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ABSTRACT

We consider the problem of labeling a directed multigraph so that it becomes a
synchronized finite automaton, as an ultimate goal to solve the famous Road Coloring
Conjecture, cf. [1, 2]. We introduce a relabeling method which can be used for a large
class of automata to improve their “degree of synchronization”. This allows, for example,

to formulate the conjecture in several equivalent ways.
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1. Introduction

Synchronization properties in automata theory are fundamental, and often at

the same time very challenging. Two examples of such problems are as follows. Let

us call a finite automaton A synchronized if there exists a word w which takes each

state of A to a single special state s. Such a w is called synchronizing word for A.

So-called Cerny’s Conjecture [3, 12] claims that each synchronized automaton

possesses a synchronizing word of length at most (n−1)2, where n is the cardinality

∗A preliminary version of the work was presented in the conference Developments in language

theory 2001.
†Research supported by the Academy of Finland under grant 44087 and by NSF under grant

CCR 97-33101.
‡Current address: Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

1



of the state set of A. Despite many attempts the conjecture in the general case is

still unsolved, the best upper bound being cubic in n, cf. [8]. However, recently in

[6] a natural extension of Cerny’s Conjecture stated in [13] was shown to be false.

Cerny’s Conjecture asks something about synchronized automata. Road Color-

ing Problem, in turn, asks for a dual task: change, if possible, an automaton to

a synchronized one. More precisely, given a deterministic complete and strongly

connected automaton, can it be relabeled to a synchronized automaton.

It is well known, cf. Lemma 2, that the Road Coloring Problem has a negative

answer if the greatest common divisor of the lengths of all loops in A is larger

than 1. In the opposite case - which due to the strong connectivity is equivalent

to the existence of two loops of coprime lengths - the answer is conjectured to be

affirmative. This is the Road Coloring Conjecture, RC-conjecture for short. In terms

of graphs it is formulated as follows: Let us call a directed graph G acceptable if it

is of uniform outdegree and strongly connected (i.e. for any pair (p, q) of vertices

there is a path from p to q) and primitive if the greatest common divisor of lengths

of its loops is one. The conjecture claims that each acceptable primitive graph can

be labeled to a synchronized finite automaton.

Intuitively the above means that if a traveler in the network of colored roads

modeled by an acceptable primitive graph gets lost, he can find a way back home

by following a single instruction, the synchronizing word.

The Road Coloring Conjecture has attracted a lot of attention over the past 20

years. However, it has been established only in a very limited cases, cf. [4, 10, 11],

and it is stated as a “notorious open problem” in [9].

We attempt to solve the problem by analyzing properties of different labelings of

finite automata. In particular, we describe a method to increase the synchronization

degree of an automaton by relabeling it in a suitable way. Here the synchronization

degree of an automaton A is the minimal number nA of states of A such that there

exists a word w taking each state of A to one of these nA states. Unfortunately, our

method does not work for all labelings, but it does work for a quite large subclass of

labelings, and, moreover, allows to formulate the RC-conjecture in two equivalent

ways.

This paper is organized as follows. In Section 2 we fix our terminology and

formulate several conjectures connected to synchronization properties including the

Road Coloring Conjecture. In Section 3 we introduce an automaton which, for a

given automaton A, computes all words having the maximal synchronizing effect,

in particular all synchronizing words, if the automaton is synchronized. In Section

4 we relate the synchronization to certain equivalence relations. Finally, Section 5

introduces our relabeling technique to improve the synchronization.

2. Preliminaries

In this section we fix the necessary terminology, cf. [5], and formulate several

conjectures including the Road Coloring Conjecture.

Let G = (V,E) be a directed graph with vertex set V and edge set E, where

multiple edges are allowed. We consider only graphs which are
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(i) strongly connected, and

(ii) of uniform outdegree, i.e. all vertices have the same outdegree, say n.

Such a graph is called acceptable. Clearly, each acceptable graph can be labeled

by an n-letter alphabet to yield a deterministic strongly connected and complete

automaton without initial and final states. By a labeling of an acceptable graph we

mean such a labeling, or also an automaton defined by such a labeling.

