
forall k,i < k < j, we haver, k = ¢,

We say that a computatiansatisfies a formula, denotedr = ¢, if 7,0 |= ¢.

The atomic propositions are intended to be propositionserstates of a system.
They can only be chosen after the class of systems on whidlodi®is to be applied
has been fixed. In the case of 1-safe Petri nets the states gfstem are the markings,
and so the atomic propositions are predicates on the pessiatkings of the net. It
is then natural to have one atomic proposition per place.niikings satisfying the
atomic propositiors are those that put a token én Observe that a computation is now
a sequence of sets of places, and so a sequence of markipgstitular, the sequences
of markings obtained from the runs of by removing the intermediate transitions are
computations. Abusing language, we also call these p#aticomputations runs. We
now define that a Petri neY satisfiesy if all its runs satisfyg. Here are some LTL
formulas that can be interpreted on the Petri net of Figusehich models a variation
of Lamport’s 1-bit mutual exclusion algorithm for two prases [26]:

(1) All'runs are infinite (true for the net of Figure Xy:Xtrue.

(2) All runs mark placess; infinitely often (false)G F'es; .

(3) In all runs, if placereq; becomes marked then place will eventually become
marked (true)G(req; = Fesy).

Formula (1) expresses deadlock-freedom; formula (3) esgeethat the requests of
the first process to the critical section are eventually tpan

The model-checking problem for LTL and 1-safe Petri netssegin of, given a 1-
safe Petri nefV and a formulap, deciding whetheN satisfiesp or not.

The solution to the model-checking problem we give here malse of automata
theory. We have to introduce automata on infinite words.A et (X, Q, qo, 6, F') be a



First process Second process

Fig. 1. A Petri net model of Lamport’s 1-bit mutex algorithm

nondeterministic automaton, whetgis a finite alphabety is a finite set of stategy is
the initial statey C @ x X' x @ is the transition relation, an# is a set of finite states.
The language of, denoted byL.(A4), is defined as the set of finite words accepted by
A. We define now the language ioffinite wordsaccepted by4d, which we denote by
L, (A). Aword w = agaias ... belongs toL, (A) if there is an infinite sequence of
statesypqi g - . . such that(q;a;q;+1) € o for everyi > 0.

When we are interested in the language of infinite words ofidaoraaton, then we
call it Buchi automaton

We have the following important result:

Given an LTL formulag, one can build a finite automatofy, and &
Blichi automatorB,, such thatL(A,) U L., (By) is exactly the set g
computations satisfying the formua

—

Since computations are sequences of sets of atomic prapsithe alphabet of the
automatad, and By is the se2”7°P. In our caseProp is the set of places of the net,
and so the alphabet of the automata is the set of all markings.

The construction ofd4 and By exceeds the scope of this paper (see for instance
[37]). For our purposes, it suffices to know the followingtic



— The states ofi, are sets of subformulas gf the states o3, are pairs of sets of
subformulas ofp. Since there are exponentially many sets of subformulgsand
B4 may have exponentially many stateggn.

— Given two stateg; , g» of A4 or B, and a markingl/, there is an algorithm which
decides using polynomial space whethgr, M, g2) € d5.

We also need two automatay = (2°, Qn, qon, On, Fi3) andBx = (25, Qn, qon, On, FE)
obtained from the Petri néY, as follows:

— @n is the set of reachable markings &,

— qon is the initial markingMy;

— dn contains the triples of markind9/, , My, M») such that\/, Ly M, for some
transitiont;

— F4 is the set of deadlocked reachable marking®/of

- Ff = Q,i.e.,F¥ is the set of reachable markings vt

Loosely speaking, both automata correspond to the redilajyaph of NV, with the
peculiarity that edges are labelled with the marking thapedrom. Ay and By differ
only in their final states. Clearly,(A ) is the set of all finite runs oV, andL, (By)
the set of all infinite runs.

In order to solve the model-checking problem for input ¢, let A be the prod-
uct of the automatal_, and Ay, and letB be the product of the automafa.
and By, where the produdtY, @, qo, d, F') of two automatg X', )1, go1, 01, F1) and
(X, Q2, qo2, 02, F») is defined in the usual way:

Q=01 xQ>
qo = (qo1, qo2)
0 =A{((a1,92),a,(q1,4)) | (a1, 0,41) € 61 and(gz, a,¢5) € d2}
F=F xF

Clearly, we have.(A) = L(A_4) N L(Ay) andL,(B) = L,(B-4) N L,(By).* So
the union of L(A) and L, (B) is the set of runs ofV that donot satisfy ¢; in other
words, N satisfiesp if and only if L(4) = § andL,,(B) = 0.

We have reduced the model checking problem to the followimg &ivenN and
¢, decide if L(A) and L, (B) are empty. We have to solve this problem using only
polynomial storage space in the sizefand¢. The first natural idea is to construct
A andB, and then use the standard algorithms for emptiness of autofor finite and
infinite words. Unfortunately, botHd and B may have exponentially many states ¥
and|¢|.

At this point, complexity theory helps us by means of Savétclonstruction. Recall
that a nondeterministic decision procedure for a problermnisalgorithm which can
return “yes” or fail, and satisfies the following propertiietanswer to the problem is
“yes” if and only if some(not necessarily all) execution of the algorithm returnesy;

A deterministic decision procedure always answers “yeshof'.

4 The product of two Biichi automata doesn’t always accepirttersection of the languages,
but this is so in our case.



Savitch’s construction:

Given a nondeterministic decision procedure for a giverbf@m using
f(n) space, Savitch’s construction yields a deterministic pdoce for
the same problem usingf (n) space.

This construction makes our life easier: it suffices to giveadeterministialgo-
rithm for the emptiness problem of and B running in polynomial space. Actually, it
also suffices to give a nondeterministic algorithm fortle@emptinessroblem: by Sav-
itch’s construction there exists a deterministic algamtfor the nonemptiness problem,
and by reversing the answer of this algorithm we obtain agratime for the emptiness
problem.

The nondeterministic algorithm for the nonemptiness probtonstructsi and B
“on the fly”. The algorithm keeps track of a current statedobr B, which is initially
set to the initial state. The algorithm repeatedly guessesxastate, checks that there
is a transition leading from the current state to the nexestand updates the current
state. In the case of, the algorithm returns “true” when (and if) it reaches a fisiaite:

Algorithm NonemptyA(N, ¢)

variables: ¢ of type state ofd . 4;
M of type state ofd 5 (i.e., of type marking);

begin
(g, M) := (qo-¢, Mo);
while (g, M) is not a final state oft do
choose a stat¢ of A_4 such tha(g, M,q') € §_¢

and a markingV/’ such that\/ —Ls M’ for some transitio;
(¢, M) == (¢', M");
od;
return true
end

In order to estimate the space used by Nonemptgbserve that all the operations
and tests can be performed in polynomial space. For thad|lbat given two states
01,92 € Q-y andM € 29, there is an algorithm which decides using polynomial space
whether(q:, M, g2) € d-4. The algorithm needs to store one statef A, and a
markingM of N. Since the states of .4 are sets of subformulas ¢f ¢ has quadratic
size in|¢|. SinceM has linear size ifV|, polynomial space suffices.

The case ofB is a bit more complicated. Sind@ has finitely many stated,,, (B)
is nonempty if and only if there exists a reachable final sjagech that there is a loop
from ¢ to itself. So the algorithm proceeds as in the caselpbut, at some point,
it guesses that the current final state will be revisitedhént stores the current state
to be able to check if the guess is true. The rest of the algarithecks the guess
nondeterministically.




Algorithm NonemptyB(N, ¢):

variables: M, M, of type state oBy (i.e., of type marking);
q, g Of type state ofB_4;
flag of type boolean;



begin
(¢, M) := (qo-g, Mo); flag := false;
while flag = false do
choose a stat¢/ of A_4 such thalg, M,q') € ¢

and a markingy/’ such that\/ ~L5 M’ for somet;
(¢. M) := (¢, M");
if (¢, M) is afinal statehen
choose betweefilag := false andflag := true
fi
od;
(qr, M) := (g, M);
repeat
choose a stat¢ of A_4 such thalg, M,q') € ¢

and a markingy/’ such that\/ L5 M’ for somet;
(¢, M) = (¢, M')
until (¢, M) = (gr, M,);
return true
end

Again, NonemptyB(N, ¢) uses only polynomial space. Since the deterministic al-
gorithm obtained after the application of Savitch’s comstion to NonemptyA and
NonemptyB also needs polynomial space, the model-checking probterhTL be-
longs to PSPACE.

Observe that the only properties of 1-safe nets we have usedier to obtain this
result are:

— a state has polynomial size (actually, even lineaf)Nih, and

— given two markings\/, M’, it can be decided in polynomial spacelif Ay VL
for some transition.

These conditions are very weak, and so the PSPACE resulteaxtended to a
number of other models. As observed in [35], conditions (i &) hold for other Petri
net classes, likeondition/event systemslementary net systemsut also for process
algebras with certain limitations to recursion, and foresaV other models based on a
finite number of state machines communicating by finite me@he conditions also
hold for bounded Petri nets, assuming that the bound is &em go NonemptyA and
NonemptyB as part of the input. This assumption is necessary, be¢hasmwund of a
bounded Petri net (the maximal number of tokens a place aataicounder a reachable
marking) can be much bigger than the size of the net, and so ayernmed more than
polynomial space in order to just write down a reachable ingrk

The PSPACE result can also be extended to more general Jtigecthe linear-time
mu-calculus, for which the translation into automata stitirkks (see for instance [4]).

