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Abstract. A collection of 10 “rules of thumb” is presented that helps todeter-
mine the decidability and complexity of a large number of Petri net problems.

1 Introduction

The topic of this paper is the decidability and complexity ofverification problems for
Petri nets. I provide answers to questions like “is there an algorithm to decide if two
Petri nets are bisimilar?”, or “how much time is it needed (inthe worst case) to decide
if a 1-safe Petri net is deadlock-free?”

My intended audience are people who work on the development of algorithms and
tools for the analysis of Petri net models and have some basicunderstanding of com-
plexity theory. More precisely, I assume that the reader is familiar with the notion of
undecidable problem, with the definitions of deterministicand nondeterministic com-
plexity classes like NP or PSPACE, with the notion of hard andcomplete problems for
a complexity class, and with the use of reductions to prove hardness and completeness
results. Theoreticians acquainted with the topic of this paper are warned: They won’t
find much in it that they didn’t know before.1 On the other hand, they might be inter-
ested in the paper’s unified view of complexity questions for1-safe and general Petri
nets, and in a few simplifications in the presentation of someproofs.

When I was invited to write this paper, I hesitated for a while. I remembered the
statement of the Greek scepticist Gorgias:

Nothing exists;
if anything does exist, it is unknowable;
if anything can be known, knowledge of it is incommunicable.

and imagined a Greek chorus advising me not to write the paperbecause, in their opin-
ion:

All results about decidability and complexity of Petri netswere already ob-
tained in the early eighties;? Work partially supported by the Sonderforschungsbereich 342 “Werkzeuge und Methoden für

die Nutzung paralleler Rechnerarchitekturen”.
1 Only one result has not been published before, namely a PSPACE algorithm for the model-

checking problem of CTL and 1-safe Petri nets, presented in Section 4.



if there are new results, you have included them for sure in the paper “Decid-
ability issues for Petri nets – a survey” you wrote with Mogens Nielsen in 1994
[10];
if you haven’t included them in the survey, they are only of interest for spe-
cialists; moreover, these results just show that all interesting problems are in-
tractable – finer classifications, like NP-, PSPACE- or EXPSPACE-hardness
have no practical relevance.

Since, as you can see, I still decided to write the paper, I would like to anticipate my
answer to these three possible criticisms.� There have been important recent developments about decidability and complexity
questions, of interest for the whole Petri net community.

During the late seventies and early eighties there was an outburst of theoretical work
on decidability and complexity problems for (Place/Transition) Petri nets. Well-known
computer scientists, like Rabin, Rackoff, Lipton, Mayr, Meyer, and Kosaraju, just to
mention a few, obtained a very impressive collection of results. The decidability of
most problems, like boundedness, liveness, reachability,language equivalence, etc. was
settled, and in many cases tight complexity bounds were obtained.

However, while these results were being obtained, two developments in computer
science opened new problems:� In the late seventies, temporal logic was proposed as a querylanguage for the
specification of reactive and distributed systems; a few years later, model-checking was
introduced as a technique for the verification of arbitrary temporal properties. How-
ell, Rosier, and Yen were the first to study the decidability and complexity of model-
checking problems for Petri nets in the second half of the eighties [17, 19, 20]. Today
most questions in this research field have been answered [9, 14].� In the early eighties, process algebras were introduced forthe formal description
of concurrent and reactive systems. It was seen that language equivalence was not an
adequate equivalence notion for this class of systems, since for instance it may consider
deadlock-free systems as equivalent to systems with deadlocks. New equivalence rela-
tions were introduced, like bisimulation and failures equivalence. In the early nineties,
the decidability of these equivalences for systems with infinite state spaces started to
receive a lot of attention, and led to renewed interest in Petri nets. Jančar proved only
a few years ago a fundamental result showing the undecidability for Petri nets of all
equivalence notions described in the literature [22, 21].

These two developments still had another effect. During theeighties, many re-
searchers started to study the relationship of process algebras to Petri nets. Net models
in which a place can carry at most one token, like condition/event systems or elemen-
tary net systems, turned out to be particularly useful for these studies. These nets, which
have by definition a finite number of states, became even more interesting after the in-
troduction of automatic model-checkers, when it was realised that they could be used to
model a large number of interesting systems which were within the reach of automatic
verification. The questions that had been asked and mostly solved for Place/Transition
nets were now asked again for these models. In the last years the complexity of classical
properties (reachability, liveness: : : ), model-checking problems for different temporal



logics, and equivalence problems for different equivalence notions, has been completely
determined [2, 23, 31].� This paper has a different approach than the ’94 survey paper, and has been written
to complement it.

Research on the decidability and complexity of verificationproblems for Petri nets
has produced well over 100 papers, maybe even 150. Many of them have been published
in well-known journals, and are thus available in any good library. My survey paper with
Mogens Nielsen [10] summarises many results, and provides arather comprehensive
list of references.

Petri net researchers often need information about the complexity of a particular
problem (the Petri net mailing list receives now and then postings with this kind of
requests). In most cases, a similar problem has already beenstudied in the literature,
and pointers to relevant papers can be found in [10]. If one isfamiliar with a number
of basic techniques, it is easy to apply these existing results to the new problem. How-
ever, acquiring this familiarity is at the moment a rather hard task, specially for Ph. D.
students: one has to go through many papers and distill an understanding which is not
explicitly contained in the papers themselves. The purposeof these pages is to make
this task a bit easier. Instead of listing results and references, I concentrate on a few
general results of broad applicability. I also provide “rules of thumb”, which I think can
be more useful than formal theorems.� All researchers interested in the development and implementation of analysis algo-
rithms for Petri nets can greatly profit from some basic knowledge on the computational
complexity of analysis problems.

All researchers are regularly confronted with the problem of having to prove or
disprove a conjecture. Should one first try to find a proof or a counterexample? The
wrong choice can make one lose precious time. Complexity theory can often help by
showing that the truth or falsity of the conjecture implies an unlikely fact, like P=NP
or NP=PSPACE. I present here some examples in the form of three stories taken from
my personal experience:

Story I. After graduating in Physics, I became a Ph. D. student of computer science.
At that time I knew very little about theoretical computer science, and there were no
theoreticians in my environment. I started to work on the analysis of free-choice Petri
nets, a net class for which there was hope of finding efficient verification algorithms, and
more precisely I began to investigate the liveness problem.My hope was to efficiently
transform the problem into a set of linear inequations that could be solved using linear
programming. ‘Efficiently’ meant for me that the number and size of the equations
should grow quadratically, say, in the size of the net.

During the next four months I could not find any encoding, but Iread some text-
books on theoretical computer science. I came across Garey and Johnson’s book on
the theory of NP-completeness [12], and I found the problem Iwas working on (more
precisely, its complement) in the list of NP-complete problems at the end of the book.
Since there exist polynomial algorithms for Linear Programming but the complement of



the liveness problem for free-choice nets was NP-complete,the existence of an efficient
encoding would imply P=NP, and so it was highly unlikely.

The NP-completeness of the non-liveness problem for free-choice Petri nets is proved
in Section 10.

Story II. Some years ago I refereed a paper submitted to the Petri net conference.
The paper contained a conjecture on the reachability problem for Petri nets that can
be stated as follows. LetN be a net, and letM0 andM be markings ofN such thatM is reachable fromM0. Conjecture:M can be reached fromM0 through a sequence
of transition firings which only visits intermediate markings of sizeO(n +m0 +m),
wheren;m0;m are the sizes ofN , M0 andM , respectively. The author of the paper
had constructed a random generator of nets and markings and had tested the conjecture
in one thousand cases, always with a positive answer.

It is certainly possible to disprove the conjecture by exhibiting a counterexample,
but it is faster to use a complexity argument. I show this argument in Section 7.

Story III. I have recently come across a paper containing a characterisation of the set
of reachable markings of 1-safe Petri nets. A simple complexity analysis shows that the
characterization is most probably wrong, although I haven’t found a counterexample
yet. In order to formulate the characterisation we need somedefinitions and notations.
A siphonof a net is a subset of placesR satisfying�R � R�. A trap is a subset of
placesR satisfyingR� � �R. Given a netN = (S; T; F ) and a setU � T , we define
the netNU as the result of first removing all transitions ofN not belonging toU , and
then removing all places that are not connected to any transition anymore.

Now, letN = (S; T; F ) be a net, and letM0 andM be markings ofN such that the
Petri net(N ;M0) is 1-safe. The characterization statesM is reachable fromM0 if and
only if there exists a mappingX : T ! IN satisfying the following three properties:

(1) for every places,M(s) =M0(s) +Pt2T (F (t; s)� F (s; t)) �X(t),
(2) every nonempty siphon ofNTX is marked atM0, and
(3) every nonempty trap ofNTX is marked atM .

whereTX is the set of transitionst such thatX(t) > 0.
I strongly believe that the proof of this result contains a mistake, and that a coun-

terexample exists. I show why in Section 3.2� The classification of a problem as NP-, PSPACE- or EXPSPACE-hard does have
practical relevance

The complexity of Petri nets was first studied in the seventies, when NP-complete
problems were really intractable: computer scientists were unable to deal even with very
small instances due to the lack of computing power and of goodtheoretical results.
At that time it probably didn’t make so much difference for a practitioner whether a
problem was PSPACE-hard or only NP-complete. In my opinion,today’s picture is
very different:
2 After I wrote this paper, but before its publication, Stephan Melzer found a counterexample

with 5 places and 3 transitions.



– NP-complete problems are no longer “intractable”. It is certainly true that all known
algorithms that solve them have exponential worst-case complexity. However, to-
day there exist commercial systems for standard NP-complete problems, like sat-
isfiability of propositional logic formulas or integer linear programming problems,
that routinely solve instances of large size.

– The last years have witnessed a proliferation of model-checking tools, like COSPAN,
PEP, PROD, SMV, SPIN, and others (see [11] and [30] for comprehensive informa-
tion). Although the problems they solve are PSPACE-complete, they have been suc-
cessfully applied to the verification of many interesting finite state systems. Com-
mercial versions are starting to appear.

– Experimental tools for the analysis of timed-systems are starting to emerge. Ex-
amples are Hy-Tech, KRONOS, UPPAAL [11]. Many of the problems solved by
these tools are EXPSPACE-complete. The size of the instances they can handle is
certainly much smaller than in the case of model-checkers, but the results are very
promising.

– Theorem provers like HOL, Isabelle, PVS, and others are being applied with good
success to the verification of systems with infinite state spaces. They use heuristics
to try to solve particular instances of undecidable analysis problems.

My conclusion is that the old “tractable – intractable” classification has become too
rough. A finer analysis provides very valuable information about the size of instances
that can be handled by automatic tools, and about the possibility of applying existing
tools to a particular problem.

Organisation of the paper

The paper is divided into two parts. The first is devoted to 1-safe Petri nets, which are
Place/Transition Petri nets having the property that no reachable marking puts more
than one token in any place. Nearly all results hold forn-safe Petri nets (at mostn
tokens on a place) too, assuming that the algorithms receiven as part of the input, which
implies in particular thatn must be known in advance. The second part is devoted to
general Place/Transition nets. Both parts are divided intothe same four sections. Each
section contains one or more “rules of thumb”. These are general informal statements
which try to summarise a number of formal results in a concise, necessarily informal,
but informative way. They could also be called “useful lies”: statements which do not
tell all the truth and nothing but the truth, but are more useful than a complicated formal
theorem with many ifs and buts. There is a total of 10 rules of thumb in the paper;
with their help I can solve most of the complexity questions Icome across in my own
research.

Rules of thumb are displayed in the text like this:

Rule of thumb 0:
To find the rules of thumb, look for pieces of text within a box.



This is only a rule of thumb, because other pieces of text are also surrounded by a box,
in fact by adoublebox. They are fundamental formal results used to derive the rules of
thumb.

Fundamental results are displayed within a double box.

The first section contains a universal lower bound for “interesting” Petri net prob-
lems. The second section deals with upper bounds: for 1-safePetri nets it is possible
to give an almost universal upper bound, whereas the case of general Petri nets is more
delicate. The third section deals with equivalence problems: are two given nets equiva-
lent with respect to a given equivalence notion? Upper and lower bounds are considered
simultaneously. Finally, the fourth section gives information about how far one can go
with polynomial time algorithms.

Only some of the results mentioned in the paper are proved; for others the reader
is referred to the literature. The results with a proof are those fulfilling two conditions:
they are very general, applicable to a variety of problems, and admit relatively simple,
non-technical proofs. I have devoted special effort to presenting proofs in the simplest
possible way. My goal was to produce a paper that could be readstraight through from
beginning to end. I don’t know if the goal has been achieved, but I tried my best.
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2 Preliminaries

We assume that the reader is acquainted with the basic notions of net theory, like firing
rule, reachable marking, liveness, boundedness, etc., andalso with other basic compu-
tation models like Turing machines. This section just fixes some notations.

Petri nets.A net is a tripleN = (S; T; F ), whereS andT are finite sets ofplacesand
transitions, andF � (S � T ) [ (T � S) is theflow relation. We identifyF with its
characteristic function(S � T ) [ (T � S)! f0; 1g. Thepresetandpostsetof a place
or transitionx are denoted by�x andx�, respectively. Given a setX � S [ T , we
denote�X = Sx2X �x andX� = Sx2X x�. A marking is a mappingM : S ! IN .
A (Place/Transition) Petri netis a pairN = (N ;M0), whereN is a net andM0 is
the initial marking. A transitiont is enabledat a markingM if M(s) > 0 for everys 2 �t. If t is enabled atM , then it canfire or occur, and its firing leads to the successor
markingM 0 which is defined for every places byM 0(s) =M(s) + F (t; s)� F (s; t)
The expressionM t�! M 0 denotes thatM enables transitiont, and that the marking

reached by the occurrence oft is M 0. A finite or infinite sequenceM0 t1�! M1 t2�!M2 � � � is called afiring sequence. The maximal firing sequences of a Petri net (i.e.,
the infinite firing sequences plus the finite firing sequences which end with a marking
that does not enable any transition) are calledruns. Given a sequence� = t1t2 : : : tn,M ��! M 0 denotes that there exist markingsM1;M2; : : : ;Mn�1 such thatM t1�!M1 : : :Mn�1 tn�!M 0.