Let G be an acceptable graph and LG the set of its all loops. We call G primitive

if the greatest common divisor of the lengths of the loops in LG is equal to 1;

otherwise G is imprimitive. Further we call G cyclic if there exist an N ≥ 2 and a

partition of the vertex set V of G into the classes V0, . . ., VN−1 such that whenever

p −→ q is an edge in G, then p ∈ Vi and q ∈ Vi+1 (mod N) for some i = 0, . . . , N −1.

Otherwise G is acyclic. We have an easy connection:

Lemma 1 An acceptable graph G is imprimitive iff it is cyclic.

Proof. Trivially every cyclic graph is imprimitive: the cycle length N divides

the lengths of all loops in G. Consider the other direction. Let G be imprimitive,

and N the gcd of the lengths of all loops of G. We color the vertex set V of G by

the function c : V → {0, . . . , N−1} as follows: Let T be a spanning tree of G rooted

at r. We set c(r) = 0 and c(t) = c(s) + 1, whenever T contains an edge s → t.

We claim that for all edges e : p → q in G we have c(q) ≡ c(p) + 1 (mod N).

For edges in T that is clear. For other edges we denote the path from r to p in T

by α0αp and the path from r to q in T by α0αq, where α0 is the maximal common

prefix of these paths. Moreover, let αr be a path from q to r in G. Then G contains

the cycles αpeαrα0 and αqαrα0. Since the lengths of both of these are a multiple

of N we have |αq| ≡ |αp| + 1 (mod N). This proves our claim.

2

In order to formulate our conjectures we recall some terminology of automata.

Let A = (Q,Σ, δ) be a complete deterministic finite automaton without final and

initial states. We say that the automaton A is synchronized at state s ∈ Q if there

exists a word w ∈ Σ∗ that takes each state q of Q into s, i.e. δ(q, w) = s for all

q ∈ Q. The word w is called a synchronizing word for A. Clearly, if a strongly

connected automaton is synchronized at a given state it is so at any of its states.

Now, we extend the above to graphs. We say that an acceptable graph is syn-

chronizable if it has a labeling making it a synchronized automaton. Note that

originally in [1] the word “collapsible ” was used instead of “synchronizable”. Now,

the conjecture can be stated as follows:

Road Coloring Conjecture. Each primitive acceptable graph is synchronizable.

The conjecture, if true, is optimal:

Lemma 2 Each imprimitive graph is not synchronizable.

Proof. Clearly a cyclic graph is not synchronizable, so Lemma 2 follows from

Lemma 1. 2

Next we define a few properties related to labelings of an acceptable primitive

graph. Let δ be such a labeling. We say that a pair p, q of vertices is reducible, in
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symbols p ∼ q, if there exists a word w such that δ(p, w) = δ(q, w), i.e. word w

takes p and q to the same state. Accordingly such a δ is called (p, q)-synchronized.

We say that a vertex pair p, q is stable, denoted p ≡ q, if for every word u there

exists a word w such that δ(p, uw) = δ(q, uw). We also say that δ is (p, q)-stable.

Clearly, the reducibility and the stability relations ∼ and ≡ are symmetric and

reflexive. The reducibility relation is not always transitive (see Example 2). In

contrast, the stability relation is transitive:

Lemma 3 The stability relation ≡ is an equivalence relation.

Proof. Let us prove transitivity. Let p ≡ q and q ≡ r, and let u be an arbitrary

word. To prove p ≡ r we need to show that there exists a word w such that

δ(p, uw) = δ(r, uw). Because p ≡ q there exists a word w1 such that δ(p, uw1) =

δ(q, uw1), and because q ≡ r there exists a word w2 such that δ(q, uw1w2) =

δ(r, uw1w2). Then δ(p, uw1w2) = δ(q, uw1w2) = δ(r, uw1w2), so we can choose

w = w1w2. 2

We call the equivalence classes of the stability relation the stability classes of

the automaton. By the definition of stability, the transition function δ is consistent

with respect to the stability relation ≡, that is, the relation ≡ is a congruence.