4.2 Computation Tree Logic

Some interesting properties of Petri nets cannot be expiassLTL. An example is
liveness (in the Petri net sense). Recall that a transigdivé if it can always occur



again. One possibility to express this to allow existergialiniversal quantification on
the set of computations starting at a marking. CTL introdubés quantification on top
of LTL’s syntax The syntax of CTL is

¢ :=p € Prop
-
1 A P2
EX¢ existential next operator
AX ¢ universal next operator

E[p1Ugs] existential until operator
A[p1U¢o] universal until operator

Disjunction and implication are defined as usual. Other elsbtions argrue =
pV —p, EF¢ = E[trueU¢] (possibly¢), AG¢ = —-EF-¢ (alwayse), AF¢ =
AltrueU ¢] (eventuallyp) and EG¢ = —AF-¢ (¢ holds at every state of some com-
putation).

CTL formulas are interpreted aomputation tregsvhich are possibly infinite trees
where each node is labelled with a set of atomic propositiodyn). A path of a
computation tree that cannot be extended to a larger patiézia computation; notice
that it is a computation in the LTL sense. The intuition isttthee nodes of the tree
correspond to the states of a system; a state may have aragrbiimber of successors,
corresponding to different computationB(n) is the set of atomic propositions that
hold at node (state). For a treer and a node: we have that:

T,n=p iff pe P(n)

T,n = ¢ iff not(r,n = ¢)

,n=d¢r ANpy iff T,n = ¢ andr,n E ¢
T,n=AX¢ iff for every childn' of n, 7,n' = ¢
T,n=EX¢ iff for some childn' of n, 7,n' |= ¢

(n must have at least one child)

,n = Alp1Us] iff for all computationsn = ngnins ...
there existg > 0 such thati; = ¢
and foreveryj, 0 < j < i, n; |= ¢

,n = E[p1Ug,] iff for some computatiom = ngnins ...
there existg > 0 such that; = ¢
and foreveryj, 0 < j < i,n; = ¢

2

B

If the treer is clear from the context we shortenn = ¢ ton |= ¢. We say that a
treer satisfies a formula if root(7) |= ¢.

Observe thatd X ¢ is equivalentto-E X —¢, i.e., EX and AX are dual operators.
So actually we could remové X from the syntax without losing expressive power. It
might seem that the existential and universal until opesadoe also dual of each other,
but this is not true. The dual operator of the universal ugtihe existentialveakuntil,
with syntaxE[¢, WU ¢-], and the following semantics:

T, Nn |: E[@] WU¢2] |ff T,Nn |: E[@] U¢2] \Y EG(@])

It holds that
Alp1U ¢a] = =E[=¢2 WU —¢4]



In order to use CTL to specify properties of a 1-safe Petridgtve choose again
the places ofV as atomic propositions. With this choice a computationiseetree of
sets of places, and so a set of markings. We can associate tmomputation treey as
follows: the root is labelled with the initial markinyy; the children of a node labelled
by M are labelled with the markings/' such that\/ —- A’ for some transitiort.
We say thatV satisfiesy if the treery satisfiesp.

The computation tree corresponding to the the net of Figuseshown in Figure
2. Essentially, the tree is just the unfolding into a treehaf teachability graph of the
net. Different nodes in the tree can be labelled with the saraking, but all subtrees

{idle 1,id 1,idle 2,id 2}

{reg_1,nid_1,idle_2,id_2} {idle_1,id_2,req_2,nid_2}

SN LN

1, {reg_1,nid_1, {reg_1,nid_1, {idle_1,id_1,
_2} req_2, ni d_2} req_2,nid_2} cs_2,nid_2

Fig. 2. Computation tree of the Petri net of Figure 1

whose roots are labelled with the same marking are isomorgiven a formulap and
a marking)M, either all or none of the nodes labelled b satisfy¢. So it makes sense
to say thatV/ satisfiesp, meaning that all nodes labelled By satisfy¢.

Here are some CTL queries on the Petri net of Figure 1:

— No reachable marking puts tokensdsn andcs, (true): AG(—cs1 V —ess).

— The output transition of the placeq, is live (true): AGEF (reqq A ids).

— The initial marking is reachable from every reachable magKirue):
AGEF(zdle; N Zd] N ng A Zdleg))

— Eventually place:s; becomes marked (falsefF'cs;

— There is a run that never marks; (true): EG—css

— If req, becomes marked, then eventually becomes marked (false):
AG(req, = AFcs2)

We show that the model checking problem for CTL is in PSPAGEollows from
the discussion above that it suffices to give a polynomiatsdgorithm for the syntax

pu=s|[=¢1|d1 ANd2 | EXG | E[p1Us] | E[pr WU 5]

We give a (deterministic) algorithm Check(, ¢) with a markingM and a formulap
as parameters which answers “true’Mf satisfiesp, and “false” otherwise. The model-
checking problem is then solved by Chetk{, ¢).

Check(\, ¢) is arecursive procedure on the structureépie., Check{/, Op(¢1, ... , dn)),
whereOp is some operator of the logic, calls Chesk(¢,), ... , Check(1, ¢,,).



Algorithm Check{/, ¢):

begin
if ¢ =s then
if M(s) =1 then return true else return false fi
elseif ¢ = —¢; thenreturn not Check(M, ¢1)
elseif ¢ = ¢1 A ¢o thenreturn Check(M, ¢;) and Check(M, ¢))
elseif ¢ = EX ¢, then

for everyM' such that\/ —Y5 M’ for some transitiort do
if Check(1', ¢1) then return true fi
od
elseif ¢ = E[¢;U o] thenreturn EU(M, ¢1, ¢2)
elseif ¢ = E[¢p; WU ¢5] then return EWU(M, ¢, ¢2)
fi
end

It remains to define the procedures BW(¢1, ¢2) and EWUQM/, ¢1, ¢-). We start with
EUWM, ¢1, ¢2).

Itis not possible to deterministically explore the infiljtenany computations start-
ing at M, and check directly if one of them satisfiésU ¢». The reader might feel
tempted to give a nondeterministic algorithm which expdosae of the computations,
and then apply Savitch’s technique. This seems to be a gaaq kit in fact doesn’t
work! There is a rather subtle problem. Consider the formula

¢n =E[E...E[sqUs1]...1Uspn-1]Usy]

wheresy, ... , s, are places. We obtain a checking algorithpthroughn applications
of Savitch’s technique. It is easy to give{| NV |)-space nondeterministic algorithm for
E[soUs1]. Unfortunately, the deterministic algorithm obtained wich’s technique
requiresf2(|N|?) space, the algorithm foE[E[soUs;|Uss] 2(|N|*) space, and the
algorithm for¢,, no less tha2(| N |*>") space. So the degree of the polynomialiy
depends on the formula we are considering.

We proceed in a different way. In a fist step we reduce the prolib the explo-
ration of a finite number of finite paths. We extend the syntB&®6L with new op-
eratorsE[¢1 Uy 2], one for each natural numbérLoosely speaking, a node satisfies
E[¢1 U] if in at least one of the computations starting at it we find desatisfying
¢- after at mosb steps and all nodes before it satisfy . Formally:

7,n = E[¢1Uygo] iff for some computatiom = nonins ...
there existg, 0 < i < b — 1 such that
n; = ¢2 andn; = ¢, foreveryj, 0 < j <i

It follows immediately from this definition that if, n satisfiesE[¢,U,¢2] for some
numberb then it also satisfie& [, U ¢-].
Now, letn be an arbitrary node afy, and letk be the number of places af. We
prove
n = Elp1Uds] <= E[p1Usn ]



It suffices to prove that |= E[¢1U¢,] impliesn = E[¢1 Usk ¢2]. Assume that sat-
isfies E[¢1 U ¢2]. Then,ry contains a computatiom = nonins . .. satisfyinge,U ¢»:

n; |= ¢1 for somei > 0 andn; = ¢; foreveryj, 0 < j < i.If i < 2% — 1, then
this computation satisfies Usx ¢2, and san |= ¢ Usx 2. Let us now consider the case
i > 2%, Let MyM, M, ... be the sequence of markings correspondingdo ns . . ..
SinceN is 1-safe and hak places, it has at mo&t' reachable markings. So there are
indicesj; andjz, 0 < ji < j» <4, such thatll;, = M;,. Since the markings labelling
the successors of a node are completely determined but thengéabelling the node
itself, 7y contains another computation startingrgtand labelled by

M[) A Mlej2+1Mj2+2 A

Loosely speaking, the sequence of markings of the new caatipntis obtained from
the old sequence by “cutting out” the piets;, 1 ... M;, and “glueing” the two ends
M;, andM;, 1. Inthis new sequence the markifng; appears at the position- (j» —
Jj1), and so closer td/, than in the original computation. We now iterate the “cigtin
and glueing” procedure untilZ; appears before thg* -th position. The computation
so obtained satisfies U,k ¢, and son |= ¢1Usk o.

So we have solved our first problem: instead of a potentiaifinite number of
computations, it suffices to explore finitely many paths aorhg at mos2* nodes,
and check that at least one of them satisfieE, ¢» (more precisely, that at least one
of them can be extended to a computation satisfying,x ¢»).

We construct EUR/, ¢1, ¢2) with the help of another algorithm Paf(, M', ¢, 1,
1), still to be designed, with the following specification:

Path(M, M', ¢, 4, 1) returns “true” if and only ifry has a pathy ...n; such
that

— nyg is labelled byM andmn; is labelled byM’,

— n; = ¢ foreveryi,0 <i <, and

— =

We can take:

Algorithm EU(M, ¢1, ¢2)
constant: k = number of places aW;

begin
for every markingM’ of N and even < [ < 2* do
if Path(M, M’, ¢1, ¢2,1) then return true
od;
return false
end

Since each iteration of thier loop can reuse the same space, the space used by
EU(M, ¢1, ¢2) is the space used by Palti( M', ¢4, 1) plus the space needed to store
M'" andl. So PathiZ, M', ¢, l) should use at most polynomial space for every
2%, A backtracking algorithm, which would be the obvious clegidoes not meet this



requirement, because it stores all the nodes of the compuitagting currently explored
having still unexplored branches, and there can be expiilgmhany of those.