A Petri net is1-safeif M(s) � 1 for every places and every reachable markingM .
We encode a net(S; T; F ) as twojSj�jT j binary matricesPre andPost . The entryPre(s; t) is 1 if there is an arc froms to t, and0 otherwise. The entryPost(s; t) is 1 if

there is an arc fromt to s, and0 otherwise. Thesize of a netis the number of bits needed
to write down these two matrices, and is thereforeO(jSj � jT j). Thesize of a Petri netis
the size of the net plus the size of its initial marking. Markings are encoded as vectors



of natural numbers. Thesize of a markingis defined as the number of bits needed to
write it down as a vector, where each component is written in binary. Observe that the
size of a 1-safe Petri net isO(jSj � jT j), since the initial marking has sizeO(jSj).

A labelled netis a fourtuple(S; T; F; �), where(S; T; F ) is a net and� is a mapping
that associates to each transitiont a label�(t) taken from some given set of actionsA
t . Givena 2 A
t , we denote byM a�! M 0 that there is some transitiont such thatM t�!M 0 and�(t) = a. A labelled Petri netis a pair(N ;M0), whereN is a labelled
net andM0 is the initial marking.

Turing machines.In the paper we use single tape Turing machines with one-way infinite
tapes, i.e., the tape has a first but not a last cell. For our purposes it suffices to consider
Turing machines starting on empty tape, i.e., on tape containing only blank symbols. So
we define a(nondeterministic) Turing machineas a tupleM = (Q;�; Æ; q0; F ), whereQ is the set of states,� the set of tape symbols (containing a specialblanksymbol),Æ : (Q�� )! P(Q���fR;Lg) the transition function,q0 the initial state, andF the
set of final states. Thesize of a Turing machineis the number of bits needed to encode
its transition relation.

Linearly and exponentially bounded automata.We work several times with Turing
machines that can only use a finite tape fragment, or equivalently, with Turing machines
whose tape has both a first and a last cell. We call thembounded automata. If a bounded
automaton tries to move to the right from the last tape cell itjust stays in the last cell.

A function f : IN ! IN induces the class off(n)-bounded automata, which con-
tains for allk � 0 the bounded automata of sizek that can usef(k) tape cells. Notice
that we deviate from the standard definition, which says thatan automaton isf(n)-
bounded if it can use at mostf(k) tape cells for aninput wordof lengthk. Since we
only consider bounded automata working on empty tape, the standard definition is not
appropriate for us. Whenf(n) = n andf(n) = 2n we get the classes oflinearly
boundedandexponentially bounded automata, respectively.

Complexity classes and reductions.In the paper we use some of the most basic com-
plexity classes, like P, NP, and PSPACE. We also use the classEXPSPACE, defined
by3 EXPSPACE = [k�0DSPACE(2nk)
We always work with polynomial reductions, i.e., given an instancex of a problem A
we construct in polynomial time an instancey of a problemB. Many of the results
also hold for logspace reductions, or even log-lin reductions, but we do not address this
point.

3 Notice that some books (for instance [1]) defineEXPSPACE = Sk�0DSPACE(k � 2n).



Part I

1-safe Petri nets





We study the complexity of analysis problems for 1-safe Petri nets. Given a 1-safe
Petri net(N ;M0), whereN = (S; T; F ), we say that thepossible markings ofN or
just themarkings ofN are the set of markings that put at most one token in a place.
Clearly, there are2jSj possible markings. Each of the markings can be identified with
the set of places marked at it. Observe that the size of a marking is linear in the size of
the net.

3 A universal lower bound

In this section we obtain a universal lower bound for the complexity of deciding whether
a 1-safe Petri net satisfies an interesting behavioural property:

Rule of thumb 1:
All interesting questions about the behaviour of 1-safe Petri nets are
PSPACE-hard.

Notice that a rule of thumb is not a theorem. There are behavioural properties of 1-
safe Petri nets that can be solved in polynomial time. For instance, the question “Is the
initial marking a deadlock?” can be answered very efficiently; however, it is so trivial
that hardly anybody would consider it really interesting. So a more careful formulation
of the rule of thumb would be that all questions described in the literature as interesting
are at least PSPACE-hard. Here are 14 examples:

– Is the Petri net live?
– Is some reachable marking a deadlock?
– Is a given marking reachable from the initial marking?
– Is there a reachable marking that puts a token in a given place?
– Is there a reachable marking that does not put a token in a given place?
– Is there a reachable marking that enables a given transition?
– Is there a reachable marking that enables more than one transition?
– Is the initial marking reachable from every reachable marking?
– Is there an infinite run?
– Is there exactly one run?
– Is there a run containing a given transition?
– Is there a run that does not contain a given transition?
– Is there a run containing a given transition infinitely often?
– Is there a run which enables a transition infinitely often butcontains it only finitely

often?

The PSPACE-hardness of all these problems is a consequence of one single funda-
mental fact, first observed by Jones, Landweber and Lien in 1977 [24]:

A linearly bounded automaton of sizen can be simulated by a 1-safe
Petri net of sizeO(n2). Moreover, there is a polynomial time procedure
which constructs this net.



The notion of simulation used here is very strong: a 1-safe Petri net simulates a Tur-
ing machine if there is bijectionf between configurations of the machine and markings
of the net such that the machine can move from a configuration
1 to a configuration
2
in one step if and only if the Petri net can move from the marking f(
1) to the markingf(
2) through the firing of exactly one transition.

LetA = (Q;�;�; Æ; q0; F ) be a linearly bounded automaton of sizen. The compu-
tations ofM visit at most the cells
1; : : : ; 
n. LetC be this set of cells. The simulating
Petri netN(A) contains a places(q) for each stateq 2 Q, a places(
) for each cell
 2 C, and a places(a; 
) for each symbola 2 � and for each cell
 2 C. A token
on s(q) signals that the machine is in stateq. A token ons(
) signals that the machine
reads the cell
. A token ons(a; 
) signals that the cell
 contains the symbola. The
total number of places isjQj+ n � (1 + j�j).

The transitions ofN(A) are determined by the state transition relation ofA. If(q0; a0; R) 2 Æ(q; a), then we have for each cell
 a transitiont(q; a; 
) whose input
places ares(q), s(
), ands(a; 
) and whose output places ares(q0), s(a0; 
) ands(
0),
where
0 is the cell to the right of
 (this signals that the tape head has moved to the right)
unless
 is the last cell, in which case
0 = 
. The last cell is an exception, because by
assumption the machine cannot move to the right from there. If (q0; a0; L) 2 Æ(q; a)
then we add a similar set of transitions; this time the first cell is the exception. The total
number of transitions is at most2 � jQj2 � j� j2 � n, and soO(n2), because the size ofA
isO(jQj2 � j� j2).

The initial marking ofN(A) puts one token ons(q0), on s(
1), and on the places(B; 
i) for 1 � i � n, whereB denotes the blank symbol. The total size of the Petri
net isO(n2).

It follows immediately from this definition that each move ofA corresponds to the
firing of one transition. The configurations reached byA along a computation corre-
spond to the markings reached along its corresponding run. These markings put one
token in exactly one of the placesfs(q) j q 2 Qg, in exactly one of the placesfs(
) j 
 2 Cg, and in exactly one of the placesfs(a; 
) j a 2 �g for each cell
 2 C. SoN(A) is 1-safe.

In order to answer a question about a linearly bounded automatonA we can con-
struct the netN(A), which is only polynomially larger thanA, and solve the corre-
sponding question about the runs ofA. For instance, the question “does any of the
computations ofA terminate?” corresponds to “has the Petri netN(A) a deadlock?”

It turns out that most questions about the computations of linearly bounded au-
tomata are PSPACE-hard. To begin with, the(empty tape) acceptance problemis PSPACE-
complete:

Given: a linearly bounded automatonA.
To decide: ifA accepts the empty input.

Moreover, the PSPACE-hardness of this problem is very robust: it remains PSPACE-
complete if we restrict it to

– deterministic bounded automata,
– bounded automata having one single accepting state,



– bounded automata having one single accepting configuration.

Many other problems can be easily reduced to the acceptance problem in polyno-
mial time, and so are PSPACE-hard too. Examples are:

– doesA halt?,
– doesA visit a given state?,
– doesA visit a given configuration?
– doesA visit a given configuration infinitely often?

We obtain in this way a large variety of PSPACE-hard problems. SinceN(A) is
only polynomially larger thanA, all the corresponding Petri net problems are PSPACE-
hard as well. For instance, a reduction from the problem “does A ever visit a given
configuration?” proves PSPACE-hardness of the reachability problem for 1-safe Petri
nets. Furthermore, once we have some PSPACE-hard problems for 1-safe Petri nets we
can use them to obtain new ones by reduction. For instance, the following problems can
be easily reduced to the problem of deciding if there is a reachable marking that puts a
token on a given place:

– is there a reachable marking that concurrently enables two given transitionst1 andt2?
– can a given transitiont ever occur?
– is there a run containing a given transitiont infinitely often?

13 out of the 14 problems at the beginning of the section (and many others) can be
easily proved PSPACE-hard using these techniques. The liveness problem, the first in
our list, is a bit more complicated. The interested reader can find the reduction in [2].

The solution to Story III

Recall the conjecture of Story III: LetN = (S; T; F ) be a net, and letM0 andM be
markings ofN such that the Petri net(N ;M0) is 1-safe.M is reachable fromM0 inN if and only if there exists a mappingX : T ! IN satisfying the following three
properties:

(1) for every places,M(s) =M0(s) +Pt2T (F (t; s)� F (s; t)) �X(t),
(2) every nonempty siphon ofNTX is marked atM0, and
(3) every nonempty trap ofNTX is marked atM .

whereTX is the set of transitionst such thatX(t) > 0.
We show that if the conjecture is true, then the reachabilityproblem for 1-safe Petri

nets belongs to NP. Since we know that this problem is PSPACE-hard, the truth of
the conjecture implies NP=PSPACE, which is highly unlikely. So, very probably, the
conjecture is false; one should look for a counterexample instead of trying to prove it.

We need a well-known result (see for instance [16]):



There is a polynomial time nondeterministic algorithm Feasible(S) for the
problem of deciding if a system of linear equationsS with integer coefficients
has a solution in the natural numbers.

It is easy to decide if every siphon of a netN is marked at a given markingM .
The following (deterministic) algorithm, due to Starke [33, 5], does it for you. It first
computes the largest siphonR contained in the set of places not marked atM . Clearly,
all nonempty siphons are marked atM if and only ifR is empty.

Algorithm All SiphonsMarked(N ,M ):

variable: R of type set of places;

beginR := set of places ofN unmarked underM ;
while there iss 2 R andt 2 �s such thatt =2 R� doR : = R n fsg
od;
if R = ; then return true
else return false

end

The algorithm All TrapsMarked is very similar: just change the loop condition to:
there iss 2 R and t 2 s� such thatt =2 �R. Clearly, these two algorithms run in
polynomial time.

The following nondeterministic algorithm checks conditions (1), (2) and (3). It first
guesses the setTX of transitions, and checks that (2) and (3) hold. Then, it checks if
condition (1) holds for a vectorX such thatTX = ft 2 T j X(t) > 0g. For that, it
checks if the system of equationsS containing the equations of condition (1) plus the
equationX(t) � 1 for everyt 2 TX , and the equationX(t) = 0 for everyt 2 T nTX
has a solution.

Algorithm CheckConditions(N ,M0,M ):

begin
guess a subset of transitionsTX of N ;
if All SiphonsMarked(NTX ,M0)

and All TrapsMarked(NTX ,M )
and Feasible(S)

then return true fi
end

Since the system of equationsS has linear size in the netN , Feasible(S) runs in poly-
nomial time in the size of the net. So CheckConditions runs in polynomial time, and
the problem of checking if conditions (1), (2), and (3) hold belongs to NP.



Remark Even if we didn’t know about the AllSiphonsMarked algorithm, we could
still conclude that the conjecture is probably false. Only from the existence of the pro-
cedure Feasible(S) we can already conclude that the reachability problem for 1-safe
nets belongs to�P2 , the second level of the polynomial-time hierarchy (see forinstance
[1]). The general opinion of complexity theorists is that�P2 = PSPACE is almost as
unlikely as NP=PSPACE.

4 A nearly universal upper bound

In this section we obtain a nearly universal upper bound matching the PSPACE-hard
lower bound of the last section:

Rule of thumb 2:
Nearly all interesting questions about the behaviour of 1-safe Petri nets
can be decided in polynomial space.

Observe that the rule of thumb says “nearly all” and no longer“all”. The reason is
that the literature contains at least one interesting question requiring more than polyno-
mial space. This exception to the rule is described at the endof the section.

We substantiate the rule of thumb with the help of temporal logics. Since their first
application to computer science in the late seventies by Pnueli and others, temporal
logics have become the standard query languages used to express properties of reactive
and distributed systems. A good introduction to the application of temporal logics to
computer science can be found in [6].