If also the reducibility relation happens to be an equivalence relation, and nondis-

crete, then the labeling δ is called strong. (Recall that an equivalence relation is

called discrete if each element is in the relation with itself only. A nondiscrete

equivalence relates at least one pair of distinct elements.) The nondiscreteness is

to avoid some trivial exceptions in our later considerations. We show in Section 4

that if δ is strong then the reducibility and stability relations coincide.

Now we formulate several conjectures. The first one is a weaker version of the

Road Coloring Conjecture.

Conjecture A. Let G be acceptable primitive graph. For each pair (p, q) of vertices

of G there exists a (p, q)-synchronized labeling.

Conjecture A seems to be much weaker than the RC-conjecture but it might

be equivalent to it. The two other conjectures we formulate are, as we shall show,

equivalent to the Road Coloring Conjecture.

Conjecture B. For each acceptable primitive graph (with more than one vertex)

there exists a strong labeling.

Conjecture C. For each acceptable primitive graph (with more than one vertex)

there exists a labeling such that the stability relation is non-discrete.

In all examples we consider only binary alphabets Σ. Indeed, this case seems

to capture the difficulty of the problem. The following example illustrates our

conjectures

Example 1. Consider the automata shown in Figure 1. The automaton A

possesses a synchronizing word, for example baaab, while the automaton B does
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not possess any. The reducibility relations are the full relation and the relation

{(2, 3), (3, 2), (1, 4), (4, 1)}, respectively. Consequently also in the latter case the

reducibility is an equivalence relation, and hence the labeling is strong. In both

automata all reducible pairs are also stable, so relations ∼ and ≡ are identical.

A : B :

Fig. 1. Automata A and B

3. An automaton for synchronizing words

Let G be an acceptable graph and A the automaton obtained from it via the

labeling δ. Hence A = (Q,Σ, δ) is a complete deterministic automaton without

initial and final states. We define another automaton As as follows:

As = (2Q,Σ, δs, Q),

where Q is the initial state and the transition function δs is defined by

δs(P, q) =
⋃

p∈P

δ(p, a) for P ⊆ Q, a ∈ Σ. (1)

Clearly As is complete and deterministic, and, moreover, a word w is synchronizing

for A if and only if δs(Q,w) is singleton. Hence, we have

Lemma 4 The set of all synchronizing words for A is computed by the automaton

(2Q,Σ, δs, Q, F ), where the set F of final states consists of all singletons of the power

set 2Q. 2

We say that the synchronization degree of A is

nA = min
w∈Σ∗

{card(P ) | δ(Q,w) = P}

= min{card(P ) | P is reachable state of As}.

Consequently, A is synchronized iff nA is equal to 1. Let us define

Qmin = {P | card(P ) = nA and P is reachable in As}.

Using these notions we define another automaton Amin as follows:

Amin = (Qmin,Σ, δs).

The automaton Amin plays an important role in our subsequent considerations.
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Lemma 5 The automaton Amin is deterministic, complete and strongly connected.

Proof. First, by (1) and the minimality of nA, the automaton Amin is well

defined, deterministic and complete.

Second, to prove that Amin is strongly connected let P1 and P2 be states of

Amin. This means that there exists words w1 and w2 such that δs(Q,wi) = Pi for

i = 1, 2. Since P1 ⊆ Q, necessarily δs(P1, w2) ⊆ δs(Q,w2) = P2. Hence, by the

minimality of nA, δs(P1, w2) = P2. Similarly, δs(P2, w1) = P1, proving the strong

connectivity. 2

To illustrate the above notions we return to our example.

Example 1. (continued). Consider automata A and B of Example 1. The au-

tomata As, Amin, Bs and Bmin are shown in Figure 2, where the min-automata are

shown by the dash lines. It follows that A is synchronized and its shortest synchro-

nizing word is baaab. On the other hand, B is not synchronized - its synchronization

degree is 2.

As :

13

2324

a

234

Q

b

a

a

b

34

a

a

b

b

b b

a

2

4

a

3

1

b

a

ab

a

b

a

Bs :

Fig. 2. Automata As, Bs, Amin, and Bmin, the latter ones being those shown

by dashlines.