Atrick frequently applied in complexity theotyelps us out of the problem. Loosely
speaking, for each reachable markibfj’, we explore all paths leading frod to M
and containing’é] + 1 nodes, and themeusing the same spacal paths leading from
M" to M' and containingéj + 1 nodes. This trick of splitting the paths into two parts
is applied recursively until paths having at most 2 nodeseaiehed.

Algorithm Path(//, M', ¢, ¢, 1)
constant: kK = number of places aWV;

begin
if 1 =0 then
if M = M'and Check(M, v)
then return true fi
fi;
if =1 then
if M —s M’ for some transition
and Check(M, ¢) and Check(M’, v))
then return true fi
fi;
for every markingd/" of N do
if Path(/, M", ¢, true, [£]) and Path("”, M, ¢, 1, |L])
then return true fi
od;
return false
end

In order to estimate the space complexity of Path(M', ¢, 1), let ¢(¢) be the
maximum over all marking8/ of the space needed by Chetk(¢), and letp(¢, ¢, 1)
be the maximum over all pairs of markingg¢, M’ of the space needed by Patli(
M', ¢, 1, 1). Then we have

p(¢,9,0) = O(c(¥))
p(9,9,1) = O(max{c(¢), c(y)}[N])
p(é,9,1) = O(max{p(¢. ¥, [5]), (6. ¥, [5])}IN])

and so, in particular
p(,9,2%) = O(max{c(9), c(¥)} + k- [N|) = O(max{c(¢), c(¥)} + |N|*)

It remains to construct EWU(, ¢1, ¢-). The interested reader can easily prove that
for every noden of 7

n = El¢p1 WU @] <= E[¢1 WU ¢s]

5 In fact, this trick lies at the heart of Savitch’s technique.



where the semantics &[¢, WU ¢-] is given by

7,n [= E[¢py WUs] iff n = E[p1Usg] or
there exists a path = ngninsy ...y
such that; = ¢, forevery0 <i <b

So we can take
Algorithm EWU(M, ¢1, ¢2)

constant: k = number of places aW;

begin
if EU(M, ¢1, ¢2) then return true
else
for every markingd/' of N do
if Path(\/, M', ¢1, true, 2*) then return true
od;
return false
end

This completes the definition of Chedl(, ¢). Itis easy to see that it runs in polyno-
mial space ifN| and|¢|, but let us determine the space complexity a bit more pricise
We have:

c(s) = O(|N])
c(¢1 A d2) = O(max{c(¢1), c(¢2)} + |NJ)
c(=¢) = O(c(9))
c(Elp1Ud]) = O(p(¢, ¢2,2%) + IN|)
= O(max{c(¢1), ¢(¢2)} + |N|?)
c(E[¢1Uwss]) = O(max{c(E[¢1Uds]),p(1, true, 25)} + | N|)
(

O(max{c(¢1),c(d2)} + [N|*)
O(l¢l - INJ?).

and so we finally get(¢)

4.3 An exception

The most interesting exception to Rule of Thumb 2 is¢batrollability property. Let
T, be a subset of transitions of a 1-safe PetriNet (S, T, F, My), and lett € T\ Tp.
We say thatlTy controlst by a sequence € T if for every occurrence sequence
My = M such that the projection af onto Ty is o, the transitiont cannot occur
at M. The intuition is thatly can controlt in the sense that once the sequendeas
occurred, possibly interleaved with transitionsiof 7j, t cannot occur until transitions
of Ty occur again. We say tha&f, can controlt if Ty can controlt by at least one
sequence.

The controllability problem is defined as follows:

Given: a 1-safe Petri net with a sEtof transitions, Ty CT,t € T \ Ty
To decide: ifTy can controk.

Jones, Landweber and Lien show in [24] that controllabiBtiEXPSPACE-complete.



4.4 Aremark on action-based temporal logics

We have defined LTL and CTL asgate-basetbgics, because in order to know if a run
satisfies a property one only needs information about thestathe markings — visited
during its execution, and not about which transitions leathfa marking to the next.
It is possible to definaction-basedrersions of these logics, in which the identities of
the markings visited during the execution of a run is irralety while the information
is carried by the sequence of transitions that occur. TheSerabased versions are
particularly useful for labelled Petri nets.

The action-based version of LTL — tailored for labelled Pagts — looks as follows:
the set of basic propositions contains only one elementehathe propositiortrue.
The operatorsX’ andU are replaced by a set délativisedoperatorsX k., Ug, wherek
is a subset of a certain finite set of actigh. A computatioris now a finite or infinite
sequence = agayas ... of actions. Letr) = a;a,,4 .... We have:

7 = true always
7= Xk iff 7 #e€ ao €k, andr(") Eo
7 |= ¢1Uk ¢o iff for somej > 0 we haver’) |= ¢, and
forall k,0 < k < j, we haves; € k andr®) = ¢,

In order to interpret the logic on a 1-safe labelled Petri Netwe chooséAct as
the set of labels carried by the transitions/éf We say thatV satisfies a formula
if all the sequences of transition labels obtained from the rumg b removing the
markings satisfyp.

Similarly, in the action-based version of CTL the operatirthe logicEX, AX,
E[...U...],and4[...U...] arereplaced by sets of relativised opera®rS, A X ,
E[...Uk...],andA[...Uk ...]. Computation trees are now trees whose edges are la-
belled with actions. The semantics is exactly what one espec

Itis easy to prove that the model-checking problem for thegenew logics can be
reduced to the model-checking problem for their state-thasesions. More precisely:
given a labelled 1-safe Petri nadt and a formulap of action-based LTL (CTL), one
can construct in polynomial time an unlabelled 1-safe RettiV’ and a formulap’ of
state-based LTL (CTL) such that satisfiesp if and only if N’ satisfiesy'. It follows
that the model-checking problem for the action-based LTd. @fL is also in PSPACE.

In Section 8 we study the model checking problems for tenmpogécs and arbitrary
Petri nets. There, the distinction between state-basedetioh-based logics plays a
much more important role.

5 Deciding equivalences

In this section we investigate the complexity of decidingib labelled 1-safe Petri nets
are equivalent with respect to a given equivalence notion.

Since the early eighties many different equivalence natibave been presented
in the literature. Van Glabbeek has classified them in sépa@ers, e.g. [36]. Most of
these equivalences fit between the so-caleckeequivalence, which is a process theory



counterpart of the classical language equivalence useatindl language theory, and
bisimulationequivalence. An equivalence notion X fits between trace asithblation
equivalence if bisimilar systems are X-equivalent, andggiealent systems are trace
equivalent.

Trace and bisimulation equivalences are defined as follbes N be a labelled
Petri net, where transitions are labelled with the elemehts set of actiong\ct The
set oftracesof IV, denoted by7T (N) is the set of words:; ...a, € Act* such that
there exist marking8/, . .. M, satisfyingM, - M; -2 ... % M,5. Two Petri
netsN; andN, aretrace equivalenif 7(Ny) = T (Na).

A relation R between the sets of markings of two nets {s@ong) bisimulatiorif
for every pair(M,, M,) € R and for every actiom € Act,

— if My % M|, thenM, %5 M} for some marking\Z} such tha( M, M}) € R,
and
— if My %5 M}, thenM, -2 M/ for some markingV/! such tha{ M/, M}) € R.

Two Petri netsV, andN, are(strongly) bisimilarif there exists a (strong) bisimulation
‘R containing the paifMy;, My2) of initial markings of N; andNs.
We have the following

Rule of thumb 3:
Equivalence problems for 1-safe Petri nets are harder teesthian
model-checking problems, but they need at most exponeptzaie.

We provide a first piece of evidence for this rule of thumb bpwimng that the
equivalence problem for 1-safe Petri nets and any equigal@otion fitting between
trace and bisimulation equivalence is PSPACE-hard. Itswuat that all the concrete
equivalences mentioned in the literature have at least DEME-hard equivalence
problems, and so this general PSPACE-hardness lower b@mubssibly be improved.

We proceed by reduction from the following PSPACE-hard peob

Given: a 1-safe Petri néY, a places of N
To decide: if some reachable marking®fputs a token on.

We start by labelling each transition @f with the same label, say. N is now
a labelled net. We pulV side by side with the labelled né{’ consisting of a loop
containing one single place marked with one token and omgestransition labelled by
a. \We denote the resulting Petri net By || N'.

Now, we consider two labelled nets. The first onévig| N'; the second is a small
modification of it obtained by adding a new output transitiorthe places of N. The
new transition has as unique input place, no output places, and carries a |éferiaht
from a, sayb.

The following holds:

— If some reachable marking puts a tokensthen the two nets are not trace equiv-
alent: the second one can dé,avhile the first one can't.

6 Recall:M % M’ denotes that there is a transitibfabelled bya such thathf Ny Vi



— If no reachable marking puts a token enthen the two nets are bisimilar: the
relation containing all pair¢)M,, M>), wherel; is a reachable marking of the
first net andM, a reachable marking of the second net, is clearly a bisiraunat

Therefore, given any equivalence notion X fitting betweeatérand bisimulation
equivalence, we can solve the PSPACE-hard problem abovemstracting the two
nets and deciding if they are X-equivalent. So the equivadgoroblem for any such
notion is PSPACE-hard.