Temporal logics can belinear-timeandbranching-time: linear-time logics are in-
terpreted on the single computations of a system, while branching-time logics are in-
terpreted on the tree of all its possible computations. The most popular linear and
branching-time temporal logics are LTL (linear-time propositional temporal logic) and
CTL (computation tree logic). Most of the safety and liveness properties of interest
for practitioners, like deadlock-freedom, reachability,liveness (in the Petri net sense),
starvation-freedom, strong and weak fairness, etc. can be expressed in LTL or in CTL
(often in both).

We show that all the properties expressible in LTL and CTL canbe decided in poly-
nomial space. Actually, we even show that they can beuniformlydecided in polynomial
space, i.e., we prove that the degree of the polynomial does not depend on the property
we consider. More precisely, letjN j denote the size of a Petri netN , and letj�j denote
the length of a formula� (its number of symbols). For each of LTL and CTL we give
an algorithm that accepts as input a Petri netN and a formula�, and answers “yes”
or “no” according to whether the net satisfies the formula or not; the algorithm usesO(p(jN j+ j�j)) space, wherep is a polynomial independent ofN and�.

4.1 Linear-time propositional temporal logic

The formulas of LTL are built from a setProp of atomic propositions, and have the
following syntax:



� ::= p 2 Prop:��1 ^ �2X� (� holds at the next state)�1U�2 (�1 holds until�2 holds)

Usual abbreviations aretrue = p _ :p, F� = trueU� (eventually�), andG� =:F:� (always�).
LTL formulas are interpreted oncomputations. A computation is a finite or infinite

sequence� = P (0)P (1)P (2) : : : of sets of atomic propositions. Intuitively,P (i) is the
set of propositions that hold in the computation afteri steps. For a computation� and a
point i in the computation, we have that:�; i j= p iff p 2 P (i)�; i j= :� iff not(�; i j= �)�; i j= �1 ^ �2 iff �; i j= �1 and�; i j= �2�; i j= X� iff there exists a pointi+ 1 in the computation, and�; i+ 1 j= ��; i j= �1U�2 iff for somej � i, we have�; j j= �2 and

for all k, i � k < j, we have�; k j= �1
We say that a computation� satisfies a formula�, denoted� j= �, if �; 0 j= �.
The atomic propositions are intended to be propositions on the states of a system.

They can only be chosen after the class of systems on which thelogic is to be applied
has been fixed. In the case of 1-safe Petri nets the states of the system are the markings,
and so the atomic propositions are predicates on the possible markings of the net. It
is then natural to have one atomic proposition per place. Themarkings satisfying the
atomic propositions are those that put a token ins. Observe that a computation is now
a sequence of sets of places, and so a sequence of markings. Inparticular, the sequences
of markings obtained from the runs ofN by removing the intermediate transitions are
computations. Abusing language, we also call these particular computations runs. We
now define that a Petri netN satisfies� if all its runs satisfy�. Here are some LTL
formulas that can be interpreted on the Petri net of Figure 1,which models a variation
of Lamport’s 1-bit mutual exclusion algorithm for two processes [26]:

(1) All runs are infinite (true for the net of Figure 1):GXtrue.
(2) All runs mark place
s1 infinitely often (false):GF
s1.
(3) In all runs, if placereq1 becomes marked then place
s1 will eventually become

marked (true):G(req1 ) F
s1).
Formula (1) expresses deadlock-freedom; formula (3) expresses that the requests of

the first process to the critical section are eventually granted.
The model-checking problem for LTL and 1-safe Petri nets consists of, given a 1-

safe Petri netN and a formula�, deciding whetherN satisfies� or not.
The solution to the model-checking problem we give here makes use of automata

theory. We have to introduce automata on infinite words. LetA = (�;Q; q0; Æ; F ) be a
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Fig. 1. A Petri net model of Lamport’s 1-bit mutex algorithm

nondeterministic automaton, where� is a finite alphabet,Q is a finite set of states,q0 is
the initial state,Æ � Q�� �Q is the transition relation, andF is a set of finite states.
The language ofA, denoted byL(A), is defined as the set of finite words accepted byA. We define now the language ofinfinite wordsaccepted byA, which we denote byL!(A). A word w = a0a1a2 : : : belongs toL!(A) if there is an infinite sequence of
statesq0q1q2 : : : such that(qiaiqi+1) 2 Æ for everyi � 0.

When we are interested in the language of infinite words of an automaton, then we
call it Büchi automaton.

We have the following important result:

Given an LTL formula�, one can build a finite automatonA� and a
Büchi automatonB� such thatL(A�) [ L!(B�) is exactly the set of
computations satisfying the formula�.

Since computations are sequences of sets of atomic propositions, the alphabet of the
automataA� andB� is the set2Prop . In our caseProp is the set of places of the net,
and so the alphabet of the automata is the set of all markings.

The construction ofA� andB� exceeds the scope of this paper (see for instance
[37]). For our purposes, it suffices to know the following facts:



– The states ofA� are sets of subformulas of�; the states ofB� are pairs of sets of
subformulas of�. Since there are exponentially many sets of subformulas,A� andB� may have exponentially many states inj�j.

– Given two statesq1; q2 of A� orB� and a markingM , there is an algorithm which
decides using polynomial space whether(q1;M; q2) 2 Æ�.

We also need two automataAN = (2S; QN ; q0N ; ÆN ; FAN ) andBN = (2S ; QN ; q0N ; ÆN ; FBN )
obtained from the Petri netN , as follows:

– QN is the set of reachable markings ofN ;
– q0N is the initial markingM0;
– ÆN contains the triples of markings(M1;M1;M2) such thatM1 t�!M2 for some

transitiont;
– FAN is the set of deadlocked reachable markings ofN ;
– FBN = Q, i.e.,FBN is the set of reachable markings ofN .

Loosely speaking, both automata correspond to the reachability graph ofN , with the
peculiarity that edges are labelled with the marking they come from.AN andBN differ
only in their final states. Clearly,L(AN ) is the set of all finite runs ofN , andL!(BN )
the set of all infinite runs.

In order to solve the model-checking problem for inputN , �, let A be the prod-
uct of the automataA:� andAN , and letB be the product of the automataB:�
andBN , where the product(�;Q; q0; Æ; F ) of two automata(�;Q1; q01; Æ1; F1) and(�;Q2; q02; Æ2; F2) is defined in the usual way:Q = Q1 �Q2q0 = (q01; q02)Æ = f((q1; q2); a; (q01; q02)) j (q1; a; q01) 2 Æ1 and(q2; a; q02) 2 Æ2gF = F1 � F2
Clearly, we haveL(A) = L(A:�) \ L(AN ) andL!(B) = L!(B:�) \ L!(BN ).4 So
the union ofL(A) andL!(B) is the set of runs ofN that donot satisfy�; in other
words,N satisfies� if and only ifL(A) = ; andL!(B) = ;.

We have reduced the model checking problem to the following one: GivenN and�, decide ifL(A) andL!(B) are empty. We have to solve this problem using only
polynomial storage space in the size ofN and�. The first natural idea is to constructA andB, and then use the standard algorithms for emptiness of automata for finite and
infinite words. Unfortunately, bothA andB may have exponentially many states injN j
andj�j.

At this point, complexity theory helps us by means of Savitch’s construction. Recall
that a nondeterministic decision procedure for a problem isan algorithm which can
return “yes” or fail, and satisfies the following property: the answer to the problem is
“yes” if and only if some(not necessarily all) execution of the algorithm returns “yes”.
A deterministic decision procedure always answers “yes” or”no“.

4 The product of two Büchi automata doesn’t always accept theintersection of the languages,
but this is so in our case.



Savitch’s construction:
Given a nondeterministic decision procedure for a given problem usingf(n) space, Savitch’s construction yields a deterministic procedure for
the same problem usingf2(n) space.

This construction makes our life easier: it suffices to give anondeterministicalgo-
rithm for the emptiness problem ofA andB running in polynomial space. Actually, it
also suffices to give a nondeterministic algorithm for thenonemptinessproblem: by Sav-
itch’s construction there exists a deterministic algorithm for the nonemptiness problem,
and by reversing the answer of this algorithm we obtain another one for the emptiness
problem.

The nondeterministic algorithm for the nonemptiness problem constructsA andB
“on the fly”. The algorithm keeps track of a current state ofA orB, which is initially
set to the initial state. The algorithm repeatedly guesses anext state, checks that there
is a transition leading from the current state to the next state, and updates the current
state. In the case ofA, the algorithm returns “true” when (and if) it reaches a finalstate:

Algorithm NonemptyA(N , �)

variables: q of type state ofA:�;M of type state ofAN (i.e., of type marking);

begin(q;M) := (q0:�;M0);
while (q;M) is not a final state ofA do

choose a stateq0 of A:� such that(q;M; q0) 2 Æ:�
and a markingM 0 such thatM t�!M 0 for some transitiont;(q;M) := (q0;M 0);

od;
return true

end

In order to estimate the space used by NonemptyA, observe that all the operations
and tests can be performed in polynomial space. For that, recall that given two statesq1; q2 2 Q:� andM 2 2S , there is an algorithm which decides using polynomial space
whether(q1;M; q2) 2 Æ:�. The algorithm needs to store one stateq of A:� and a
markingM of N . Since the states ofA:� are sets of subformulas of�, q has quadratic
size inj�j. SinceM has linear size injN j, polynomial space suffices.

The case ofB is a bit more complicated. SinceB has finitely many states,L!(B)
is nonempty if and only if there exists a reachable final stateq such that there is a loop
from q to itself. So the algorithm proceeds as in the case ofA, but, at some point,
it guesses that the current final state will be revisited; it then stores the current state
to be able to check if the guess is true. The rest of the algorithm checks the guess
nondeterministically.



Algorithm NonemptyB(N , �):

variables:M;Mr of type state ofBN (i.e., of type marking);q; qr of type state ofB:�;
flagof type boolean;



begin(q;M) := (q0:�;M0); flag := false ;
while 
ag = false do

choose a stateq0 of A:� such that(q;M; q0) 2 Æ:�
and a markingM 0 such thatM t�!M 0 for somet;(q;M) := (q0;M 0);
if (q;M) is a final statethen

choose betweenflag := false andflag := true
fi

od;(qr ;Mr) := (q;M);
repeat

choose a stateq0 of A:� such that(q;M; q0) 2 Æ:�
and a markingM 0 such thatM t�!M 0 for somet;(q;M) := (q0;M 0)

until (q;M) = (qr;Mr);
return true

end

Again, NonemptyB(N , �) uses only polynomial space. Since the deterministic al-
gorithm obtained after the application of Savitch’s construction to NonemptyA and
NonemptyB also needs polynomial space, the model-checking problem for LTL be-
longs to PSPACE.

Observe that the only properties of 1-safe nets we have used in order to obtain this
result are:

– a state has polynomial size (actually, even linear) injN j, and

– given two markingsM;M 0, it can be decided in polynomial space ifM t�! M 0
for some transitiont.
These conditions are very weak, and so the PSPACE result can be extended to a

number of other models. As observed in [35], conditions (1) and (2) hold for other Petri
net classes, likecondition/event systems, elementary net systems, but also for process
algebras with certain limitations to recursion, and for several other models based on a
finite number of state machines communicating by finite means. The conditions also
hold for bounded Petri nets, assuming that the bound is also given to NonemptyA and
NonemptyB as part of the input. This assumption is necessary, becausethe bound of a
bounded Petri net (the maximal number of tokens a place can contain under a reachable
marking) can be much bigger than the size of the net, and so we may need more than
polynomial space in order to just write down a reachable marking.

The PSPACE result can also be extended to more general logics, like the linear-time
mu-calculus, for which the translation into automata stillworks (see for instance [4]).

4.2 Computation Tree Logic

Some interesting properties of Petri nets cannot be expressed in LTL. An example is
liveness (in the Petri net sense). Recall that a transition is live if it can always occur



again. One possibility to express this to allow existentialor universal quantification on
the set of computations starting at a marking. CTL introduces this quantification on top
of LTL’s syntax The syntax of CTL is� ::= p 2 Prop:��1 ^ �2EX� existential next operatorAX� universal next operatorE[�1U�2℄ existential until operatorA[�1U�2℄ universal until operator

Disjunction and implication are defined as usual. Other abbreviations aretrue =p _ :p, EF� = E[trueU�℄ (possibly�), AG� = :EF:� (always�), AF� =A[trueU�℄ (eventually�) andEG� = :AF:� (� holds at every state of some com-
putation).

CTL formulas are interpreted oncomputation trees, which are possibly infinite trees
where each noden is labelled with a set of atomic propositionsP (n). A path of a
computation tree that cannot be extended to a larger path is called a computation; notice
that it is a computation in the LTL sense. The intuition is that the nodes of the tree
correspond to the states of a system; a state may have an arbitrary number of successors,
corresponding to different computations.P (n) is the set of atomic propositions that
hold at node (state)n. For a tree� and a noden we have that:�; n j= p iff p 2 P (n)�; n j= :� iff not(�; n j= �)�; n j= �1 ^ �2 iff �; n j= �1 and�; n j= �2�; n j= AX� iff for every childn0 of n, �; n0 j= ��; n j= EX� iff for some childn0 of n, �; n0 j= �

(n must have at least one child)�; n j= A[�1U�2℄ iff for all computationsn = n0n1n2 : : :
there existsi � 0 such thatni j= �2
and for everyj, 0 � j < i, nj j= �1�; n j= E[�1U�2℄ iff for some computationn = n0n1n2 : : :
there existsi � 0 such thatni j= �2
and for everyj, 0 � j < i, nj j= �1

If the tree� is clear from the context we shorten�; n j= � to n j= �. We say that a
tree� satisfies a formula� if root(�) j= �.