Let us analyze a bit more the above automata As and Amin. Let w be a word

leading the initial state Q of As into Qmin, in other words

δs(Q,w) = {p1, . . . , pnA
}. (2)

Then w defines an equivalence relation ∼w on Q, where the equivalence classes

consist of subsets {q | δ(q, w) = pi} for i = 1, . . . , nA. Of course, in general, such
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partitions need not be unique. However, the uniqueness is characterized by the

strongness of the labeling, cf. Theorem 1 in the next section.

4. Equivalence relations vs. synchronization

Let A = (Q,Σ, δ) be an automaton obtained from an acceptable primitive graph

via a labeling δ. From the synchronization point of view fundamental notions are the

reducibility and stability relations ∼ and ≡. As we already noted the reducibility

relation ∼ is reflexive and symmetric, but not necessarily transitive, as shown by

the next example.

Example 2. Consider an automaton C and its variants Cs and Cmin shown in Figure

3. In this case states 1 and 2 are reducible by b, and states 1 and 3 by ab, but 2 and 3

are not reducible by any word. Hence, the relation ∼ is not an equivalence relation.

This is connected to the fact that the partitions of Q defined by different words

(as was explained in Section 3) need not coincide. Indeed, the word b defines the

partition {{1, 2}, {3, 4}}, while the word ab defines the partition {{1, 3}, {2, 4}}.

There are no non-trivial stable pairs of states so the stability relation ≡ of C is

discrete.

C : Cs :

Cmin

Fig. 3. Automata C and Cs as well as Cmin obtained from the latter.

We have the following important characterization.

Theorem 1 The labeling δ is strong if and only if the partitions ∼w by (2) in

Section 3 are independent of w. If δ is strong then the reducibility relation ∼ and

the stability relation ≡ coincide.

Proof. Assume first that the labeling δ is strong, i.e., the reducibility relation

∼ is an equivalence relation. Since the states of the automaton Amin are pairwise

irreducible, the number of equivalence classes under ∼ is nA. On the other hand,

by the construction of Amin, any partition in (2) induced by a fixed word w is of the

same cardinality. So the independence of these partitions follows since any class in

these partitions is a subset of an equivalence class of the reducibility relation.

Conversely, if the partitions in (2) are independent of w, then clearly any two

states that are reducible belong to a same equivalence class in (2). Hence, the
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reducibility matches with the unique relation, and consequently is an equivalence

relation.

The second sentence follows from the fact that if w satisfies (2) then for every

word u also uw satisfies (2). In general it is possible that ∼w and ∼uw are two

different relations, but if δ is strong then it follows from the first part of the theorem

that ∼w and ∼uw are identical. If p ∼ q then p ∼w q for some w satisfying (2),

which means that for every word u we have p ∼uw q, i.e., p ≡ q. 2

Automata like in Example 2 are problematic for our general approach. Indeed,

as we shall see, whenever the labeling is strong we can improve the synchronization

degree of a nonsynchronized automaton.

5. Improving the synchronization

In this section we introduce our method to relabel automata. Let P be an

arbitrary partition of the state set Q, and let δ′ be a relabeling of the automata.

We say that the relabeling respects partition P (and the corresponding equivalence

relation of Q) iff for each equivalence class P ∈ P there exists a permutation π of

the input alphabet such that for every p ∈ P and a ∈ Σ we have

δ′(p, a) = δ(p, π(a)).

In the case of a binary alphabet this means that for each equivalence class P either

all labels of transitions from P are changed or none of them is changed.

The reason to introduce this notion is the following: If in the original automaton

we have computations

δ : p0
a1−→ p1

a2−→ p2
a3−→ · · ·

an−→ pn

and

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

an−→ qn

where for every i states pi and qi are in the same equivalence class of P, and if δ′ is a

relabeling that respects P, then in the relabeled automaton we have computations

δ′ : p0
a′

1−→ p1
a′

2−→ p2
a′

3−→ · · ·
a′

n−→ pn

and

q0
a′

1−→ q1
a′

2−→ q2
a′

3−→ · · ·
a′

n−→ qn.

Each letter a′
i is obtained from the corresponding letter ai using the relabeling

that was applied at the equivalence class containing pi−1 and qi−1. In particular

for pn = qn we get the result that our relabelings do not invalidate P-consistent

synchronizing computations.