Apart from this little result, the real evidence supportthg rule of thumb above is
the work of Rabinovich [31] and Jategaonkar and Meyer [2B]sTast paper contains a
table with the complexity of 18 equivalence notions. Bisarity and many variants of
it are DEXPTIME-complete, while trace equivalence, fadsiequivalence, and several
variants of them are EXPSPACE-complete. They also consiokealledpartial order
equivalencedor which the concurrent execution of two actions is notieglent to their
interleaved execution (i.e., a system that executasdb in parallel is not considered
to be equivalent to a system which chooses between executingl therb, or b and
thena). The complexity results (up to some open problems) ardaimi

6 Can anything be done in polynomial time?

We have seen that all interesting problems for arbitranafe-$etri nets are at least
PSPACE-hard, and so that there is very little hope of findiolgmomial algorithms for
them. The natural question to ask is if there are importantksisses of 1-safe Petri nets
for which one could solve at least some problems in polynbtiniee. In this section
we get some general answers in the form of rules of thumb.

A first rule, which tends to be surprising for many people is

Rule of thumb 4:
Most interesting questions about the behaviouaofclic 1-safe Petr
nets are NP-hard.

Here, as in Section 3, a word of warning is required about teamng of “inter-
esting”. Liveness is certainly an interesting questionddoitrary 1-safe nets, but not
for the acyclic ones: 1-safe acyclic Petri nets are alwayslive, because no transition
can fire more than once. Interesting questions for 1-safeliadyetri nets, all of them
NP-hard, are

Is a given marking reachable from the initial marking?

Is there a reachable marking which marks a given place?

Is there a reachable marking which does not mark a given place
Is there a reachable marking which enables a given tran8itio

Is the initial marking reachable from every reachable magRi

Is there a run containing a given transition?

Is there a run that does not contain a given transition?



Let us prove NP-hardness of the second problem: Is there chabse marking
which marks a given place? We present a polynomial time coctsbn which asso-
ciates to a boolean formula in conjunctive normal form arcticyi-safe Petri net. The
net nondeterministically selects a truth assignment fentiriables of the formula, and
then checks if the formula is true under the assignment. Dinsteuction is illustrated
in Figure 3 by means of an example.

Fig. 3. Acyclic net corresponding to the formu(a; V T3) A (z1 VT2 V z3) A (22 V T3)

It seems$ that in order to obtain classes with polynomial decisiorogthms one
has to imposéocal constraints on the net’s structure. Here “local constfaimans a
constraint which can be shown not to hold by looking at onlyreal part of the net.
For instance, “every transition has exactly one input gléea local constraint; if the
constraint does not hold, then one can always point at acpdatitransition in the net,
together with its input places, and show that the constiainbt satisfied because of
this transition. A constraint like “the net is acyclic” is hiocal, because the smallest
circuit of the net may be the net itself.

The two following local constraints have been very intepstuidied in the litera-
ture:

— theconflict-freenessonstraintss® C *s for every places with more than one output
transition; in the case of 1-safe Petri nets this constiaieguivalent to “every place
has at most one output transition” for nearly all purposes;

7 Although | don’t know of any formal proof.



— thefree-choiceconstraint: if(s, t) is an arc from a place to a transition, then so is
(s',t") for every places’ € *t and for every transitiot/ € s°.

Unfortunately, it is not possible to summarise the resuithe research on conflict-
free and free-choice Petri nets in a concise and generabfufeumb. But we can still
say:

Rule of thumb 5:
Many interesting questions about 1-safe conflict-freeilRets are solvt
able in polynomial time.
Some interesting questions abdive 1-safe free-choice Petri nets are
solvable in polynomial time (and liveness of 1-safe freeich Petri
nets is decidable in polynomial time to0).

Almost no interesting questions for 1-safe net classestantially
larger than free-choice Petri nets are solvable in polymabtime.

Among the “many” interesting polynomial questions for catffree nets are all
those that can be expressed in the fragment of CTL with syntax

¢pu=s|-¢[ g N2 | EX¢| EF¢

(see [7]). Among the “some” interesting polynomial questidor live free-choice nets
are the following [5]:

Is there a reachable marking which marks a given place?

Is there a reachable marking which does not mark a given place
Is there a reachable marking which enables a given tran8itio

Is the initial marking reachable from every reachable magRi

Is there a run that does not contain a given transition?

Interestingly, the reachability problem for 1-safe livedrchoice nets is NP-complete
[8], and so itis unlikely that it will ever be added to thistlis
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In this second part of the paper we consider arbitrary (firiace/Transition Petri
nets. Thepossible markings of a nét” or just themarkings ofA” are now the set of
all mappingsS — IV, whereS is the set of places of/. Observe that, contrary to
the 1-safe case, there is no a priori relation between tleeddia net and the size of its
markings. Notice also that the set of reachable markingsheafinite.

7 A universal lower bound

This section is the counterpart of Section 3 for Place/TiteomsPetri nets. The rule of
thumb is now:

Rule of thumb 6:
All interesting questions about the behaviour of (Placa&ition) Petri net
are EXPSPACE-hard. More precisely, they require at |285t™)-space.

L2

In particular, all the questions we asked about 1-safe Retsi can be reformulated
for Petri nets, and turn out to have at least this space cotityplAs in the case of 1-safe
Petri nets, this is a consequence of one single fundamextal f

A deterministic, exponentially bounded automaton of sizean be simulate
by a Petri net of sizé)(n?). Moreover, there is a polynomial time procedure
which constructs this net.

O

In order to answer a question about the computation of an rex@lly space
bounded automatos, we can construct the net that simulatgsvhich has sizé (n?),
and solve the corresponding question. If the original qaesequire2” space, as is
the case for many properties, then the corresponding qureabout nets requires at
least2?(v") -space.

The fundamental fact above was first proved by Lipton [27].yMand Meyer
proved in [29] that it is possible to make the simulating retersible(a net is re-
versible if for each transitionthere is a reverse transitidgrwhich “undoes” the effect
of t). Since reversible nets are equivalent to commutative @enaps, the construction
by Mayr and Meyer has important applications in mathematics

Since Mayr and Meyer's construction is more involved thaptan’s, and since
reversibility is not a main concern for this paper, we coesidipton’s construction in
detail. It would have been easier to refer to Lipton’s papet, unfortunately it only
exists as an old Yale report, quite difficult to find.

Bounded automata and general Place/Transition Petri natetdfit” well. It is not
appropriate to model a cell of a bounded automaton as a @aage did in the 1-safe
case, because the cell contains one outfofile number of possible symbols, while the
place can contain infinitely many tokens, and so the sament#ton as a honnegative



integer variable. So we use an intermediate model, nanwlnter programslt is well-
known that so-called bounded counter programs can simbtateded automata (see
below), and we show that Petri nets can simulate boundedeoprograms.

A counter program is a sequencelabelled commandseparated by semicolons.
Basic commands have the following form, wherg |,1} arelabelsor addressesaken
from some arbitrary set, for instance the natural numberd zais a variable over the
natural numbers, also calleccaunter

I: goto I unconditional jump

I if =0 thengoto | conditional jump
else gotol,

[: halt

A program is syntactically correct if the labels of commaads pairwise different,
and if the destinations of jumps correspond to existingl&ldr convenience we can
also require the last command to bhalt command.

A program can only be executed once its variables have redénitial values. In
this paper we assume that the initial values are alviayche semantics of programs
is that suggested by the syntax. The only point to be remaiskétiat the command
l:z:= 2 — 1failsif x = 0, and causes abortion of the program. Abortion must be
distinguished from proper termination, which correspotahe execution of dalt
command. Observe in particular that counter programs aegm@istic.

A counter progranC' is k-bounded if after any step in its unique execution the
contents of all counters are smaller than or equdl.tdVe make use of a well known
construction of computability theory:

There is a polynomial time procedure which accepts a detestit
bounded automatoA of sizen and returns a counter prograthwith
O(n) commands simulating the computation .4fon empty tape; in
particular, A halts if and only ifC halts. Moreover, ifA is exponent
tially bounded, thei®” is 22" -bounded.

Now, it suffices to show that 22" -bounded counter program of siz&n) can be
simulated by a Petri net of size(n?). This is the goal of the rest of this section.

Since a direct description of the sets of places and tramsitdof the simulating net
would be very confusing, we introduce a net programmingtimtavith a very simple
net semantics. Itis very easy to obtain the net correspgridia program, and execution
of a command corresponds exactly to the firing of a transit8mwe can and will look
at the programming notation as a compact description lagta Petri nets.

A net programis rather similar to a counter program, but does not have tssip
bility to branch on zero; it can only branch nondetermiaisity. However, it has the
possibility of transferring control to a subroutine. Thesttacommands are as follows:



x=z+1

I

Lex:=2-1

I: gotoly unconditional jump

I: gotol; orgoto I, nondeterministic jump
I: gosubl, subroutine call

I: return end of subroutine

I: halt

Syntactical correctness is defined as for counter progravesalso assume that
programs are well-structured. Loosely speaking, a progsamell-structuredif it can
be decomposed into a main program that only calls first-lsubroutines, which in
turn only call second-level subroutines, etc., and the jummmands in a subroutine
can only have commands of the same subroutine as destis&fe do not formally
define well-structured programs, it suffices to know thattadl programs of this section
are well-structured.

We sketch a (Place/Transition) Petri net semantics of stelictured net programs.
The Petri net corresponding to a program has a place for edwe, la place for each
variable, a distinguishelalt place, and some additional places used to store the call-
ing address of a subroutine call. There is a transition fohesssignment and for each
unconditional jump, and two transitions for each nondetristic jump, as shown in
Figure 4. We illustrate the semantics of the subroutine camrby means of the pro-
gram

1: gosub4;
2:gosub4;

3: halt;

4:goto5 or goto 6;
5:return;

6: return

The corresponding Petri net is shown in Figure 5. Obsenvgthiegplaced calls 4 and
2_calls 4 are used to remember the address from which the subroutiseaiizd.

