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Abstract

1Cern2y’s conjecture and the road coloring problem are two open problems concerning synchro-
nization of !nite automata. We prove these conjectures in the special case that the vertices have
uniform in- and outdegrees.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let us call a directed graph G=(V; E) admissible (k-admissible, to be precise) if all
vertices have the same outdegree k. A deterministic !nite automaton (DFA) without
initial and !nal states is obtained if we color the edges of a k-admissible digraph with
k colors in such a way that all k edges leaving any node have distinct colors. Let
�= {1; 2; : : : ; k} be the labeling alphabet. We use the standard notation �∗ for the set
of words over �. Every word w∈�∗ de!nes a state transition function fw :V → V on
the vertex set V : the vertex fw(v) is the endpoint of the unique path that starts at v
and whose labels read w. For a set S ⊆V we de!ne

fw(S) = {fw(v) | v ∈ S};
and

f−1
w (S) = {v | fw(v) ∈ S}:
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Word w is called synchronizing if fw(V ) is a singleton set, and the automaton is
called synchronized if a synchronizing word exists. A coloring of an admissible graph
is synchronized if the corresponding automaton is synchronized.
We investigate the following two natural questions:

• Which admissible digraphs have synchronized colorings?
• What is the length of a shortest synchronizing word on a given synchronized au-
tomaton?

The road coloring problem and 1Cern2y’s conjecture are two open problems related to
these questions. The road coloring problem [1,2] asks whether a synchronized coloring
exists for every admissible digraph that is strongly connected and aperiodic. A digraph
is called aperiodic if the gcd of the lengths of its cycles is one. This is clearly a
necessary condition for the existence of a synchronized coloring. The road coloring
problem has been solved in some special cases but the general case remains open. In
particular, it is known to be true if the digraph has a simple cycle of prime length and
there are no multiple edges in the digraph [10].
In this work, we prove the road coloring conjecture in the case the digraph is

Eulerian, i.e., also the indegrees of all nodes are equal to k. (We assume k-admissibility
throughout this paper.) This partial solution is interesting because such digraphs can
also be colored in a completely non-synchronized way: there exist labelings where every
color speci!es a permutation of the vertex set so that no input word can synchronize
any vertices.

Lemma 1. Let G=(V; E) be a digraph with all in- and outdegrees equal to some
3xed k. Then the edges can be colored with k colors in such a way that at every
vertex all entering edges have distinct colors and all leaving edges have distinct colors.

Proof. Let us start by constructing a undirected graph G′ =(V1 ∪V2; E′) with twice
as many vertices as G. For each vertex v of G graph G′ has two vertices v1∈V1
and v2∈V2, and for each edge v → u of G graph G′ contains the undirected
edge connecting v1 and u2, the representatives of v and u in V1 and V2,
respectively.
Graph G′ is bipartite because all edges are between V1 and V2, and all vertices of

G′ have degree k. It follows from the well-known marriage theorem by Frobenius [16]
that graph G′ has a perfect matching, i.e., a set of edges such that each vertex is
incident to exactly one edge. The corresponding directed edges in G leave and enter
each vertex exactly once, hence they can be colored with the same color.
Let us remove the newly colored edges from G. The remaining digraph has uniform

in- and outdegree k − 1. Using the principle of mathematical induction we know the
remaining edges can be colored with the remaining k − 1 colors.

We also prove 1Cern2y’s conjecture if the underlying digraph is Eulerian. 1Cern2y’s
conjecture [4] states that if an n-state automaton is synchronized, then there always
exists a synchronizing word of length at most (n−1)2. Currently, the best known bounds
for the shortest synchronizing word are cubic in n, see e.g., [15] and its references. In
Section 4, we prove the conjecture in the Eulerian case; In fact, it turns out that we
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obtain a slightly better upper bound (n − 1)(n − 2) + 1 for the length of the shortest
synchronizing word.

2. Maximum size synchronized subsets

Our proofs rely on a result by Friedman [6]. We only need this result in the Eulerian
case, which we include here for the sake of completeness. This section also introduces
the notion of maximum size synchronized sets of vertices, which is crucial in our
proofs. All results in this section were originally presented in the Friedman paper [6].
Given an automaton A, let us say that set S ⊆V is synchronized if there exists a word

w such that fw(S) is a singleton set. Clearly, for every word u, if S is synchronized
then also f−1

u (S) is synchronized, synchronized by word uw.
Let us only consider !nite automata that are based on Eulerian digraphs, and let k be

the in- and outdegree of every node. We are interested in synchronized sets of maximal
cardinality, called maximum size synchronized sets. Let m be the largest cardinality of
any synchronized set. If n-state automaton A is synchronized then m= n, but in general
16m6n. In a moment we will see that m has to divide n, and that the vertex set V
can be partitioned into non-overlapping maximum size synchronized subsets.
Because in the Eulerian case every vertex has k incoming edges we have