Theorem 2 Road coloring conjecture is equivalent to Conjecture C.

Proof. Clearly the RC-conjecture implies conjecture C. Indeed, the stability

relation of a synchronized automaton is the full relation. Assume then that Con-

jecture C is true. We use mathematical induction on the number of vertices of G to

prove that every primitive acceptable G has a synchronized labeling. Let v be the
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number of vertices and assume that the RC conjecture is true for all graphs with

fewer vertices.

It follows from Conjecture C that there exists a labeling of G into automaton

A such that the stability relation is non-discrete. Because the stability relation is a

congruence we have a factor automaton F = (A/ ≡) whose states are the stability

classes, and transitions are inherited from A. Any labeling of F induces a relabeling

A′ of A that respects the stability classes. This means that if p and q are stable in

A they are stable in A′ as well.

The factor automaton F is primitive. Indeed, if number n divides the lengths of

all loops in F then n also divides the lengths of all loops in A. The factor automaton

is also acceptable: it is strongly connected because A is.

Because the factor automaton F has fewer states than A we can use the inductive

hypothesis and conclude that there exists a synchronized relabeling F ′ of F . Let

us show that the induced relabeling of A into A′ is also synchronized. Let p and q

be two arbitrary vertices of G, and let pF and qF be the corresponding states in F ,

that is, the stability classes of p and q in automaton A. Because F ′ is synchronized

there exists a word w such that in automaton F ′ we have δF ′(pF , w) = δF ′(qF , w).

This means that in automaton A′ states δA′(p, w) and δA′(q, w) are stable, hence

reducible. 2

Corollary 1 Road coloring conjecture is equivalent to Conjecture B.

Proof. Clearly the road coloring conjecture implies conjecture B, and Con-

jecture B implies Conjecture C because every strong labeling has a non-discrete

stability relation (Theorem 1). According to Theorem 2 Conjecture C implies the

road coloring conjecture, so all three conjectures are equivalent. 2

Before continuing let us return to Example 1.

Example 1. (continued) For the automaton B the min-automaton Bmin and the

factor automaton BF are as shown in Figure 4. To synchronize the partition au-

tomaton BF we switch a and b in the labels starting from the state 23. Then the

corresponding automata B′ and B′
s are as shown in Figure 5. Hence, B′ indeed is

synchronized.

Our next result is unconditional.

Theorem 3 For any acceptable primitive graph G there exists a labeling such that

the transitive closure of the reducibility relation ∼ is the full relation.

Proof. Let ∼∗ denote the transitive closure of the reducibility relation ∼. We

use our relabeling technique over the equivalence relation ∼∗.

Let G be an acceptable primitive graph, let δ be a labeling and let ∼ be the

corresponding reducibility relation. If δ′ is a relabeling that respects the transitive

closure ∼∗ then any two states p and q that are reducible under δ are reducible

under δ′ as well. This follows from the discussion in the beginning of this section.

Assume that ∼∗ is not the full relation. Because G is strongly connected and

not cyclic it must contain two edges p −→ x and q −→ y such that x ∼∗ y but

p 6∼∗ q. Without loss of generality we may assume that x ∼ y: In any case we have
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B : Bmin :

BF :

Fig. 4. Automaton B, its min-automaton Bmin, and its factor automaton BF .

B′ : B′
s :

23
a

1234 14

b

aa

b

b

34

a

b

1 2

a bb
a

b

a

Fig. 5. Automaton B′ obtained from B by relabeling and its variant B′
s.
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a sequence x = x1, x2, . . . , xn = y of vertices such that xi ∼ xi+1 for every i. For

each i choose a vertex pi such that pi −→ xi is an edge, and p1 = p and pn = q.

Because p1 and pn are not in relation ∼∗ there must exist i such that pi and pi+i

are not in relation ∼∗. Then we may choose xi as x, xi+1 as y, pi as p and pi+i as

q.

Let δ′ be a relabeling that respects ∼∗ such that edges p −→ x and q −→ y have

the same label a. Only the labels on the equivalence class containing p need to be

changed. States p and q are reducible under the new labeling δ′. Indeed, letter a

maps them into reducible states x and y. As the relabeling respects ∼∗ anything

reducible under δ is reducible under δ′. We conclude that our relabeling decreased

the index of the equivalence relation ∼∗.