Clearly, the Petri net corresponding to a net program witommands haé (k)
places and) (k) transitions, and its initial marking has sigkk). So itis of sizeD (k?).

Let C be a22" -bounded counter program with(n) commands. We show thét
can be simulated by a net prograW(C) with O(n) commands, which corresponds to
a Petri net of siz&) (n?). Unfortunately, the construction @f (C) requires quite a bit
of low-level programming. But the reward is worth the hackeffort.

The notion of simulation is not as strong as in the case offé-Batri nets. In
particular, net programs are nondeterministic, while deuprograms are deterministic.
A net program/N simulates a counter progra@i if the following property holdsC
halts (executes the commahdlt) if and only if somecomputation ofN halts (other
computations may fail).

Each variabler of N (be it a variable fromC' or an auxiliary variable) has an
auxiliary complement variablg. N takes care of setting = 22" at the beginning

8 Here we consider the main program as a zero-level subrqtitie jump commands in the
main program can only have commands of the main program ginalgsns.



| 1 x:=x+1; | © x:=x-1;
I ... I ...
|
I, I I, hal t
goto | I: goto |, |: halt
or
goto |,

Fig. 4. Net semantics of assignments and jumps



Fig. 5. Net semantics of subroutines



of the program. We call the code that takes care of Mis;; (C).° The rest of N (C),
calledN,;,, (C), simulates” and takes care of keeping the invariant 22" — z.

We designNg;.,, (C) first. This program is obtained through replacement of each
command ofC by an adequate net program. Commands of the form = + 1 (z :=
z—1) arereplaced by the netprogram=z+1;z2:=z—1(z :=z—1;7 :=T+1).
Unconditional jumps are replaced by themselves. Let us resiga a program

Test, (x,ZERO, NONZERO)
to replace a conditional jump of the form

I: if x =0 then goto ZERO
else goto NONZERO

The specification of Tegtis as follows:

If 2 = 0(1 <z < 2%"), then some execution of the program leadZERO
(NONZERO), and no computation leads dONZERO (ZERO); moreover the
program has no side-effects: after any execution leadi@EROor NONZERO
no variable has changed its value.

Actually, it is easier to design a program Tgat,ZERO, NONZERO) with the same
specification but aide-effectafter an execution leading ©ERQO, the values of: and
7 are swapped? Once Test has been designed, we can take:

Program Tesi(z, ZERO, NONZERO):

Test,(x, cont i nue, NONZERO);
cont i nuéest,(z, ZERO, NONZERO)

because the values efandz are swappe@ times if - > 0 or twice if z = 0, and so
Test, has no side effects.

The key to the design of Tésties in the following observation: Since never
exceedg?", testingz = 0 can be replaced by nondeterministically choosing

— to decrease by 1, and if we succeed then we know that> 0, or
— to decrease by 22", and if we succeed then we know that= 22", and sax = 0.

If we choose wrongly, that is, if for instanae= 0 holds and we try to decreaseby 1,
then the program fails; this is not a problem, because welwahg to guarantee that the
programmay (not must!) terminate, and that if it terminates then it pd@s the right
answer.

Decreasing: by 1 is easy. Decreasingby 22" is the difficult part. We leave it for
a routine Deg to be designed, which must satisfy the following specifarati

9 Recall that by definition all variables @ have initial valued. Therefore, if we needt = 22"
initially, then we have to design preprocessing code for it.
10 Executions leading tBiONZEROmust still be free of side-effects.



If the initial value ofs is smaller thar2>”, then every execution of Dgdails.

If the value ofs is greater than or equal &, then all executions terminating
with areturn command have the same effectsas= s — 22";5:= 5+ 22";in
particular, there are no side-effects. All other execitail.

Test, proceeds by transferring the value:ofo a special variable,,, and then calling
the routine Deg, which decreases, by 22" . In this way we need one single routine
Dec,, instead of one for each different variable to be decreaskith leads to a smaller
net program.

Program Test(z:, ZERO, NONZERO):

** jnitially s,, = 0 ands,, = 22" **
gotononzer o or goto loop;
nonzero: z:=xz — 1,z =z + 1, gotoNONZERQG,
loop: Z:=T—1l;2:=2+1;s,:=8,+1;8,:=5, — 1;
gotoexi t orgotol oop
exi t: gosubdec,; gotoZERO
** the routine called atiec, is Deg,(s,) **

It is easy to see that Téstmeets its specification: if > 0, then we may choose
the nonzer o branch and reachNONZEROQ. If =z = 0, thenZ = 22". After looping
22" times onloop the values oft, 7 ands,, 5, have been swapped. The values of
s, ands,, are swapped again by the subroutine Peind then the program moves to
ZERO. Moreover, ifz = 0 then no execution reaches theENZERO branch, because
the program fails at := z — 1. If z > 0, then no execution reaches tAERObranch,
because,, cannot reach the vallg2”, and so Deg fails.

The next step is to design DedWe proceed by induction am, starting with Deg.
This is easy, because it suffices to decreslsg2?’ = 2. So we can take

Subroutine Deg(s):
si=s—1,5:=5+1;
si=s—1,5:=5+1;
return

Now we design Deg ; under the assumption that Dés already known. The definition
of Dec; contains two copies of a program Testalled with different parameters. We
define this program by substitutiigor n everywhere in Te§t Test calls the routine
Deg at the addresdec;. Notice that this is correct, because we are assuming that th
routine De¢ has already been defined. _

The key to the design of Deg, is that decreasing bgiz”L1 amounts to decreasing
22" times by2?', because

i1

92+t _ (222')2 _ 222' .22"'

So decreasing b§22i+1 can be implemented by two nested loops, each of which is
executed??” times, such that the body of the inner loop decreasby 1. The loop



variables have initial value2?', and termination of the loops is detected by testing the
loop variables fof. This is done by the Telsprograms.

Subroutine Deg .+ (s):

** |nitially y; = 22" = z2i,¥; =0=72; **
** The initialisation is carried out by Iy,;; **
outer_loop: y;:=y; — 1,7, =7, + 1;
i nner_loop: z;:=2;—1,%Z; :=%; + 1;
s:=s—1,5:=5+1;
Test(z;, 1 nner _exi t ,i nner _| oop);
i nner _exi t: Test(y;, out er exit,out er_| oop);
out er _exi t: return

Observe also that both instances of Testl the same routine at the same label.

It could seem that Deg¢, swaps the values af;, y; andz;, z;, which would be
a side-effect contrary to the specification. But this is rw tase. These swaps are
compensated by the side-effects of #ERO branches of the Telsprograms! Notice
that these branches are now thener _exi t andout er _exi t branches. When the
program leaves the inner loop, Teswaps the values af andz;. When the program
leaves the outer loop, Tésiwaps the values @f; andy;.

This concludes the description of the program Jeand so the description of the
programNg;,,, (C). It remains to desigiV;,,;: (C'). Let us first make a list of the initial-
isations that have to be carried odi;,,, (C') contains

— the variablesty, ... , z; of C with initial value 0; their complementary variables
T1,...,T; with initial value22”;

— avariables with initial value0; its complementary variabfewith initial value22”;

— two variablesy;, z; for eachi, 0 < i < n — 1, with initial value2?"; their comple-
mentary variableg,, z; for eachi, 0 < i < n — 1, with initial value0.

Now, the specification oN;,,;; (C) is simple

Ninit (C) uses only the variables in the list above; every successédigion
leads to a state in which the variables have the correcainiéilues.

Ninit (C) calls programs Inguv, . . . , v,,) with the following specification:
All successful executions have the same effect as
vy = v + 22i;
U 1= Uy + 27
In particular, there are no side-effects.

These programs are defined by induction pand are very similar to the family of Dec
programs. We start with Inc



Program Ing(vy, . . . , vy):

v :=v +1,v:=v1 +1;

Um = Um + 1,0 =0 + 1
and now give the inductive definition of Ing :
Program Ing,1(v1, ... ,um):

** |nitially y; = 22" = z2i,¥; =0=72; **
outer_loop: yi:=y, — 1,7, :=y; + 1;
i nner_loop: z;:= 2 — 1,%Z; := Z; + 1;

v = +1;

VU = Uy + 1;

Test(z;, i nner _exi t ,inner _| oop);
i nner _exi t: Tesf(y;, outer_exit, out er _| oop);
outer exit:

Itis easy to see that these programs satisfy their spedifiicatNow, let us consider
Ninit (C). Apparently, we face a problem: in order to initialise thei@alesv, ... , v,
t0 22" the variableg); andz; must have already been initialised2® ! Fortunately,
we find a solution by just carrying out the initialisationslive right order:

Program N,,;:(C):

INCo (Yo, 20);
|nC] (y] s Z]),

|nCn71(yn71, anl);
Inc,(5,%1,...,7)

This concludes the description &f (C), and it is now time to analyse its size.
ConsiderNg;,,, (C) first. It contains two assignments for each assignmeiit,ain un-
conditional jump for each unconditional jump @, and a different instance of Tgst
for each conditional jump. Moreover, it contains (one sinigistance of) the routines
Dec,, Deg,—_1, ... , Deg (notice that Test calls Deg,, which calls Deg_4, etc.). Both
Test, and the routines have constant length. So the number of contsra N;;,,, (C)
isO(n).

Ninit(C) contains (one single instance of) the programs Ihc< i < n. The
programsing, ..., Inc,_; have constant size, since they initialise a constant nuofber
variables. The number of commands of Jris O(n), since it initialisesD (n) variables.