Observe thatAX� is equivalent to:EX:�, i.e.,EX andAX are dual operators.
So actually we could removeAX from the syntax without losing expressive power. It
might seem that the existential and universal until operators are also dual of each other,
but this is not true. The dual operator of the universal untilis the existentialweakuntil,
with syntaxE[�1WU�2℄, and the following semantics:�; n j= E[�1WU�2℄ iff �; n j= E[�1U�2℄ _ EG(�1)
It holds that A[�1U�2℄ = :E[:�2WU:�1℄



In order to use CTL to specify properties of a 1-safe Petri netN , we choose again
the places ofN as atomic propositions. With this choice a computation treeis a tree of
sets of places, and so a set of markings. We can associate toN a computation tree�N as
follows: the root is labelled with the initial markingM0; the children of a node labelled

by M are labelled with the markingsM 0 such thatM t�! M 0 for some transitiont.
We say thatN satisfies� if the tree�N satisfies�.

The computation tree corresponding to the the net of Figure 1is shown in Figure
2. Essentially, the tree is just the unfolding into a tree of the reachability graph of the
net. Different nodes in the tree can be labelled with the samemarking, but all subtrees

{idle_1,id_1,idle_2,id_2}

{req_1,nid_1,idle_2,id_2} {idle_1,id_2,req_2,nid_2}

{req_1,nid_1,
 req_2,nid_2}

{req_1,nid_1,
 req_2,nid_2}

{cs_1,nid_1,
 idle_2,id_2}

{idle_1,id_1,
 cs_2,nid_2}

... ... ... ...

Fig. 2. Computation tree of the Petri net of Figure 1

whose roots are labelled with the same marking are isomorphic. Given a formula� and
a markingM , either all or none of the nodes labelled byM satisfy�. So it makes sense
to say thatM satisfies�, meaning that all nodes labelled byM satisfy�.

Here are some CTL queries on the Petri net of Figure 1:

– No reachable marking puts tokens in
s1 and
s2 (true):AG(:
s1 _ :
s2).
– The output transition of the placereq1 is live (true):AGEF (req1 ^ id2).
– The initial marking is reachable from every reachable marking (true):AGEF (idle1 ^ id1 ^ id2 ^ idle2 ))
– Eventually place
s1 becomes marked (false):AF
s1
– There is a run that never marks
s2 (true):EG:
s2
– If req2 becomes marked, then eventually
s2 becomes marked (false):AG(req2 ) AF
s2)

We show that the model checking problem for CTL is in PSPACE. It follows from
the discussion above that it suffices to give a polynomial space algorithm for the syntax� ::= s j :�1 j �1 ^ �2 j EX� j E[�1U�2℄ j E[�1WU�2℄
We give a (deterministic) algorithm Check(M , �) with a markingM and a formula�
as parameters which answers “true” ifM satisfies�, and “false” otherwise. The model-
checking problem is then solved by Check(M0, �).

Check(M ,�) is a recursive procedure on the structure of�, i.e., Check(M ,Op(�1; : : : ; �n)),
whereOp is some operator of the logic, calls Check(M , �1), : : : , Check(M , �n).



Algorithm Check(M , �):

begin
if � = s then

if M(s) = 1 then return true else return false fi
elseif � = :�1 then return not Check(M , �1)
elseif � = �1 ^ �2 then return Check(M , �1) and Check(M , �2))
elseif � = EX�1 then

for everyM 0 such thatM t�!M 0 for some transitiont do
if Check(M 0, �1) then return true fi

od
elseif � = E[�1U�2℄ then return EU(M , �1, �2)
elseif � = E[�1WU�2℄ then return EWU(M , �1, �2)
fi

end

It remains to define the procedures EU(M , �1, �2) and EWU(M , �1, �2). We start with
EU(M , �1, �2).

It is not possible to deterministically explore the infinitely many computations start-
ing atM , and check directly if one of them satisfies�1U�2. The reader might feel
tempted to give a nondeterministic algorithm which explores one of the computations,
and then apply Savitch’s technique. This seems to be a good idea, but in fact doesn’t
work! There is a rather subtle problem. Consider the formulas�n = E[E : : :E[s0Us1℄ : : : ℄Usn�1℄Usn℄
wheres1; : : : ; sn are places. We obtain a checking algorithm�n throughn applications
of Savitch’s technique. It is easy to give a
(jN j)-space nondeterministic algorithm forE[s0Us1℄. Unfortunately, the deterministic algorithm obtained by Savitch’s technique
requires
(jN j2) space, the algorithm forE[E[s0Us1℄Us2℄ 
(jN j4) space, and the
algorithm for�n no less than
(jN j2n) space. So the degree of the polynomial injN j
depends on the formula we are considering.

We proceed in a different way. In a fist step we reduce the problem to the explo-
ration of a finite number of finite paths. We extend the syntax of CTL with new op-
eratorsE[�1Ub�2℄, one for each natural numberb. Loosely speaking, a node satisfiesE[�1Ub�2℄ if in at least one of the computations starting at it we find a node satisfying�2 after at mostb steps, and all nodes before it satisfy�1. Formally:�; n j= E[�1Ub�2℄ iff for some computationn = n0n1n2 : : :

there existsi, 0 � i � b� 1 such thatni j= �2 andnj j= �1 for everyj, 0 � j < i
It follows immediately from this definition that if�; n satisfiesE[�1Ub�2℄ for some
numberb then it also satisfiesE[�1U�2℄.

Now, letn be an arbitrary node of�N , and letk be the number of places ofN . We
prove n j= E[�1U�2℄ () E[�1U2k�2℄



It suffices to prove thatn j= E[�1U�2℄ impliesn j= E[�1U2k�2℄. Assume thatn sat-
isfiesE[�1U�2℄. Then,�N contains a computationn = n0n1n2 : : : satisfying�1U�2:ni j= �1 for somei � 0 andnj j= �1 for everyj, 0 � j < i. If i � 2k � 1, then
this computation satisfies�1U2k�2, and son j= �1U2k�2. Let us now consider the casei � 2k. LetM0M1M2 : : : be the sequence of markings corresponding ton0n1n2 : : : .
SinceN is 1-safe and hask places, it has at most2k reachable markings. So there are
indicesj1 andj2, 0 � j1 < j2 � i, such thatMj1 =Mj2 . Since the markings labelling
the successors of a node are completely determined but the marking labelling the node
itself, �N contains another computation starting atn0 and labelled byM0 : : :Mj1Mj2+1Mj2+2 : : :
Loosely speaking, the sequence of markings of the new computation is obtained from
the old sequence by “cutting out” the pieceMj1+1 : : :Mj2 and “glueing” the two endsMj1 andMj2+1. In this new sequence the markingMi appears at the positioni� (j2�j1), and so closer toM0 than in the original computation. We now iterate the “cutting
and glueing” procedure untilMi appears before the2k -th position. The computation
so obtained satisfies�1U2k�2, and son j= �1U2k�2.

So we have solved our first problem: instead of a potentially infinite number of
computations, it suffices to explore finitely many paths containing at most2k nodes,
and check that at least one of them satisfies�1U2k�2 (more precisely, that at least one
of them can be extended to a computation satisfying�1U2k�2).

We construct EU(M , �1, �2) with the help of another algorithm Path(M ,M 0, �,  ,l), still to be designed, with the following specification:

Path(M ,M 0, �,  , l) returns “true” if and only if�N has a pathn0 : : : nl such
that

– n0 is labelled byM andnl is labelled byM 0,
– ni j= � for everyi, 0 � i < l, and
– nl j=  .

We can take:

Algorithm EU(M , �1, �2)

constant:k = number of places ofN ;

begin
for every markingM 0 of N and every0 � l < 2k do

if Path(M ,M 0, �1, �2, l) then return true
od;
return false

end

Since each iteration of thefor loop can reuse the same space, the space used by
EU(M , �1, �2) is the space used by Path(M ,M 0, �1, l) plus the space needed to storeM 0 andl. So Path(M , M 0, �1, l) should use at most polynomial space for everyl <2k. A backtracking algorithm, which would be the obvious choice, does not meet this



requirement, because it stores all the nodes of the computation being currently explored
having still unexplored branches, and there can be exponentially many of those.

A trick frequently applied in complexity theory5 helps us out of the problem. Loosely
speaking, for each reachable markingM 00, we explore all paths leading fromM toM 00
and containingd l2e+1 nodes, and then,reusing the same space, all paths leading fromM 00 toM 0 and containingb l2
+1 nodes. This trick of splitting the paths into two parts
is applied recursively until paths having at most 2 nodes arereached.

Algorithm Path(M ,M 0, �,  , l)
constant:k = number of places ofN ;

begin
if l = 0 then

if M =M 0 and Check(M ,  )
then return true fi

fi;
if l = 1 then

if M t�!M 0 for some transitiont
and Check(M , �) and Check(M 0,  )

then return true fi
fi;
for every markingM 00 of N do

if Path(M ,M 00, �, true, d l2e) and Path(M 00,M , �,  , b l2
)
then return true fi

od;
return false

end

In order to estimate the space complexity of Path(M , M 0, �, l), let 
(�) be the
maximum over all markingsM of the space needed by Check(M , �), and letp(�;  ; l)
be the maximum over all pairs of markingsM , M 0 of the space needed by Path(M ,M 0, �,  , l). Then we havep(�;  ; 0) = O(
( ))p(�;  ; 1) = O(maxf
(�); 
( )gjN j)p(�;  ; l) = O(maxfp(�;  ; d l2e); p(�;  ; b l2
)gjN j)
and so, in particularp(�;  ; 2k) = O(maxf
(�); 
( )g+ k � jN j) = O(maxf
(�); 
( )g+ jN j2)

It remains to construct EWU(M ,�1, �2). The interested reader can easily prove that
for every noden of �Nn j= E[�1WU�2℄ () E[�1WU 2k�2℄
5 In fact, this trick lies at the heart of Savitch’s technique.



where the semantics ofE[�1WU b�2℄ is given by�; n j= E[�1WU b�2℄ iff n j= E[�1Ub�2℄ or
there exists a pathn = n0n1n2 : : : nb
such thatni j= �1 for every0 � i � b

So we can take
Algorithm EWU(M , �1, �2)

constant:k = number of places ofN ;

begin
if EU(M , �1, �2) then return true
else

for every markingM 0 of N do
if Path(M ,M 0, �1, true, 2k) then return true

od;
return false

end

This completes the definition of Check(M ,�). It is easy to see that it runs in polyno-
mial space injN j andj�j, but let us determine the space complexity a bit more precisely.
We have: 
(s) = O(jN j)
(�1 ^ �2) = O(maxf
(�1); 
(�2)g+ jN j)
(:�) = O(
(�))
(E[�1U�2℄) = O(p(�1; �2; 2k) + jN j)= O(maxf
(�1); 
(�2)g+ jN j2)
(E[�1Uw�2℄) = O(maxf
(E[�1U�2℄); p(�1; true; 2k)g+ jN j)= O(maxf
(�1); 
(�2)g+ jN j2)
and so we finally get
(�) = O(j�j � jN j2).
4.3 An exception

The most interesting exception to Rule of Thumb 2 is thecontrollability property. LetT0 be a subset of transitions of a 1-safe Petri netN = (S; T; F;M0), and lett 2 T nT0.
We say thatT0 controls t by a sequence� 2 T �0 if for every occurrence sequenceM0 ��! M such that the projection of� ontoT0 is �, the transitiont cannot occur
atM . The intuition is thatT0 can controlt in the sense that once the sequence� has
occurred, possibly interleaved with transitions ofT nT0, t cannot occur until transitions
of T0 occur again. We say thatT0 can controlt if T0 can controlt by at least one
sequence�.

The controllability problem is defined as follows:

Given: a 1-safe Petri net with a setT of transitions,T0 � T , t 2 T n T0
To decide: ifT0 can controlt.

Jones, Landweber and Lien show in [24] that controllabilityis EXPSPACE-complete.



4.4 A remark on action-based temporal logics

We have defined LTL and CTL asstate-basedlogics, because in order to know if a run
satisfies a property one only needs information about the states – the markings – visited
during its execution, and not about which transitions lead from a marking to the next.
It is possible to defineaction-basedversions of these logics, in which the identities of
the markings visited during the execution of a run is irrelevant, while the information
is carried by the sequence of transitions that occur. These action-based versions are
particularly useful for labelled Petri nets.

The action-based version of LTL – tailored for labelled Petri nets – looks as follows:
the set of basic propositions contains only one element, namely the propositiontrue.
The operatorsX andU are replaced by a set ofrelativisedoperatorsXK , UK , wherek
is a subset of a certain finite set of actionsAct. A computationis now a finite or infinite
sequence� = a0a1a2 : : : of actions. Let�(i) = aiai+1 : : : . We have:� j= true always� j= XK� iff � 6= �, a0 2 k, and�(1) j= �� j= �1UK�2 iff for somej � 0 we have�(j) j= �2 and

for all k, 0 � k � j, we haveai 2 k and�(k) j= �1
In order to interpret the logic on a 1-safe labelled Petri netN , we chooseAct as

the set of labels carried by the transitions ofN . We say thatN satisfies a formula�
if all the sequences of transition labels obtained from the runs ofN by removing the
markings satisfy�.