Using mathematical induction on the index of ∼∗ we get the desired result. 2

As a corollary of the theorem one can prove that any acceptable primitive graph

G is commutatively synchronizable. Two words are called commutatively equivalent

if one is obtained from the other by reordering its letters. We call an automaton

commutatively synchronized if there exists a word w such that, for each vertex q,

there exists a word wq commutatively equivalent to w such that δ(p, wp) = δ(q, wq)

for all p, q ∈ Q. As in the non-commutative case, it is enough to commutatively

synchronize n − 1 pairs of states, one after the other. So an automaton is commu-

tatively synchronized iff for every two states p and q there exist two commutatively

equivalent words wp and wq such that δ(p, wp) = δ(q, wq). If this is the case we say

that pair p, q is commutatively reducible, and use the notation p ∼com q.

Lemma 6 The relation ∼com is an equivalence relation.

Proof. We only need to prove transitivity. Let p ∼com q and q ∼com r, and let

wp and wq be commutatively equivalent words such that δ(p, wp) = δ(q, wq) = s and

let uq and ur be commutatively equivalent words such that δ(q, uq) = δ(r, ur) = t.

Because G is strongly connected there exist words α and β such that δ(s, α) = q =

δ(t, β). See Figure 6 for an illustration.

w
pw

s t
q

βα

qu ru

rqp

Fig. 6. Proof that commutative reducibility is transitive.

Because

δ(p, wpαuqβ) = q = δ(r, urβwqα)

and because words wpαuqβ and urβwqα are commutatively equivalent, we have

p ∼com r. 2

Corollary 2 Any acceptable primitive graph G is commutatively synchronizable.
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Proof. Take any labeling of G such that ∼∗ is the full relation (Theorem 3).

Because ∼⊆∼com and because ∼com is an equivalence relation (Lemma 6) we have

∼∗⊆∼com. So ∼com is the full relation and the labeling is commutatively synchro-

nized. 2

We do not claim that Theorem 3 and Corollary 2 are important from the point of

view of synchronization, but they nicely emphasize the usefulness of our relabeling

techniques.

Another application of the technique was recently invented in [7]. A directed

graph is called Eulerian if every node has identical in- and outdegree. An acceptable

Eulerian graph has therefore uniform in- and outdegrees.

The following simple idea guarantees a labeling with non-discrete stability re-

lation for any acceptable and primitive Eulerian graph. We start with a labeling

that is completely non-synchronized. In other words, we choose a labeling such

that every letter specifies a permutation of the state set. An easy application of

the marriage theorem shows that such a labeling must exist [7]. Then we swap the

labels of two edges r −→ s and r −→ t where s 6= t. Such edges must exist if the

graph is primitive and has at least two vertices. Let a and b be the labels of the

two edges so that after the swap there are two edges with label a entering state s

and two edges with label b entering state t. Let A = (Q,Σ, δ) be the automaton

after the swap. Let us show that s ≡ t.

First we rephrase an interesting result proved in 1990 by J.Friedman [4]. In the

context of Eulerian graphs his result states that the equivalence classes of relations

∼w defined by (2) in Section 3 all have the same cardinality card(Q)/nA. This

implies that s ∼w t. Namely, if there would exist an equivalence class S such that

s ∈ S but t 6∈ S then the set

S′ = {p | δ(p, a) ∈ S}

has greater cardinality than S simply because s has two incoming edges with label

a and all other states of S have one incoming a. But the set S ′ is synchronized by

word aw so according to the Friedman’s result it should have the same cardinality

as S.

We conclude that s and t are synchronized by any word w that leads from Q

into Qmin in As. If w is such a word then also uw is such a word, for every word u.

This implies that s ≡ t, and the stability relation ≡ is non-discrete.

It is fairly easy to see that the factor automaton F = (A/ ≡) is acceptable,

primitive and Eulerian and therefore the relabaling technique can be used to find a

synchronized labeling. We have [7]

Theorem 4 The Road Coloring Conjecture is true for graphs with uniform in- and

outdegrees. 2
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