So we have proved tha¥ (C) containsO(n) commands. It follows that its corre-
sponding Petri net has siz&(n?), which concludes our presentation of Lipton’s result.

The solution to Story Il

Recall the conjecture of Story II: given a n¥tand two markingd/; andMs, if Ms is
reachable from\/; then it is reachable from/; through a sequenci, Loy vy



BN M,, = M such that all the marking¥f,, ... , M,, have size)(n + mg + m),
wheren, my, m are the sizes ol/, M, andM respectively.
Letc be the constant such thify, . . . , M, have size at most (n+mg+m). If the
conjecture is true, then the following nondeterministgaalthm solves the reachability
problem, since it may always answer “true” wh&his reachable:

Algorithm Reachable/, M,, M):
variable: M’ of type marking;

begin
M' = My;
while M’ # M do
choose a marking/" of size at most: - (n + mqo + m)
such thatV’ - M" for some transition;
if there is no such marking then stop;
M' = M",
od;
return true
end

Since the algorithm only visits markings of size (n + mg + m), it runs in linear
space. By Savitch’s construction there is a determiniggioréthm which uses quadratic
space. Since the reachability problem requires exporiapigaee, the conjecture is false.

8 Upper bounds

The general exponential space lower bound of the last seistisimost the best we can
hope for, because Rackoff gave in [32] an almost matchingmeptial space upper
bound for the covering and boundedness problems for Pesi More precisely, the
upper bound i€P("1°8 ) space, very close to tH¥ (V™) lower bound. The covering
problem consists of deciding if there exists a reachabl&mgmn/ such that\ > M’
for a given marking)/’, i.e., if there exists a reachable marking coveringM’; the
boundedness problem consists of deciding if the numbeiaaohable markings is finite.

Yen showed some years later in [38] that the same upper bonidd for the prob-
lem of deciding if there exists a firing sequence

My =5 My 22 - 25 M,
satisfying a given predicaté(M;, ... , My,o01,... ,0k) constructed using the follow-
ing syntax?1
M;(s) = ¢ | Mi(s) >
M;(s) > ()\ﬂf() M;(s) | M.
#o:(t) > c | #4,(t) <c|#q.(t) =c
#Hoi(t) > #o, (') | #0.() < #o,(t') | #0,() = #4, ()
FiANFy | FyVF,

11 The syntax is actually more general, see [38] for the details

i(s) = Mj(s)



wheres is a place;t andt' are transitions¢ is a constant, andf, (¢) denotes the
number of times that occurs ino. Both the covering and the boundedness prob-
lem can be reduced to Yen's problem. The covering problemafonarkingM =
(m1,...,m,) corresponds to deciding if there exists a firing sequelige-——> M,
such thatM (s1) > mq1 A ... A Mq(s,) > m,. The boundedness problem can be
easily shown to be equivalent to the problem of deciding @réhexists a sequence
My 2) M, E) M, such thatMl(Sl) > Mg(sl) Ao A Ml(Sn) > MQ(Sn) and
Mi(s1) > Ma(s1) V...V Mi(s,) > Ma(s,). Observe however that the reachability
problemcannotbe reduced to Yen's problem, because the preditte) = ¢ does not
belong to the syntax. The reachability problem was showrtddzidable by Mayr [28]
and shortly after with a simpler proof by Kosaraju [25], bltkenown algorithms are
non-primitive recursive. Closing the gap between the exptial space lower bound
and the non-primitive recursive upper bound is one of thetmedsvant open problems
of net theory.

Is it possible to give more general results about the prageethat are decidable,
and the properties that are decidable in exponential sdageatticular, we would like
to show that all the properties of a certain temporal loge@decidable, or decidable in
exponential space. As we are going to see, there is a verifisant difference between
state-based logics and action-based logics, and so wederiisem separately.

8.1 The state-based case

We have the following very general rule of thumb:

Rule of thumb 7:
The model-checking problems of all interesting state-dsgics are
undecidable.

As in the 1-safe case, we first have to choose a set of atomjopitions. We
take againProp = S, i.e., the atomic propositions are the places\ofWe say that a
marking M satisfies the propositionif M is marked ak. Observe that a computation
is no longera sequence of markings; a computation is a sequence of q@tses, as in
the 1-safe case, but the markings of general Place/transitts are not sets of places
anymore.

With this choice of atomic propositions we can only exprésg & place is marked
or not; we can say nothing about the number of tokens it coatainfortunately, even
with this restricted expressive power the model checkirapfams for LTL and CTL
turn out to be undecidable.

The proofis in both cases by reduction from the followinglgem, which is known
to be undecidable:

Given: a counter prografi with counters initialised to.
To decide: ifC halts.



We simulate once again counter programs by net program&nGivcounter pro-
gramC, we obtain a net prograny’(C) through replacement of each counter com-
mand

I: if =z =0 then goto I, else gotol,
by the net program

I: gototest_|; orgoto test_|s;
test | ;goto |y;
test | ogoto |,

while other commands are replaced by themselves.

The net prograniV'(C') simulatesC' in a much weaker sense than that of Section
7. N'(C) has ahonestrun that exactly mimics the (unique) execution(@fwhenever
C executes the commaidN'(C) chooses the same branch@sHowever, it also has
many other runs that “cheat”, i.e., runs that at some poiabsk the wrong branch. The
labelst est | ; andt est _| 5 correspond to two places &' (C) which can be used
to test if the program has cheated or not when executing thdittonal jump.

Suppose that there exists a temporal logic forntidét with the following property:

N'(0) satisfiesHalt if and only if the honest execution &f’(C) halts!?

Since the honest run exactly mimics the execution of the @yrogramC, N'(C)
satisfiedHalt if and only if C' halts. Therefore, the problem of decidindH#lt is satisfied
by a given Petri nefV is undecidable. It follows that the model-checking probleim
those logics in whichHalt was expressed is undecidable as well.

We construct in CTL and LTL very simple formulag L-Halt and CTL-Halt We
first define a formul&Cheatwithout temporal operator€heatis the conjunction over
all conditional jumps lif =z = 0 then goto |, else gotol, of the formulas:

(test 13 Az) V (test_ 1y A —x)

If a run visits a marking satisfyin@€heat then we know that it is dishonest: if the
marking satisfiegtest_1; A z), then at some conditional jump the run has taken the
I; branch even though > 0; if (test_15 A —x), then the run has taken thelbranch
even though: = 0. Now, we define

LTL — Halt = F(Cheat V halt)

wherehalt is the place in the net semantics corresponding to alhtde commands.
A run satisfied TL-Halt if at some point it cheats or it haltd!’(C') satisfied TL-Halt
iff every run satisfied TL-Halt. Since the honest run is the only one that doesn’t cheat,
N'(C) satisfied TL-Halt iff the honest run halts.
The formulaCTL-Haltis :

CTL — Halt = AF(Cheat V halt)

125ince N'(C) is just a shorthand description of a Petri net, it makes semssk if N'(C)
satisfies a property formalised as a temporal formula.



It follows immediately from the semantics of formulae thét(C) satisfiesCTL-
Halt if and only if it satisfied TL-Halt.

Since the formul&CTL-Halt only contains the operatot 7', the fragment of CTL
that extends propositional logic with the operatéig’ and its dualAG could still be
decidable. Unfortunately, a different proof [9] shows ttas is not the case.

8.2 The action-based case

As mentioned above, the action-based case is very diffél@mtthe state-based case:

Rule of thumb 8:
The model-checking problems of all interesting branchinge, action-based
logics are undecidable. The model-checking problems aéfidtesting lineart
time, action-based logics are decidable.

The undecidability of branching-time logics in the actibased case is an immedi-
ate consequence of the following fact: given an unlabellewli Ret N and a formula
¢ of state-based CTL there is a labelled n&tand a formulap’ of action-based CTL
such thatV satisfiesp if and only if N’ satisfiesp’.

The netN’ is obtained by labelling the transitions &f with some label, say,
and then adding for each plagea new transitiort, havings as only input place, no
output place at all, and labelled By The formulag’ is obtained through replacement
of each atomic proposition by E X true, and of each temporal operatarX, AX,
E[ U .. .], A[ LU ] by EX{G}, A‘Y{n,}v E[ .. U{a}], andA[. .. U{n} .. .], re-
spectively. Observe thatholds iff the transitiort, can occur, i.e., iffE X true holds.

We cannot use the same technique to prove the undecidaifilitg model-checking
problem for LTL, because the problem is decidable! As in tkgafe case, the model-
checking algorithm is based on automata theory. Given anfbfibula¢, one can build
a finite automatont, and a Buichi automataB, such thatL.(A4,) U L., (B,) is exactly
the set of computations satisfying the formglan the action-based case botfy and
B, are automata over the alphabeit

In the 1-safe case, given a métand a formulap, we first constructed two automata
A4 andB-, suchthatl(A-4) UL, (B-) is exactly the set of computatiommlating
the formulagp. In the general case we proceed exactly in the same way. Thadstep
was to construct two finite automathy and By from the Petri netV, which were
both essentially equal to the reachability graph of theldete we have a problem: the
automatad y and By can be defined just as in the 1-safe case, but skeeay now
have infinitely many reachable markings, they are not guasahto be finite.

The solution to this problem is easy: instead of constrgctivo automatad 5 and
By out of the Petri nefV, we construct two labelled Petri nedé4 4 and NB_; out
of the automatal .4 and B-, in the following obvious way:

— the places ofVA, are the states ol;

— for each transitioy; % ¢' in A, add a transition tdVA,, labelled bya, with ¢
andq’ as input and output place.