Similarly, in the action-based version of CTL the operatorsof the logicEX , AX ,E[: : : U : : : ℄, andA[: : : U : : : ℄ are replaced by sets of relativised operatorsEXK ,AXK ,E[: : : UK : : : ℄, andA[: : : UK : : : ℄. Computation trees are now trees whose edges are la-
belled with actions. The semantics is exactly what one expects.

It is easy to prove that the model-checking problem for thesetwo new logics can be
reduced to the model-checking problem for their state-based versions. More precisely:
given a labelled 1-safe Petri netN and a formula� of action-based LTL (CTL), one
can construct in polynomial time an unlabelled 1-safe PetrinetN 0 and a formula�0 of
state-based LTL (CTL) such thatN satisfies� if and only ifN 0 satisfies�0. It follows
that the model-checking problem for the action-based LTL and CTL is also in PSPACE.

In Section 8 we study the model checking problems for temporal logics and arbitrary
Petri nets. There, the distinction between state-based andaction-based logics plays a
much more important rôle.

5 Deciding equivalences

In this section we investigate the complexity of deciding iftwo labelled 1-safe Petri nets
are equivalent with respect to a given equivalence notion.

Since the early eighties many different equivalence notions have been presented
in the literature. Van Glabbeek has classified them in several papers, e.g. [36]. Most of
these equivalences fit between the so-calledtraceequivalence, which is a process theory



counterpart of the classical language equivalence used in formal language theory, and
bisimulationequivalence. An equivalence notion X fits between trace and bisimulation
equivalence if bisimilar systems are X-equivalent, and X-equivalent systems are trace
equivalent.

Trace and bisimulation equivalences are defined as follows.Let N be a labelled
Petri net, where transitions are labelled with the elementsof a set of actionsAct. The
set of tracesof N , denoted byT (N) is the set of wordsa1 : : : an 2 A
t� such that
there exist markingsM1; : : :Mn satisfyingM0 a1�! M1 a2�! : : : an�! Mn6. Two Petri
netsN1 andN2 aretrace equivalentif T (N1) = T (N2).

A relationR between the sets of markings of two nets is a(strong) bisimulationif
for every pair(M1;M2) 2 R and for every actiona 2 A
t ,

– if M1 a�! M 01, thenM2 a�!M 02 for some markingM 02 such that(M 01;M 02) 2 R,
and

– if M2 a�!M 02, thenM1 a�!M 01 for some markingM 01 such that(M 01;M 02) 2 R.

Two Petri netsN1 andN2 are(strongly) bisimilarif there exists a (strong) bisimulationR containing the pair(M01;M02) of initial markings ofN1 andN2.
We have the following

Rule of thumb 3:
Equivalence problems for 1-safe Petri nets are harder to solve than
model-checking problems, but they need at most exponentialspace.

We provide a first piece of evidence for this rule of thumb by showing that the
equivalence problem for 1-safe Petri nets and any equivalence notion fitting between
trace and bisimulation equivalence is PSPACE-hard. It turns out that all the concrete
equivalences mentioned in the literature have at least DEXPTIME-hard equivalence
problems, and so this general PSPACE-hardness lower bound can possibly be improved.

We proceed by reduction from the following PSPACE-hard problem

Given: a 1-safe Petri netN , a places of N
To decide: if some reachable marking ofN puts a token ons.
We start by labelling each transition ofN with the same label, saya. N is now

a labelled net. We putN side by side with the labelled netN 0 consisting of a loop
containing one single place marked with one token and one single transition labelled bya. We denote the resulting Petri net byN k N 0.

Now, we consider two labelled nets. The first one isN k N 0; the second is a small
modification of it obtained by adding a new output transitionto the places of N . The
new transition hass as unique input place, no output places, and carries a label different
from a, sayb.

The following holds:

– If some reachable marking puts a token ons, then the two nets are not trace equiv-
alent: the second one can do ab, while the first one can’t.

6 Recall:M a�!M 0 denotes that there is a transitiont labelled bya such thatM t�!M 0.



– If no reachable marking puts a token ons, then the two nets are bisimilar: the
relation containing all pairs(M1;M2), whereM1 is a reachable marking of the
first net andM2 a reachable marking of the second net, is clearly a bisimulation.

Therefore, given any equivalence notion X fitting between trace and bisimulation
equivalence, we can solve the PSPACE-hard problem above by constructing the two
nets and deciding if they are X-equivalent. So the equivalence problem for any such
notion is PSPACE-hard.

Apart from this little result, the real evidence supportingthe rule of thumb above is
the work of Rabinovich [31] and Jategaonkar and Meyer [23]. This last paper contains a
table with the complexity of 18 equivalence notions. Bisimilarity and many variants of
it are DEXPTIME-complete, while trace equivalence, failures equivalence, and several
variants of them are EXPSPACE-complete. They also considerso-calledpartial order
equivalences, for which the concurrent execution of two actions is not equivalent to their
interleaved execution (i.e., a system that executesa andb in parallel is not considered
to be equivalent to a system which chooses between executinga and thenb, or b and
thena). The complexity results (up to some open problems) are similar.

6 Can anything be done in polynomial time?

We have seen that all interesting problems for arbitrary 1-safe Petri nets are at least
PSPACE-hard, and so that there is very little hope of finding polynomial algorithms for
them. The natural question to ask is if there are important subclasses of 1-safe Petri nets
for which one could solve at least some problems in polynomial time. In this section
we get some general answers in the form of rules of thumb.

A first rule, which tends to be surprising for many people is

Rule of thumb 4:
Most interesting questions about the behaviour ofacyclic 1-safe Petri
nets are NP-hard.

Here, as in Section 3, a word of warning is required about the meaning of “inter-
esting”. Liveness is certainly an interesting question forarbitrary 1-safe nets, but not
for the acyclic ones: 1-safe acyclic Petri nets are always non-live, because no transition
can fire more than once. Interesting questions for 1-safe acyclic Petri nets, all of them
NP-hard, are

– Is a given marking reachable from the initial marking?
– Is there a reachable marking which marks a given place?
– Is there a reachable marking which does not mark a given place?
– Is there a reachable marking which enables a given transition?
– Is the initial marking reachable from every reachable marking?
– Is there a run containing a given transition?
– Is there a run that does not contain a given transition?



Let us prove NP-hardness of the second problem: Is there a reachable marking
which marks a given place? We present a polynomial time construction which asso-
ciates to a boolean formula in conjunctive normal form an acyclic 1-safe Petri net. The
net nondeterministically selects a truth assignment for the variables of the formula, and
then checks if the formula is true under the assignment. The construction is illustrated
in Figure 3 by means of an example.

A A A

C

C

C

1

1

1 2 31 2 3

2

2

3

3

- - -x x xx x x

True

Fig. 3. Acyclic net corresponding to the formula(x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)
It seems7 that in order to obtain classes with polynomial decision algorithms one

has to imposelocal constraints on the net’s structure. Here “local constraint” means a
constraint which can be shown not to hold by looking at only a small part of the net.
For instance, “every transition has exactly one input place” is a local constraint; if the
constraint does not hold, then one can always point at a particular transition in the net,
together with its input places, and show that the constraintis not satisfied because of
this transition. A constraint like “the net is acyclic” is not local, because the smallest
circuit of the net may be the net itself.

The two following local constraints have been very intensely studied in the litera-
ture:

– theconflict-freenessconstraint:s� � �s for every placeswith more than one output
transition; in the case of 1-safe Petri nets this constraintis equivalent to “every place
has at most one output transition” for nearly all purposes;

7 Although I don’t know of any formal proof.



– the free-choiceconstraint: if(s; t) is an arc from a place to a transition, then so is(s0; t0) for every places0 2 �t and for every transitiont0 2 s�.
Unfortunately, it is not possible to summarise the results of the research on conflict-

free and free-choice Petri nets in a concise and general ruleof thumb. But we can still
say:

Rule of thumb 5:
Many interesting questions about 1-safe conflict-free Petri nets are solv-
able in polynomial time.
Some interesting questions aboutlive 1-safe free-choice Petri nets are
solvable in polynomial time (and liveness of 1-safe free-choice Petri
nets is decidable in polynomial time too).
Almost no interesting questions for 1-safe net classes substantially
larger than free-choice Petri nets are solvable in polynomial time.

Among the “many” interesting polynomial questions for conflict-free nets are all
those that can be expressed in the fragment of CTL with syntax� ::= s j :� j �1 ^ �2 j EX� j EF�
(see [7]). Among the “some” interesting polynomial questions for live free-choice nets
are the following [5]:

– Is there a reachable marking which marks a given place?
– Is there a reachable marking which does not mark a given place?
– Is there a reachable marking which enables a given transition?
– Is the initial marking reachable from every reachable marking?
– Is there a run that does not contain a given transition?

Interestingly, the reachability problem for 1-safe live free-choice nets is NP-complete
[8], and so it is unlikely that it will ever be added to this list.



Part II

General Petri nets





In this second part of the paper we consider arbitrary (finite) Place/Transition Petri
nets. Thepossible markings of a netN or just themarkings ofN are now the set of
all mappingsS ! IN , whereS is the set of places ofN . Observe that, contrary to
the 1-safe case, there is no a priori relation between the size of a net and the size of its
markings. Notice also that the set of reachable markings maybe infinite.

7 A universal lower bound

This section is the counterpart of Section 3 for Place/Transition Petri nets. The rule of
thumb is now:

Rule of thumb 6:
All interesting questions about the behaviour of (Place/Transition) Petri nets
are EXPSPACE-hard. More precisely, they require at least2O(pn)-space.

In particular, all the questions we asked about 1-safe Petrinets can be reformulated
for Petri nets, and turn out to have at least this space complexity. As in the case of 1-safe
Petri nets, this is a consequence of one single fundamental fact:

A deterministic, exponentially bounded automaton of sizen can be simulated
by a Petri net of sizeO(n2). Moreover, there is a polynomial time procedure
which constructs this net.

In order to answer a question about the computation of an exponentially space
bounded automatonA, we can construct the net that simulatesA, which has sizeO(n2),
and solve the corresponding question. If the original question requires2n space, as is
the case for many properties, then the corresponding question about nets requires at
least2O(pn)-space.

The fundamental fact above was first proved by Lipton [27]. Mayr and Meyer
proved in [29] that it is possible to make the simulating netreversible(a net is re-
versible if for each transitiont there is a reverse transitiont which “undoes” the effect
of t). Since reversible nets are equivalent to commutative semigroups, the construction
by Mayr and Meyer has important applications in mathematics.

Since Mayr and Meyer’s construction is more involved than Lipton’s, and since
reversibility is not a main concern for this paper, we consider Lipton’s construction in
detail. It would have been easier to refer to Lipton’s paper,but unfortunately it only
exists as an old Yale report, quite difficult to find.

Bounded automata and general Place/Transition Petri nets do not “fit” well. It is not
appropriate to model a cell of a bounded automaton as a place,as we did in the 1-safe
case, because the cell contains one out of afinitenumber of possible symbols, while the
place can contain infinitely many tokens, and so the same information as a nonnegative



integer variable. So we use an intermediate model, namelycounter programs. It is well-
known that so-called bounded counter programs can simulatebounded automata (see
below), and we show that Petri nets can simulate bounded counter programs.

A counter program is a sequence oflabelled commandsseparated by semicolons.
Basic commands have the following form, where l, l1, l2 arelabelsor addressestaken
from some arbitrary set, for instance the natural numbers, and x is a variable over the
natural numbers, also called acounter:

l: x := x+ 1
l: x := x� 1
l: goto l1 unconditional jump
l: if x = 0 then goto l1 conditional jump

else goto l2
l: halt

A program is syntactically correct if the labels of commandsare pairwise different,
and if the destinations of jumps correspond to existing labels. For convenience we can
also require the last command to be ahalt command.

A program can only be executed once its variables have received initial values. In
this paper we assume that the initial values are always0. The semantics of programs
is that suggested by the syntax. The only point to be remarkedis that the commandl : x := x � 1 fails if x = 0, and causes abortion of the program. Abortion must be
distinguished from proper termination, which correspondsto the execution of ahalt
command. Observe in particular that counter programs are deterministic.

A counter programC is k-bounded if after any step in its unique execution the
contents of all counters are smaller than or equal tok. We make use of a well known
construction of computability theory:

There is a polynomial time procedure which accepts a deterministic
bounded automatonA of sizen and returns a counter programC withO(n) commands simulating the computation ofA on empty tape; in
particular,A halts if and only ifC halts. Moreover, ifA is exponen-
tially bounded, thenC is 22n-bounded.

Now, it suffices to show that a22n-bounded counter program of sizeO(n) can be
simulated by a Petri net of sizeO(n2). This is the goal of the rest of this section.

Since a direct description of the sets of places and transitions of the simulating net
would be very confusing, we introduce a net programming notation with a very simple
net semantics. It is very easy to obtain the net corresponding to a program, and execution
of a command corresponds exactly to the firing of a transition. So we can and will look
at the programming notation as a compact description language for Petri nets.

A net programis rather similar to a counter program, but does not have the possi-
bility to branch on zero; it can only branch nondeterministically. However, it has the
possibility of transferring control to a subroutine. The basic commands are as follows:



l: x := x+ 1
l: x := x� 1
l: goto l1 unconditional jump
l: goto l1 or goto l2 nondeterministic jump
l: gosubl1 subroutine call
l: return end of subroutine
l: halt

Syntactical correctness is defined as for counter programs.We also assume that
programs are well-structured. Loosely speaking, a programis well-structuredif it can
be decomposed into a main program that only calls first-levelsubroutines, which in
turn only call second-level subroutines, etc., and the jumpcommands in a subroutine
can only have commands of the same subroutine as destinations.8 We do not formally
define well-structured programs, it suffices to know that allthe programs of this section
are well-structured.