NB is constructed analogously. Now we construct the prodiycts NAy and N x
NBg, where the produc; x N, of two Petri netsN; and N, is another Petri net
defined in the following way:

— the set of places ¥V is the union of the sets of places &f andNs;

— for each pair of transitions, of N; andt, of N, labelled by a same actian the
productN contains a transitiof¥, t2) also labelled by:; the input (output) places
of (¢1,t2) are the union of the input (output) placestpfandis.

The two following results are easy to prove:

— L, (BNn)NL(By) # 0 holds if and only if the Petri ne¥ x NB4 has a run which
marks some place corresponding to a final statB pfnfinitely often.

— L(An) N L(Ay) # 0 holds if and only if the Petri neV x NA,4 has a reachable
dead marking which marks some place corresponding to a fiata efA.

Finding a run ofN x NB, that marks some place from a given g&f of final

places infinitely often is equivalent to deciding if therésts a firing sequenck/, -
M; 22 M, 2% Mjinthe netN x N B, such that

(N Ma(s) > My()) A (\/ Mas) > 1)

SES seFS

whereS denotes the set of all places. By Yen's result, introducetietbeginning of
this section, the problem can be solved in exponential sjpatte size ofN x NBy.
In a more detailed analysis [14], Habermehl shows that thablpm is EXPSPACE-
complete in the size aV and PSPACE-complete in the lengthgof

Finding a dead reachable marking/@fx NA, that marks some place from a given
set F'S of final places can be reduced to and is at least as hard as dbbatality
problem. Therefore, there exist so far no primitive rectgsilgorithms for it.

As in the 1-safe case, these results can be generalised toginyfor which the
translation into automata theory holds [9].

9 All equivalence problems are undecidable

This section’s rule of thumb has a rather negative flavour:

Rule of thumb 9:
All equivalence problems for Petri nets are undecidable.

This rule is supported by a recent and very nice result duanidak, showing that every
equivalence notion between trace and bisimulation eqemaa is undecidable for Petri
nets!® Jantar himself has presented his result very clearly iff; [2&e we do it in a
slightly different way. We proceed by reduction from the lplem

13 Actually, the result is a bit stronger, since bisimulati@nde replaced by an even finer equiv-
alence.



Given: a counter prograif,
To decide: ifC halts (recall that all counters are initialised(fp

which is known to be undecidable.

Although the result can be presented directly by constngdtivo Petri nets out of
C (and this is the way the proof in [22] goes), we prefer to usErag net programming
language with a very simple net semantics, this time a lagpgoéguarded commands
A program is a sequence of instructions, and instructioagapressions of the form

action,
I:[ U guard, ———— commang

actions
0 guard, ———— command

action,,
0 guard, ———— commang ]

where | is a labelactiony, ... , action, are actions, guardis either the special string
true or a conjunction of expressions of the form> 0 (no guards of the form: =
0 are allowed), and the possibb®emmandsare skip, goto | , halt, or a sequence of
assignments; :=z; +1; ... ; z, := z, + 1, where ther; are pairwise different.
Operationally, an instruction is executed as follows: ofine guards that evaluate
to true at the current state is nondeterministically selé¢if no guard evaluates to true,
the program aborts). Then, two things happen: the actioheo$¢lected guard is sent to
the environment, and its command is executed (if the comroantiins the assignment
x := x — 1 andz = 0 holds, then the program aborts). If the command is a jguto
I, then execution continues at the instruction with lab#l the command iskip or an
assignment, then execution continues with the next intnucAn observer can only
see the actions executed by the program, but not the valuts\airiables, or the label
of the instruction being currently executed.
Guarded command programs can be easily translated intbdetretri nets. Figure
6 shows the labelled net corresponding to the instruction

1:[0z>0 5 z:=2—-1
0 truei>:c:::c+1
0z>0Ay>0-"goto3
0 true -5 halt ]

(where we assume that the instruction following 1 in the paogis labelled by 2).
There is a place for each variable and each label, plus aa@pdacehalt. There is
a transition for each alternative, labelled by the altéueeg action. The semantics of
a program is obtained by merging places of the nets correlpgto its instructions
carrying the same label. We identify a program with its cep@nding labelled Petri net.
In particular, two programs are trace or bisimulation eqlewt if their corresponding
labelled nets are.

Given a counter prograrty, we construct two net progrant$; (C) and N»(C)
satisfying the following two properties:

(1) if C halts, thenV; (C') and N, (C) are not trace equivalent, and



Fig. 6. Net corresponding to an instruction

(2) if C does not halt, theiV, (C) and N, (C') are bisimilar.

For the proof of these properties it is very useful to chagdsé trace and bisimula-
tion equivalences in terms ofvo-person gamedVe describe first the features common
to both trace and the bisimulation games. The board of theegare the two programs
N;(C) and N, (C) in their initial states. The games are played by two play&lise
and Bob, who alternate moves. Alice makes the first move. Aaii®the execution of
(one of the alternatives of) an instruction in eitér(C) or N»(C), and is named after
the action corresponding to the executed alternative. iShaha-move is the execution
of an alternative of the forrguard —— commandIf Alice makes aru-move in one of
the programs, then Bob can only answer withacamove in the other program. It may
help your intuition to imagine that Alice wishes the progsato be non-equivalent,
while Bob wishes them to be equivalent. The winner of a gandedsded as follows:

— if Alice has no move available, then Bob wins;
— if Bob cannot answer to Alice’s move, then Alice wins;
— if the game does not terminate, then Bob wins.

If you find the idea of a non-terminating game awkward, thifkleess without the
50-move rule. If a position with only the two kings on the bib#s reached, then the
game goes on forever. In the trace and bisimulation gamesatisin like this is not a
draw, but a win for Bob. Bob only wins after infinite time, whican make the game
rather tedious, but that's his problem: the winning comxditis well defined, and every
game has a winner.

We describe now the differences between the trace and Hadimu games, which
are surprisingly small. In a trace game, Alice chooses ontd@programst the be-
ginning of the gameand makesill her movesn this program; Bob must make all his
moves in the other program. In a bisimulation game, Aliceas®s one of the programs
before each movend make&er next movén this program. For instance, in the bisim-
ulation game Alice can make her first move in the first progr&woh( must answer in
the second), and her second move in the second program (Bsttamawer in the first).



A strategyfor a player is a function which gets the list of moves playedss and
yields the player’'s next move. A strategyignningif a player that sticks to it winalll
games. We have the following nice result (see for instand@ [8vhich at least in the
case of the trace game is intuitively very plausible:

In the trace and bisimulation games f¥f (C) and N»(C):
if Alice has a winning strategy, then the two programs areeawpiivalent; if
Bob has a winning strategy, then the two programs are earival

So the properties (1) and (2) thili (C') andN»(C') — both to be constructed — have
to satisfy can be reformulated as follows:

(1) if C halts, then Alice has a winning strategy in the trace gama, an
(2) if C does not halt, then Bob has a winning strategy in the bisitiu@ame.

It is time to start with the definition ofV; (C') and N2 (C). To make things a bit
simpler, assume without loss of generality that the couptegramC' contains one
singlehalt instruction, and that this instruction is the last dfi@he programsV, (C)
and N, (C) look as follows:

Programi, (C): Programn,(C):
start[:trueﬂ)y::y+l]; start[:trueﬂ)z::z+l];
N'(C); N'(C);
halt halt
halt:[y >0 —— halt] halt:[y >0 —— halt]

where the progran¥’(C) still has to be defined. Observe that the two programs differ
only in the first instruction. After this instruction is ex¢ted,y = 1,z = 0 in N;(C),
andy =0,z = 1in No(C).

The programN’(C) is obtained by replacing each commanddbut the unique
halt command through an instruction of the new language. Thauctbns correspond-
ing to assignments and jumps are:

I: 2 :=x+ 1 isreplaced by I:{rue " = +1]

dec
I: z:=x—1 isreplaced by l:frue — z :=z — 1]
. jump

I: goto |4 is replaced by I:frue — goto |4]

Conditional jumps are the delicate part. A command of thenfor

I: if x =0 then goto ZERO
else goto NONZERO

is replaced by the following sequence of two instructions:

1 f there are severdhalt instructions, we can replace them by jumps to a new labeleaettd
of the program, and place there a unidwat command.



[0 2>0 "7, gotoNONZERO

0true — " skip

zZero

Uz>0Ay>0——yi=y—1,2z:=2+1]
Dm>0/\z>0ﬂ>y:=y+l;z::zfl];

I": ] true AN goto ZERO]

This completes the description éf, (C) and N»(C). Before going on, we observe
that the prograniV’(C') has arhonestrun that mimics the execution @f, and looks
as follows: wheneve€' executes a commandi’'(C) executes its corresponding in-
struction. If the command is a conditional jump afidtakes theNONZERO-branch,
thenN'(C') chooses theonzeraalternative of the corresponding instruction¢iftakes
the ZERObranch, thenV'(C) chooses thdirst of the two zero alternatives, namely

true — skip, and then it executes tlgoto ZEROinstruction.

There is an important difference betwedn(C) and N, (C'). Assume that in both
N;(C) and N, (C) we execute thetart action, followed by the honest execution of
N'(C). If and when the honest execution terminates, we can exdcetealt action
in N1(C), becausg has been set tb by thestart action, but wecannotexecute it in
N,»(C), becauseg still has the valu® there.

We are now ready to describe the winning strategies for Adiog Bob in the differ-
ent games.

Assume that’ halts. Here is the strategy for Alice in the trace game. Alice chedee
play onN;(C), and so Bob is forced to play aN-(C). Alice sticks to the following
sequence of moves, completely disregarding Bob’s answhesplays thetartmove,
continues with the moves of the honest executioiVofC'), and — if the honest run
terminates — finishes withtzalt-move.

We show in the first place that, if Alice follows this stratetfyen from the second
move on Bob is forced to plagxactly the same movas Alice (i.e., exactly the same
alternatives in the same commands). When Alice player&eromove, Bob can only
answer with a unigueonzeramove, so this case is easy. When Alice plags@move,
it seems that Bob can choose between taereanswers, namely

zero .
true —— skip
:c>0/\y>0£>y::y—l;z::z+1
m>0/\2>0ﬂ>y::y+l;z::zfl

But remember: Alice is playing the honest run, and so she plalys azeromove when
x = 0. So, whenever Alice plays zero move, Bob observes that the guard> 0
evaluates to false, and so that his only movieus =, skip.

Let us now see that Alice’s strategy is winning. Sidi¢dalts, the honest run termi-
nates, and so eventually Alice playbalt move® All along the game Bob has patiently

15 Incidentally, observe that Alice can indeed phalt, because she sgto 1 with herstartmove,
and she never touchedduring the honest execution.



repeated Alice’s moves, waiting for a chance, but his effare in vain: he cannot reply
to Alice’s halt move, because in his prograis (C) the variabley has the valu®, and
so the guard > 0 of thehalt move evaluates to false. So Bob loses.

Assume tha€’ does not halt.Here is the strategy for Bob in the bisimulation game.
Alice has to play thetartmove in one of the two programs, and Bob just replies with the
startmove in the other program. Then, as long as Alice plays thesionn of N’ (C)
(possibly switching between the two programs), Bob paltjaeipeats her moves in the
other progrant® If Alice deviates from the honest run by playing one of

zZero

:c>0/\y>0—>y =y—1l;z:=2z+1
ro
T>0/\Z>O*)y =y+1,z:=2-1

in one of the programs, Bob replies with

zero .
true —— skip

in the other program. If Alice deviates from the honest rurplaying

zero .
true —— skip

in one of the programs at a point in whieh> 0, Bob replies with one of

T>O/\y>0*>y =y—1l;z:=2z+1
ro
m>0/\z>0—>y =y+1,z:=2—-1

in the other program, depending on which guard is enaldfedfter this move, Bob
goes on playing exactly the same moves as Alice.

Let us see that Bob wins all games. If Alice sticks to the hbegecution, then,
sinceC does not halt, she never play$alt-move, and since all other moves can be
mimicked by Bob without problems, the game never terminagewin for Bob. So
Alice’s only chance to win is to deviate from the honest rusanhe point. Observe that
just before deviating we haye= 1,z = 0in N;(C) andy = 0,z = 1in No(C). We
show that by deviating Alice digs her own grave: she allowb Boreply in such a way
that after his movall variables have exactly the same valu&in(C) and N, (C)! Bob
then wins easily by playing the same moves as Alice.

Alice can deviate from the honest run in three different w&tse can play

z>0A y > 0 —jizlé Y=y — l;z:=2+1

to which Bob replaydrue AN skip, and then we havg = 0,z = 1 in both
programs. She can also play

ZEero
z>0ANz>0—y:=y+1,z:=2-1

8 He has no choice anyway!
17 Observe that exactly one of the two guards is enabled, bec#uasstart action makes the
assertiorny + z = 1 true, and the other actions keep this assertion invariant.



and after Bob’s reply we hawe= 1, z = 0 in both programs. Finally, she can play

zero .
true —— skip

at a state in whiclke > 0, and after Bob’s reply we have eithgr= 0,z = 1 or
y =1,z = 0 in both programs, depending on his answer.

9.1 Partial-order equivalences are also undecidable

As we mentioned in Section 5, the literature contains manrgadled partial-order
equivalence notions which do not fit between trace and bisitin equivalence. So
Jancar's result might seem not to apply for them. But it d&=y that two transitions
t1 andt, areconcurrently enabledt a markingd if M(s) > F(s,t1) + F(s,t2) for
every places, and say that a Petri netsgquentialf no reachable marking enables two
transitions concurrently. It is easy to see that the Pets Ne(C') and N, (C) we have
constructed above are sequential. So, actually, we havprorsed that any equivalence
relation which fits between trace and bisimulation equiveddor the class of sequen-
tial Petri netsis undecidable. Partial-order equivalences turn out todttiMeen trace
and bisimulation equivalence for sequential nets. Acyliis is what one would ex-
pect: partial-order equivalences should distinguish comncy from interleaving, but
if there is no concurrency at all then there is also nothingdistinguish.

10 Can anything be done in polynomial time?

The general EXSPACE-hardness bound of Section 7 raisesubstign if there are
better results (PSPACE, NP, polynomial problems) for @ass Place/Transition Petri
nets. Since a complete treatment of this question is outettope of this paper, we
concentrate on how far can one go with polynomial algorith®isviously, we cannot
expect to go further than for 1-safe Petri nets. So the firsstian is if at least some
problems for conflict-free nets and free-choice nets thatnat necessarily 1-safe can
still be solved in polynomial time. The answer is a qualified™ Even though [18, 39]
contain some polynomial algorithms for conflict-free Peets, most of the important
problems for these two classes become at least NP-hardntanicce, the reachability
problem for conflict-free Petri nets is NP-complete [8], ahd liveness problem for
free-choice Petri nets is co-NP-complete (i.e., it is theptement of an NP-complete
problem) [24, 5] (the proof is sketched below as the solutio&tory I). Notice that the
liveness and reachability problems for arbitrary Petrsraae much harder, and so these
NP-completeness results can also be seen as positivestesult

Is there any interesting constraint leading to polynomigdethms for many prob-
lems? There seems to be essentially a single non-trivial @y place has exactly
one input transition and exactly one output transition §&y” can also be generalised
to “at most”) The Petri nets satisfying this constraint hheen callednarked graphs
synchronisation graphandT-systemsTwo of the oldest papers in net theory show that
many problems for these nets can be solved using simple gdgohithms or linear
programming [3, 13]. So let us formulate our last rule of thum



Rule of thumb 10:

Many interesting problems about marked graphs are sohalplelyno-
mial time. Almost no interesting problems about Petri nessks sul
stantially larger than marked graphs are solvable in patyiabtime.

The solution to Story |
The non-liveness problem for free-choice Petri nets carobradlated as follows:

Given: a free-choice Petri né{,
To decide: ifV is non-live.

Membership in NP is non-trivial; it follows from Commonetlseorem [15, 5]. NP-
hardness, on the contrary, is very easy to prove by a reduydtist presented in [24],
from the satisfiability problem for boolean formulas in cangtive normal formt8 Fig-
ure 7 shows the Petri net corresponding to the formula

(Z‘] \/53) A (Z‘] VTV 1’3) N (Z‘Q \/53)

and we explain the construction on this example. Looselglsipg, the Petri net works
as follows: first, the variables are nondeterministicalgigned truth values by firing
either the transition:; or z; for each variable:;. Once all variables have been assigned
a value, a transitio’; is enabled if and only if the assignment makes the clavise
false. For instance,, is enabled if and only if the transitions , 2, T3 have fired; this
corresponds to the assignment:= false, x5 := true, x3 := false, which is the only
assignment making- false. So we have that the pla€alsegets tokens if and only if
the formula is false under the assignment. If the formulatitsBable, then there is an
assignment making the formula true, and for this assignitmenplaceFalsenever gets
marked. So the Petri net is not live. On the contrary, if thenfiola is unsatisfiable, then
the placdralsecan always get marked again, and the net s live.

Since the formula is satisfiable, the Petri net of Figure 7ois-five.

11 Conclusions

I'd like to conclude by listing the 10 rules of thumb of the apYou can find them
in Table 11. I've allowed myself to suppress the word “ingireg” from all the rules,
since it should no longer lead to confusion.

Acknowledgments

Many thanks to Eike Best, Peter Habermehl, Ernst Mayr, Ritiayr, Peter Ros-
manith, P.S. Thiagarajan, Antti Valmari and Frank Wallner helpful suggestions,
discussions, and informations. Many thanks also to Sergiléthand Zdenek Sawa
found a mistake in the version of this paper which appearddN@S 1491: the pro-
gramsN, (C) andN,(C) given in Section 9 were incorrect. They suggested the cbrrec
programs of this version. Zdenek Sawa also found some matkeais. The PSPACE-
algorithm for CTL of Section 4 is joint work with Peter Rossmita.

18 |t is interesting to compare this reduction with the one oftm 6.
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Fig. 7. Petri net corresponding to the formula: V Z3) A (z1 VT2 V z3) A (22 V T3)

~N O

. All questions about the behaviour of 1-safe Petri net&BACE-hard.
. Nearly all questions about the behaviour of 1-safe Pets nan be solved in polynomi

. Equivalence problems for 1-safe Petri nets are hardesite shan model-checking pro

. Most questions about the behaviour of acyclic 1-safd Rets are NP-hard.
. Many questions about 1-safe conflict-free Petri netsalk@ble in polynomial time.

. All questions about the behaviour of Petri nets are EXREPAard.
. The model-checking problems for Petri nets and all svakeed logics are undecidable.
. The model-checking problems for Petri nets and all brangetime, action-based logig

. All equivalence problems for Petri nets are undecidable.

The 10 Rules of Thumb

space.

lems. They need at most exponential space.

Some questions about live 1-safe free-choice Petri netsavable in polynomial timg
(and liveness of 1-safe free-choice Petri nets is decidatpelynomial time too).
Almost no questions for 1-safe net classes substantiathgtdhan free-choice Petri ng
are solvable in polynomial time.

are undecidable.
The model-checking problems for Petri nets and all lingaet action-based logics a
decidable.

. Many questions about marked graphs are solvable in polial time.
Almost no questions about Petri net classes substantadyef than marked graphs 8
solvable in polynomial time.
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T
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Table 1.
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