We sketch a (Place/Transition) Petri net semantics of well-structured net programs.
The Petri net corresponding to a program has a place for each label, a place for each
variable, a distinguishedhalt place, and some additional places used to store the call-
ing address of a subroutine call. There is a transition for each assignment and for each
unconditional jump, and two transitions for each nondeterministic jump, as shown in
Figure 4. We illustrate the semantics of the subroutine command by means of the pro-
gram

1: gosub4;
2: gosub4;
3: halt;
4: goto5 or goto 6;
5: return ;
6: return

The corresponding Petri net is shown in Figure 5. Observe that the places1 calls 4 and
2 calls 4 are used to remember the address from which the subroutine was called.

Clearly, the Petri net corresponding to a net program withk commands hasO(k)
places andO(k) transitions, and its initial marking has sizeO(k). So it is of sizeO(k2).

Let C be a22n-bounded counter program withO(n) commands. We show thatC
can be simulated by a net programN(C) with O(n) commands, which corresponds to
a Petri net of sizeO(n2). Unfortunately, the construction ofN(C) requires quite a bit
of low-level programming. But the reward is worth the hacking effort.

The notion of simulation is not as strong as in the case of 1-safe Petri nets. In
particular, net programs are nondeterministic, while counter programs are deterministic.
A net programN simulates a counter programC if the following property holds:C
halts (executes the commandhalt) if and only if somecomputation ofN halts (other
computations may fail).

Each variablex of N (be it a variable fromC or an auxiliary variable) has an
auxiliary complement variablex. N takes care of settingx = 22n at the beginning
8 Here we consider the main program as a zero-level subroutine, i.e., jump commands in the

main program can only have commands of the main program as destinations.
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of the program. We call the code that takes care of thisNinit(C).9 The rest ofN(C),
calledNsim(C), simulatesC and takes care of keeping the invariantx = 22n � x.

We designNsim(C) first. This program is obtained through replacement of each
command ofC by an adequate net program. Commands of the formx := x + 1 (x :=x�1) are replaced by the net programx := x+1;x := x�1 (x := x�1;x := x+1).
Unconditional jumps are replaced by themselves. Let us now design a program

Testn(x,ZERO, NONZERO)

to replace a conditional jump of the form

l: if x = 0 then goto ZERO
else gotoNONZERO

The specification of Testn is as follows:

If x = 0 (1 � x � 22n), then some execution of the program leads toZERO
(NONZERO), and no computation leads toNONZERO (ZERO); moreover the
program has no side-effects: after any execution leading toZERO orNONZERO
no variable has changed its value.

Actually, it is easier to design a program Test0n(x,ZERO, NONZERO) with the same
specification but aside-effect: after an execution leading toZERO, the values ofx andx are swapped.10 Once Test0n has been designed, we can take:

Program Testn(x, ZERO, NONZERO):

Test0n(x, continue, NONZERO);
continue:Test0n(x, ZERO, NONZERO)

because the values ofx andx are swapped0 times if x > 0 or twice if x = 0, and so
Testn has no side effects.

The key to the design of Test0n lies in the following observation: Sincex never
exceeds22n , testingx = 0 can be replaced by nondeterministically choosing

– to decreasex by 1, and if we succeed then we know thatx > 0, or
– to decreasex by 22n , and if we succeed then we know thatx = 22n , and sox = 0.

If we choose wrongly, that is, if for instancex = 0 holds and we try to decreasex by 1,
then the program fails; this is not a problem, because we onlyhave to guarantee that the
programmay(not must!) terminate, and that if it terminates then it provides the right
answer.

Decreasingx by 1 is easy. Decreasingx by 22n is the difficult part. We leave it for
a routine Decn to be designed, which must satisfy the following specification:

9 Recall that by definition all variables ofN have initial value0. Therefore, if we needx = 22n
initially, then we have to design preprocessing code for it.

10 Executions leading toNONZERO must still be free of side-effects.



If the initial value ofs is smaller than22n , then every execution of Decn fails.
If the value ofs is greater than or equal to22n , then all executions terminating
with a return command have the same effect ass := s� 22n ; s := s+22n ; in
particular, there are no side-effects. All other executions fail.

Test0n proceeds by transferring the value ofx to a special variablesn, and then calling
the routine Decn, which decreasessn by 22n . In this way we need one single routine
Decn, instead of one for each different variable to be decreased,which leads to a smaller
net program.

Program Test0n(x, ZERO, NONZERO):

** initially sn = 0 andsn = 22n **
gotononzero or goto loop;

nonzero: x := x� 1; x := x+ 1; gotoNONZERO;
loop: x := x� 1; x := x+ 1; sn := sn + 1; sn := sn � 1;

gotoexit or gotoloop
exit: gosubde
n; gotoZERO

** the routine called atde
n is Decn(sn) **

It is easy to see that Test0n meets its specification: ifx > 0, then we may choose
the nonzero branch and reachNONZERO. If x = 0, thenx = 22n . After looping22n times onloop the values ofx, x andsn, sn have been swapped. The values ofsn andsn are swapped again by the subroutine Decn, and then the program moves to
ZERO. Moreover, ifx = 0 then no execution reaches theNONZERO branch, because
the program fails atx := x� 1. If x > 0, then no execution reaches theZERO branch,
becausesn cannot reach the value22n , and so Decn fails.

The next step is to design Decn. We proceed by induction onn, starting with Dec0.
This is easy, because it suffices to decreases by 220 = 2. So we can take

Subroutine Dec0(s):s := s� 1; s := s+ 1;s := s� 1; s := s+ 1;
return

Now we design Deci+1 under the assumption that Deci is already known. The definition
of Deci+1 contains two copies of a program Test0i, called with different parameters. We
define this program by substitutingi for n everywhere in Test0n. Test0i calls the routine
Deci at the addressde
i. Notice that this is correct, because we are assuming that the
routine Deci has already been defined.

The key to the design of Deci+1 is that decreasing by22i+1 amounts to decreasing22i times by22i , because 22i+1 = (22i)2 = 22i � 22i
So decreasing by22i+1 can be implemented by two nested loops, each of which is
executed22i times, such that the body of the inner loop decreasess by 1. The loop



variables have initial values22i , and termination of the loops is detected by testing the
loop variables for0. This is done by the Test0i programs.

Subroutine Deci+1(s):
** Initially yi = 22i = zi, yi = 0 = zi **
** The initialisation is carried out by Ninit **

outer loop: yi := yi � 1; yi := yi + 1;
inner loop: zi := zi � 1; zi := zi + 1;s := s� 1; s := s+ 1;

Test0i(zi, inner exit , inner loop);
inner exit: Test0i(yi, outer exit, outer loop);
outer exit: return

Observe also that both instances of Test0i call the same routine at the same label.
It could seem that Deci+1 swaps the values ofyi, yi andzi, zi, which would be

a side-effect contrary to the specification. But this is not the case. These swaps are
compensated by the side-effects of theZERO branches of the Test0i programs! Notice
that these branches are now theinner exit andouter exit branches. When the
program leaves the inner loop, Test0i swaps the values ofzi andzi. When the program
leaves the outer loop, Test0i swaps the values ofyi andyi.

This concludes the description of the program Testn, and so the description of the
programNsim(C). It remains to designNinit(C). Let us first make a list of the initial-
isations that have to be carried out.Nsim(C) contains

– the variablesx1; : : : ; xl of C with initial value0; their complementary variablesx1; : : : ; xl with initial value22n ;
– a variables with initial value0; its complementary variables with initial value22n ;
– two variablesyi; zi for eachi, 0 � i � n� 1, with initial value22i ; their comple-

mentary variablesyi; zi for eachi, 0 � i � n� 1, with initial value0.

Now, the specification ofNinit(C) is simpleNinit(C) uses only the variables in the list above; every successful execution
leads to a state in which the variables have the correct initial values.Ninit(C) calls programs Inci(v1, : : : , vm) with the following specification:

All successful executions have the same effect asv1 := v1 + 22i ;: : : ;vm := vm + 22i
In particular, there are no side-effects.

These programs are defined by induction oni, and are very similar to the family of Deci
programs. We start with Inc0:



Program Inc0(v1; : : : ; vm):v1 := v1 + 1; v1 := v1 + 1;: : :vm := vm + 1; vm := vm + 1
and now give the inductive definition of Inci+1:

Program Inci+1(v1; : : : ; vm):

** Initially yi = 22i = zi, yi = 0 = zi **
outer loop: yi := yi � 1; yi := yi + 1;
inner loop: zi := zi � 1; zi := zi + 1;v1 := v1 + 1;: : :vm := vm + 1;

Test0i(zi, inner exit , inner loop);
inner exit: Test0i(yi, outer exit, outer loop);
outer exit: : : :

It is easy to see that these programs satisfy their specifications. Now, let us consider
Ninit(C). Apparently, we face a problem: in order to initialise the variablesv1; : : : ; vm
to 22i+1 the variablesyi andzi must have already been initialised to22i ! Fortunately,
we find a solution by just carrying out the initialisations inthe right order:

Program Ninit(C):
Inc0(y0; z0);
Inc1(y1; z1);: : :
Incn�1(yn�1; zn�1);
Incn(s; x1; : : : ; xl)

This concludes the description ofN(C), and it is now time to analyse its size.
ConsiderNsim(C) first. It contains two assignments for each assignment ofC, an un-
conditional jump for each unconditional jump inC, and a different instance of Testk
for each conditional jump. Moreover, it contains (one single instance of) the routines
Decn, Decn�1, : : : , Dec0 (notice that Testn calls Decn, which calls Decn�1, etc.). Both
Testn and the routines have constant length. So the number of commands ofNsim(C)
isO(n).Ninit(C) contains (one single instance of) the programs Inci 1 � i � n. The
programs Inc1, : : : , Incn�1 have constant size, since they initialise a constant numberof
variables. The number of commands of Incn isO(n), since it initialisesO(n) variables.

So we have proved thatN(C) containsO(n) commands. It follows that its corre-
sponding Petri net has sizeO(n2), which concludes our presentation of Lipton’s result.

The solution to Story II

Recall the conjecture of Story II: given a netN and two markingsM1 andM2, if M2 is

reachable fromM1 then it is reachable fromM1 through a sequenceM0 t0�! M1 t1�!



� � � tn�!Mn =M such that all the markingsM1; : : : ;Mn have sizeO(n+m0 +m),
wheren;m0;m are the sizes ofN ,M0 andM respectively.

Let 
 be the constant such thatM0; : : : ;Mn have size at most
�(n+m0+m). If the
conjecture is true, then the following nondeterministic algorithm solves the reachability
problem, since it may always answer “true” whenM is reachable:

Algorithm Reachable(N ,M0,M ):

variable: M 0 of type marking;

beginM 0 :=M0;
while M 0 6=M do

choose a markingM 00 of size at most
 � (n+m0 +m)
such thatM 0 t�!M 00 for some transitiont;
if there is no such marking then stop;M 0 :=M 00;

od;
return true

end

Since the algorithm only visits markings of size
 � (n+m0 +m), it runs in linear
space. By Savitch’s construction there is a deterministic algorithm which uses quadratic
space. Since the reachability problem requires exponential space, the conjecture is false.

8 Upper bounds

The general exponential space lower bound of the last section is almost the best we can
hope for, because Rackoff gave in [32] an almost matching exponential space upper
bound for the covering and boundedness problems for Petri nets. More precisely, the
upper bound is2O(n logn) space, very close to the2O(pn) lower bound. The covering
problem consists of deciding if there exists a reachable markingM such thatM �M 0
for a given markingM 0, i.e., if there exists a reachable markingM coveringM 0; the
boundedness problem consists of deciding if the number of reachable markings is finite.

Yen showed some years later in [38] that the same upper bound holds for the prob-
lem of deciding if there exists a firing sequenceM0 �1�!M1 �2�! � � � �k�!Mk
satisfying a given predicateF (M1; : : : ;Mk; �1; : : : ; �k) constructed using the follow-
ing syntax:11F ::=Mi(s) � 
 jMi(s) > 
Mi(s) > Mj(s) jMi(s) < Mj(s) jMi(s) =Mj(s)#�i(t) > 
 j #�i(t) < 
 j #�i(t) = 
#�i(t) > #�j (t0) j #�i(t) < #�j (t0) j #�i(t) = #�j (t0)F1 ^ F2 j F1 _ F2
11 The syntax is actually more general, see [38] for the details.



wheres is a place,t and t0 are transitions,
 is a constant, and#�(t) denotes the
number of times thatt occurs in�. Both the covering and the boundedness prob-
lem can be reduced to Yen’s problem. The covering problem fora markingM =(m1; : : : ;mn) corresponds to deciding if there exists a firing sequenceM0 �1�! M1
such thatM1(s1) � m1 ^ : : : ^ M1(sn) � mn. The boundedness problem can be
easily shown to be equivalent to the problem of deciding if there exists a sequenceM0 �1�! M1 �2�! M2 such thatM1(s1) � M2(s1) ^ : : : ^M1(sn) � M2(sn) andM1(s1) > M2(s1) _ : : : _M1(sn) > M2(sn). Observe however that the reachability
problemcannotbe reduced to Yen’s problem, because the predicateM(s) = 
 does not
belong to the syntax. The reachability problem was shown to be decidable by Mayr [28]
and shortly after with a simpler proof by Kosaraju [25], but all known algorithms are
non-primitive recursive. Closing the gap between the exponential space lower bound
and the non-primitive recursive upper bound is one of the most relevant open problems
of net theory.

Is it possible to give more general results about the properties that are decidable,
and the properties that are decidable in exponential space?In particular, we would like
to show that all the properties of a certain temporal logic are decidable, or decidable in
exponential space. As we are going to see, there is a very significant difference between
state-based logics and action-based logics, and so we consider them separately.

8.1 The state-based case

We have the following very general rule of thumb:

Rule of thumb 7:
The model-checking problems of all interesting state-based logics are
undecidable.

As in the 1-safe case, we first have to choose a set of atomic propositions. We
take againProp = S, i.e., the atomic propositions are the places ofN . We say that a
markingM satisfies the propositions if M is marked ats. Observe that a computation
is no longera sequence of markings; a computation is a sequence of sets ofplaces, as in
the 1-safe case, but the markings of general Place/transition nets are not sets of places
anymore.

With this choice of atomic propositions we can only express that a place is marked
or not; we can say nothing about the number of tokens it contains. Unfortunately, even
with this restricted expressive power the model checking problems for LTL and CTL
turn out to be undecidable.

The proof is in both cases by reduction from the following problem, which is known
to be undecidable:

Given: a counter programC with counters initialised to0.
To decide: ifC halts.



We simulate once again counter programs by net programs. Given a counter pro-
gramC, we obtain a net programN 0(C) through replacement of each counter com-
mand

l: if x = 0 then goto l1 else goto l2
by the net program

l: gototest l1 or goto test l2;
test l1:goto l1;
test l2:goto l2

while other commands are replaced by themselves.
The net programN 0(C) simulatesC in a much weaker sense than that of Section

7.N 0(C) has ahonestrun that exactly mimics the (unique) execution ofC: wheneverC executes the commandl,N 0(C) chooses the same branch asC. However, it also has
many other runs that “cheat”, i.e., runs that at some point choose the wrong branch. The
labelstest l1 andtest l2 correspond to two places ofN 0(C) which can be used
to test if the program has cheated or not when executing the conditional jump.

Suppose that there exists a temporal logic formulaHalt with the following property:N 0(C) satisfiesHalt if and only if the honest execution ofN 0(C) halts.12

Since the honest run exactly mimics the execution of the counter programC, N 0(C)
satisfiesHalt if and only ifC halts. Therefore, the problem of deciding ifHalt is satisfied
by a given Petri netN is undecidable. It follows that the model-checking problemof
those logics in whichHalt was expressed is undecidable as well.

We construct in CTL and LTL very simple formulasLTL-Halt andCTL-Halt. We
first define a formulaCheatwithout temporal operators.Cheatis the conjunction over
all conditional jumps l:if x = 0 then goto l1 else goto l2 of the formulas:(test l1 ^ x) _ (test l2 ^ :x)
If a run visits a marking satisfyingCheat, then we know that it is dishonest: if the
marking satisfies(test l1 ^ x), then at some conditional jump the run has taken the
l1 branch even thoughx > 0; if (test l2 ^ :x), then the run has taken the l2 branch
even thoughx = 0. Now, we defineLTL�Halt = F (Cheat _ halt)
wherehalt is the place in the net semantics corresponding to all thehalt commands.
A run satisfiesLTL-Halt if at some point it cheats or it halts.N 0(C) satisfiesLTL-Halt
iff every run satisfiesLTL-Halt. Since the honest run is the only one that doesn’t cheat,N 0(C) satisfiesLTL-Halt iff the honest run halts.

The formulaCTL-Halt is :CTL �Halt = AF (Cheat _ halt)
12 SinceN 0(C) is just a shorthand description of a Petri net, it makes senseto ask ifN 0(C)

satisfies a property formalised as a temporal formula.



It follows immediately from the semantics of formulae thatN 0(C) satisfiesCTL-
Halt if and only if it satisfiesLTL-Halt.

Since the formulaCTL-Halt only contains the operatorAF , the fragment of CTL
that extends propositional logic with the operatorsEF and its dualAG could still be
decidable. Unfortunately, a different proof [9] shows thatthis is not the case.

8.2 The action-based case

As mentioned above, the action-based case is very differentfrom the state-based case:

Rule of thumb 8:
The model-checking problems of all interesting branching-time, action-based
logics are undecidable. The model-checking problems of allinteresting linear-
time, action-based logics are decidable.

The undecidability of branching-time logics in the action-based case is an immedi-
ate consequence of the following fact: given an unlabelled Petri netN and a formula� of state-based CTL there is a labelled netN 0 and a formula�0 of action-based CTL
such thatN satisfies� if and only ifN 0 satisfies�0.

The netN 0 is obtained by labelling the transitions ofN with some label, saya,
and then adding for each places a new transitionts havings as only input place, no
output place at all, and labelled bys. The formula�0 is obtained through replacement
of each atomic propositions by EXstrue, and of each temporal operatorEX , AX ,E[: : : U : : : ℄, A[: : : U : : : ℄ by EXfag, AXfag, E[: : : Ufag::: ℄, andA[: : : Ufag : : : ℄, re-
spectively. Observe thats holds iff the transitionts can occur, i.e., iffEXstrue holds.

We cannot use the same technique to prove the undecidabilityof the model-checking
problem for LTL, because the problem is decidable! As in the 1-safe case, the model-
checking algorithm is based on automata theory. Given an LTLformula�, one can build
a finite automatonA� and a Büchi automatonB� such thatL(A�)[L!(B�) is exactly
the set of computations satisfying the formula�. In the action-based case bothA� andB� are automata over the alphabetAct.

In the 1-safe case, given a netN and a formula�, we first constructed two automataA:� andB:� such thatL(A:�)[L!(B:�) is exactly the set of computationsviolating
the formula�. In the general case we proceed exactly in the same way. The second step
was to construct two finite automataAN andBN from the Petri netN , which were
both essentially equal to the reachability graph of the net.Here we have a problem: the
automataAN andBN can be defined just as in the 1-safe case, but sinceN may now
have infinitely many reachable markings, they are not guaranteed to be finite.

The solution to this problem is easy: instead of constructing two automataAN andBN out of the Petri netN , we construct two labelled Petri netsNA:� andNB:� out
of the automataA:� andB:� in the following obvious way:

– the places ofNA� are the states ofA�;
– for each transitionq a�! q0 in A� add a transition toNA�, labelled bya, with q

andq0 as input and output place.



NB� is constructed analogously. Now we construct the productsN � NA� andN �NB�, where the productN1 � N2 of two Petri netsN1 andN2 is another Petri net
defined in the following way:

– the set of places ofN is the union of the sets of places ofN1 andN2;
– for each pair of transitionst1 of N1 andt2 of N2 labelled by a same actiona, the

productN contains a transition(t1; t2) also labelled bya; the input (output) places
of (t1; t2) are the union of the input (output) places oft1 andt2.

The two following results are easy to prove:

– L!(BN ) \L(B�) 6= ; holds if and only if the Petri netN �NB� has a run which
marks some place corresponding to a final state ofB� infinitely often.

– L(AN ) \ L(A�) 6= ; holds if and only if the Petri netN � NA� has a reachable
dead marking which marks some place corresponding to a final state ofA�.

Finding a run ofN � NB� that marks some place from a given setFS of final
places infinitely often is equivalent to deciding if there exists a firing sequenceM0 �1�!M1 �2�!M2 �3�!M3 in the netN �NB� such that(ŝ2SM3(s) �M1(s)) ^ ( _s2FSM2(s) � 1)
whereS denotes the set of all places. By Yen’s result, introduced atthe beginning of
this section, the problem can be solved in exponential spacein the size ofN � NB�.
In a more detailed analysis [14], Habermehl shows that this problem is EXPSPACE-
complete in the size ofN and PSPACE-complete in the length of�.

Finding a dead reachable marking ofN �NA� that marks some place from a given
setFS of final places can be reduced to and is at least as hard as the reachability
problem. Therefore, there exist so far no primitive recursive algorithms for it.

As in the 1-safe case, these results can be generalised to anylogic for which the
translation into automata theory holds [9].

9 All equivalence problems are undecidable

This section’s rule of thumb has a rather negative flavour:

Rule of thumb 9:
All equivalence problems for Petri nets are undecidable.

This rule is supported by a recent and very nice result due to Jančar, showing that every
equivalence notion between trace and bisimulation equivalence is undecidable for Petri
nets.13 Jančar himself has presented his result very clearly in [22]; here we do it in a
slightly different way. We proceed by reduction from the problem
13 Actually, the result is a bit stronger, since bisimulation can be replaced by an even finer equiv-

alence.



Given: a counter programC,
To decide: ifC halts (recall that all counters are initialised to0).

which is known to be undecidable.
Although the result can be presented directly by constructing two Petri nets out ofC (and this is the way the proof in [22] goes), we prefer to use again a net programming

language with a very simple net semantics, this time a language ofguarded commands.
A program is a sequence of instructions, and instructions are expressions of the form

l : [ guard1 a
tion1������! command1
guard2 a
tion2������! command2: : :
guardn a
tionn������! commandn ]

where l is a label,action1, : : : , actionn are actions, aguard is either the special string
true or a conjunction of expressions of the formx > 0 (no guards of the formx =0 are allowed), and the possiblecommandsareskip, goto l , halt, or a sequence of
assignmentsx1 := x1 � 1; : : : ; xn := xn � 1, where thexi are pairwise different.

Operationally, an instruction is executed as follows: one of the guards that evaluate
to true at the current state is nondeterministically selected (if no guard evaluates to true,
the program aborts). Then, two things happen: the action of the selected guard is sent to
the environment, and its command is executed (if the commandcontains the assignmentx := x � 1 andx = 0 holds, then the program aborts). If the command is a jumpgoto
l, then execution continues at the instruction with label l.If the command isskip or an
assignment, then execution continues with the next instruction. An observer can only
see the actions executed by the program, but not the values ofits variables, or the label
of the instruction being currently executed.

Guarded command programs can be easily translated into labelled Petri nets. Figure
6 shows the labelled net corresponding to the instruction

1 : [ x > 0 a�! x := x� 1
true

b�! x := x+ 1x > 0 ^ y > 0 a�! goto3
true


�! halt ]

(where we assume that the instruction following 1 in the program is labelled by 2).
There is a place for each variable and each label, plus a special placehalt. There is
a transition for each alternative, labelled by the alternative’s action. The semantics of
a program is obtained by merging places of the nets corresponding to its instructions
carrying the same label. We identify a program with its corresponding labelled Petri net.
In particular, two programs are trace or bisimulation equivalent if their corresponding
labelled nets are.

Given a counter programC, we construct two net programsN1(C) andN2(C)
satisfying the following two properties:

(1) if C halts, thenN1(C) andN2(C) are not trace equivalent, and
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Fig. 6. Net corresponding to an instruction

(2) if C does not halt, thenN1(C) andN2(C) are bisimilar.

For the proof of these properties it is very useful to characterise trace and bisimula-
tion equivalences in terms oftwo-person games. We describe first the features common
to both trace and the bisimulation games. The board of the games are the two programsN1(C) andN2(C) in their initial states. The games are played by two players,Alice
and Bob, who alternate moves. Alice makes the first move. A move is the execution of
(one of the alternatives of) an instruction in eitherN1(C) orN2(C), and is named after
the action corresponding to the executed alternative. Thatis, ana-move is the execution
of an alternative of the formguard

a�! command. If Alice makes ana-move in one of
the programs, then Bob can only answer with ana-move in the other program. It may
help your intuition to imagine that Alice wishes the programs to be non-equivalent,
while Bob wishes them to be equivalent. The winner of a game isdecided as follows:

– if Alice has no move available, then Bob wins;
– if Bob cannot answer to Alice’s move, then Alice wins;
– if the game does not terminate, then Bob wins.

If you find the idea of a non-terminating game awkward, think of chess without the
50-move rule. If a position with only the two kings on the board is reached, then the
game goes on forever. In the trace and bisimulation games a situation like this is not a
draw, but a win for Bob. Bob only wins after infinite time, which can make the game
rather tedious, but that’s his problem: the winning condition is well defined, and every
game has a winner.

We describe now the differences between the trace and bisimulation games, which
are surprisingly small. In a trace game, Alice chooses one ofthe programsat the be-
ginning of the game, and makesall her movesin this program; Bob must make all his
moves in the other program. In a bisimulation game, Alice chooses one of the programs
before each move, and makesher next movein this program. For instance, in the bisim-
ulation game Alice can make her first move in the first program (Bob must answer in
the second), and her second move in the second program (Bob must answer in the first).



A strategyfor a player is a function which gets the list of moves played so far and
yields the player’s next move. A strategy iswinning if a player that sticks to it winsall
games. We have the following nice result (see for instance [34]), which at least in the
case of the trace game is intuitively very plausible:

In the trace and bisimulation games forN1(C) andN2(C):
if Alice has a winning strategy, then the two programs are notequivalent; if
Bob has a winning strategy, then the two programs are equivalent.

So the properties (1) and (2) thatN1(C) andN2(C) – both to be constructed – have
to satisfy can be reformulated as follows:

(1) if C halts, then Alice has a winning strategy in the trace game, and
(2) if C does not halt, then Bob has a winning strategy in the bisimulation game.

It is time to start with the definition ofN1(C) andN2(C). To make things a bit
simpler, assume without loss of generality that the counterprogramC contains one
singlehalt instruction, and that this instruction is the last one.14 The programsN1(C)
andN2(C) look as follows:

ProgramN1(C):
start:[ true

start����! y := y + 1 ];N 0(C);
halt: [ y > 0 halt����! halt ]

ProgramN2(C):
start:[ true

start����! z := z + 1 ];N 0(C);
halt: [ y > 0 halt����! halt ]

where the programN 0(C) still has to be defined. Observe that the two programs differ
only in the first instruction. After this instruction is executed,y = 1; z = 0 in N1(C),
andy = 0; z = 1 in N2(C).

The programN 0(C) is obtained by replacing each command ofC but the unique
halt command through an instruction of the new language. The instructions correspond-
ing to assignments and jumps are:

l: x := x+ 1 is replaced by l: [true in
����! x := x+ 1]

l: x := x� 1 is replaced by l: [true de
����! x := x� 1]

l: goto l1 is replaced by l: [true jump����! goto l1]

Conditional jumps are the delicate part. A command of the form

l: if x = 0 then goto ZERO
else gotoNONZERO

is replaced by the following sequence of two instructions:
14 If there are severalhalt instructions, we can replace them by jumps to a new label at the end

of the program, and place there a uniquehalt command.



l : [ x > 0 nonzero������! gotoNONZERO

true
zero����! skipx > 0 ^ y > 0 zero����! y := y � 1; z := z + 1 ]x > 0 ^ z > 0 zero����! y := y + 1; z := z � 1 ];

l0: [ true
zero����! gotoZERO ]

This completes the description ofN1(C) andN2(C). Before going on, we observe
that the programN 0(C) has anhonestrun that mimics the execution ofC, and looks
as follows: wheneverC executes a command,N 0(C) executes its corresponding in-
struction. If the command is a conditional jump andC takes theNONZERO-branch,
thenN 0(C) chooses thenonzeroalternative of the corresponding instruction; ifC takes
the ZERObranch, thenN 0(C) chooses thefirst of the two zero alternatives, namely

true
zero����! skip, and then it executes thegotoZERO instruction.

There is an important difference betweenN1(C) andN2(C). Assume that in bothN1(C) andN2(C) we execute thestart action, followed by the honest execution ofN 0(C). If and when the honest execution terminates, we can executethe halt action
in N1(C), becausey has been set to1 by thestart action, but wecannotexecute it inN2(C), becausey still has the value0 there.

We are now ready to describe the winning strategies for Aliceand Bob in the differ-
ent games.

Assume thatC halts. Here is the strategy for Alice in the trace game. Alice chooses to
play onN1(C), and so Bob is forced to play onN2(C). Alice sticks to the following
sequence of moves, completely disregarding Bob’s answers:she plays thestart-move,
continues with the moves of the honest execution ofN 0(C), and – if the honest run
terminates – finishes with ahalt-move.

We show in the first place that, if Alice follows this strategy, then from the second
move on Bob is forced to playexactly the same movesas Alice (i.e., exactly the same
alternatives in the same commands). When Alice plays anonzeromove, Bob can only
answer with a uniquenonzeromove, so this case is easy. When Alice plays azeromove,
it seems that Bob can choose between threezero-answers, namely

true
zero����! skipx > 0 ^ y > 0 zero����! y := y � 1; z := z + 1x > 0 ^ z > 0 zero����! y := y + 1; z := z � 1

But remember: Alice is playing the honest run, and so she onlyplays azero-move whenx = 0. So, whenever Alice plays azero move, Bob observes that the guardx > 0
evaluates to false, and so that his only move istrue

zero����! skip.
Let us now see that Alice’s strategy is winning. SinceC halts, the honest run termi-

nates, and so eventually Alice plays ahaltmove.15 All along the game Bob has patiently
15 Incidentally, observe that Alice can indeed playhalt, because she sety to1with herstartmove,

and she never touchedy during the honest execution.



repeated Alice’s moves, waiting for a chance, but his efforts are in vain: he cannot reply
to Alice’s halt move, because in his programN2(C) the variabley has the value0, and
so the guardy > 0 of thehalt move evaluates to false. So Bob loses.

Assume thatC does not halt.Here is the strategy for Bob in the bisimulation game.
Alice has to play thestartmove in one of the two programs, and Bob just replies with the
start move in the other program. Then, as long as Alice plays the honest run ofN 0(C)
(possibly switching between the two programs), Bob patiently repeats her moves in the
other program.16 If Alice deviates from the honest run by playing one ofx > 0 ^ y > 0 zero����! y := y � 1; z := z + 1x > 0 ^ z > 0 zero����! y := y + 1; z := z � 1
in one of the programs, Bob replies with

true
zero����! skip

in the other program. If Alice deviates from the honest run byplaying

true
zero����! skip

in one of the programs at a point in whichx > 0, Bob replies with one ofx > 0 ^ y > 0 zero����! y := y � 1; z := z + 1x > 0 ^ z > 0 zero����! y := y + 1; z := z � 1
in the other program, depending on which guard is enabled.17 After this move, Bob
goes on playing exactly the same moves as Alice.

Let us see that Bob wins all games. If Alice sticks to the honest execution, then,
sinceC does not halt, she never plays ahalt-move, and since all other moves can be
mimicked by Bob without problems, the game never terminates: a win for Bob. So
Alice’s only chance to win is to deviate from the honest run atsome point. Observe that
just before deviating we havey = 1; z = 0 in N1(C) andy = 0; z = 1 in N2(C). We
show that by deviating Alice digs her own grave: she allows Bob to reply in such a way
that after his moveall variables have exactly the same value inN1(C) andN2(C)! Bob
then wins easily by playing the same moves as Alice.

Alice can deviate from the honest run in three different ways. She can playx > 0 ^ y > 0 zero����! y := y � 1; z := z + 1
to which Bob replaystrue

zero����! skip, and then we havey = 0; z = 1 in both
programs. She can also playx > 0 ^ z > 0 zero����! y := y + 1; z := z � 1
16 He has no choice anyway!
17 Observe that exactly one of the two guards is enabled, because thestart action makes the

assertiony + z = 1 true, and the other actions keep this assertion invariant.



and after Bob’s reply we havey = 1; z = 0 in both programs. Finally, she can play

true
zero����! skip

at a state in whichx > 0, and after Bob’s reply we have eithery = 0; z = 1 ory = 1; z = 0 in both programs, depending on his answer.

9.1 Partial-order equivalences are also undecidable

As we mentioned in Section 5, the literature contains many so-called partial-order
equivalence notions which do not fit between trace and bisimulation equivalence. So
Jančar’s result might seem not to apply for them. But it does. Say that two transitionst1 andt2 areconcurrently enabledat a markingM if M(s) � F (s; t1) + F (s; t2) for
every places, and say that a Petri net issequentialif no reachable marking enables two
transitions concurrently. It is easy to see that the Petri netsN1(C) andN2(C) we have
constructed above are sequential. So, actually, we have just proved that any equivalence
relation which fits between trace and bisimulation equivalencefor the class of sequen-
tial Petri netsis undecidable. Partial-order equivalences turn out to fit between trace
and bisimulation equivalence for sequential nets. Actually, this is what one would ex-
pect: partial-order equivalences should distinguish concurrency from interleaving, but
if there is no concurrency at all then there is also nothing todistinguish.

10 Can anything be done in polynomial time?

The general EXSPACE-hardness bound of Section 7 raises the question if there are
better results (PSPACE, NP, polynomial problems) for classes of Place/Transition Petri
nets. Since a complete treatment of this question is out of the scope of this paper, we
concentrate on how far can one go with polynomial algorithms. Obviously, we cannot
expect to go further than for 1-safe Petri nets. So the first question is if at least some
problems for conflict-free nets and free-choice nets that are not necessarily 1-safe can
still be solved in polynomial time. The answer is a qualified “no”. Even though [18, 39]
contain some polynomial algorithms for conflict-free Petrinets, most of the important
problems for these two classes become at least NP-hard. For instance, the reachability
problem for conflict-free Petri nets is NP-complete [8], andthe liveness problem for
free-choice Petri nets is co-NP-complete (i.e., it is the complement of an NP-complete
problem) [24, 5] (the proof is sketched below as the solutionto Story I). Notice that the
liveness and reachability problems for arbitrary Petri nets are much harder, and so these
NP-completeness results can also be seen as positive results.

Is there any interesting constraint leading to polynomial algorithms for many prob-
lems? There seems to be essentially a single non-trivial one: every place has exactly
one input transition and exactly one output transition (“exactly” can also be generalised
to “at most”) The Petri nets satisfying this constraint havebeen calledmarked graphs,
synchronisation graphs, andT-systems. Two of the oldest papers in net theory show that
many problems for these nets can be solved using simple graphalgorithms or linear
programming [3, 13]. So let us formulate our last rule of thumb:



Rule of thumb 10:
Many interesting problems about marked graphs are solvablein polyno-
mial time. Almost no interesting problems about Petri net classes sub-
stantially larger than marked graphs are solvable in polynomial time.

The solution to Story I

The non-liveness problem for free-choice Petri nets can be formulated as follows:

Given: a free-choice Petri netN ,
To decide: ifN is non-live.

Membership in NP is non-trivial; it follows from Commoner’stheorem [15, 5]. NP-
hardness, on the contrary, is very easy to prove by a reduction, first presented in [24],
from the satisfiability problem for boolean formulas in conjunctive normal form.18 Fig-
ure 7 shows the Petri net corresponding to the formula(x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)
and we explain the construction on this example. Loosely speaking, the Petri net works
as follows: first, the variables are nondeterministically assigned truth values by firing
either the transitionxi or xi for each variablexi. Once all variables have been assigned
a value, a transitionCj is enabled if and only if the assignment makes the clauseCj
false. For instance,C2 is enabled if and only if the transitionsx1; x2; x3 have fired; this
corresponds to the assignmentx1 := false , x2 := true, x3 := false , which is the only
assignment makingC2 false. So we have that the placeFalsegets tokens if and only if
the formula is false under the assignment. If the formula is satisfiable, then there is an
assignment making the formula true, and for this assignmentthe placeFalsenever gets
marked. So the Petri net is not live. On the contrary, if the formula is unsatisfiable, then
the placeFalsecan always get marked again, and the net is live.
Since the formula is satisfiable, the Petri net of Figure 7 is non-live.

11 Conclusions

I’d like to conclude by listing the 10 rules of thumb of the paper. You can find them
in Table 11. I’ve allowed myself to suppress the word “interesting” from all the rules,
since it should no longer lead to confusion.
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The 10 Rules of Thumb

1. All questions about the behaviour of 1-safe Petri nets arePSPACE-hard.
2. Nearly all questions about the behaviour of 1-safe Petri nets can be solved in polynomial

space.
3. Equivalence problems for 1-safe Petri nets are harder to solve than model-checking prob-

lems. They need at most exponential space.
4. Most questions about the behaviour of acyclic 1-safe Petri nets are NP-hard.
5. Many questions about 1-safe conflict-free Petri nets are solvable in polynomial time.

Some questions about live 1-safe free-choice Petri nets aresolvable in polynomial time
(and liveness of 1-safe free-choice Petri nets is decidablein polynomial time too).
Almost no questions for 1-safe net classes substantially larger than free-choice Petri nets
are solvable in polynomial time.

6. All questions about the behaviour of Petri nets are EXPSPACE-hard.
7. The model-checking problems for Petri nets and all state-based logics are undecidable.
8. The model-checking problems for Petri nets and all branching-time, action-based logics

are undecidable.
The model-checking problems for Petri nets and all linear-time, action-based logics are
decidable.

9. All equivalence problems for Petri nets are undecidable.
10. Many questions about marked graphs are solvable in polynomial time.

Almost no questions about Petri net classes substantially larger than marked graphs are
solvable in polynomial time.

Table 1.
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1. J.L. Balcázar, J. Dı́az, and J. Gabarró.Structural Complexity I, volume 11 ofMonographs in
theoretical Computer Science. Springer-Verlag, 1988.

2. A. Cheng, J. Esparza, and J. Palsberg. Complexity Resultsfor 1-safe Nets. Theoretical
Computer Science, 147:117–136, 1995.

3. F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked Directed Graphs.Journal of
Computer and System Sciences, 5:511–523, 1971.

4. M. Dam. Fixpoints of Büchi automata. InProceedings of the 12th International Conference
of Foundations of Software Technology and Theoretical Computer Science, volume 652 of
Lecture Notes in Computer Science, pages 39–50, 1992,
Also: LFCS Report, ECS-LFCS-92-224, University of Edinburgh.

5. J. Desel and J. Esparza.Free-choice Petri Nets, volume 40 ofCambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 1995.

6. E. A. Emerson. Temporal and Modal Logic. InHandbook of Theoretical Computer Science
Volume B, pages 995–1027, 1990.

7. J. Esparza. Model Checking Using Net Unfoldings.Science of Computer Programming,
23:151–195, 1994.

8. J. Esparza. Reachability in Live and Safe Free-Choice Petri Nets is NP-Complete. Technical
Report SFB-Bericht Nr. 342/12/96 A, Technische Universit¨at München, 1996. To appear in
Theoretical Computer Science.

9. J. Esparza. Decidability of Model-Checking for Infinite-State Concurrent Systems.Acta
Informatica, 34:85–107, 1997.

10. J. Esparza and M. Nielsen. Decidability Issues for PetriNets – a Survey. InBulletin of the
EATCS, volume 52, pages 245–262, 1994
Also: Journal of Information Processing and Cybernetics 30(3):143–160, 1995.

11. Formal methods page of the WWW Virtual Library at
http://www.comlab.ox.ac.uk/archive/formal-methods.html#notations.

12. M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, 1979.

13. H. J. Genrich and K. Lautenbach. Synchronisationsgraphen. Acta Informatica, 2:143–161,
1973.

14. P. Habermehl. On the Complexity of the Linear-Time Mu-Calculus for Petri Nets. In
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