∑

a∈�
|f−1
a (S)| = k|S| (1)

for every S ⊆V . Therefore, if |S|=m we must have |f−1
a (S)|=m for every color

a∈�, and more generally |f−1
u (S)|=m for every word u. In other words, predecessors

of maximum size synchronized sets have also maximum size.
Consider a collection of i maximum size synchronized sets S1; S2; : : : ; Si that are

synchronized by the same word w, and that are hence disjoint. Let yj denote the
unique element of fw(Sj) for every j=1; 2; : : : ; i. If im¡n then the collection is not
yet a partitioning of V and there exists a vertex x that does not belong to any Sj.
Because the graph is strongly connected there exists a word u such that fu(y1)= x.
Consider subsets that are synchronized by word wuw. These include S1 (which is
already synchronized by the !rst w) as well as f−1

wu (Sj) for all j=1; 2; : : : ; i. All these
i+ 1 sets are maximum size synchronized sets, and they are diOerent from each other
because they are synchronized by wuw into distinct vertices fw(x) and yj =fw(Sj), for
j=1; 2; : : : ; i.

The reasoning above can be repeated until we reach a partitioning of V into max-
imum size synchronized sets, all synchronized by the same word. We have proved

Proposition 1. In any DFA that is based on a Eulerian digraph G=(V; E) there
exists a word w such that subsets of vertices synchronized by w form a partitioning
of V into maximum size synchronized sets.
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Fig. 1. A non-Eulerian admissible digraph and the weights of its vertices.

As a corollary we see that the maximum size m of synchronized sets must divide n,
the number of vertices. It is also clear that if w satis!es the property of the proposition
then so does uw for every u∈�∗.

In [6] a more general approach is taken, applicable also in non-Eulerian cases. In this
approach the notion of the cardinality of a subset is replaced by its weight. To de!ne
weights, note that the adjacency matrix of the digraph has a positive left eigenvector e
with eigenvalue k. The eigenvector is chosen with relatively prime integer components.
Components of e are the weights of the corresponding vertices, and the weight of a
set of vertices is the sum of the weights of its elements. In Eulerian cases the weight
of a set is simply its cardinality because e=(1; 1; : : : ; 1).

Example 1. Consider the non-Eulerian digraph in Fig. 1. The weights are shown inside
the vertices. Note the de!ning property that at each node the weight times k equals
the sum of the incoming weights.

Instead of maximum size synchronized sets the non-Eulerian case considers maxi-
mum weight synchronized sets. It follows from the way the weights are dede!ned that
Eq. (1) is valid in the general set-up if the notion of the set cardinality is replaced by
the notion of the weight. So we conclude that the predecessors of maximum weight
synchronized sets have also maximum weight, and we get the following more general
proposition [6]:

Proposition 2. In any DFA there exists a word w such that subsets of vertices syn-
chronized by w form a partitioning of V into maximum weight synchronized sets.

3. Synchronized colorings of Eulerian digraphs

To prove the road coloring property of Eulerian digraphs we use the notion of
stability from [5]. States x and y of a DFA A are called stable, denoted x ≡ y, iO

(∀u ∈ �∗)(∃w ∈ �∗); fuw(x) = fuw(y);
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i.e., for every word u nodes fu(x) and fu(y) are synchronized. It is easy to see that
stability is a congruence relation, i.e., an equivalence relation respected by all state
transitions fa. This means that each fa maps equivalence classes into equivalence
classes.

Lemma 2. Relation ≡ is a congruence relation.

Proof. Trivially ≡ is rePexive and symmetric. Let us prove transitivity. Let x≡y and
y≡ z, and let u be an arbitrary word. To prove x ≡ z we need to show that there
exists a word w such that �(x; uw)= �(z; uw). Because x≡y there exists a word w1

such that �(x; uw1)= �(y; uw1), and because y≡ z there exists a word w2 such that
�(y; uw1w2)= �(z; uw1w2). Then �(x; uw1w2)= �(y; uw1w2)= �(z; uw1w2), so we can
choose w=w1w2.
If x≡y then it is easy to see that also fa(x)≡fa(y). Hence ≡ is a congruence

relation.

We call the equivalence classes of the stability relation the stability classes of the
automaton. Because stability is a congruence, one has a well-de!ned quotient automaton
(A=≡) whose states are the stability classes.
It was pointed out in [5] that the road coloring problem is equivalent to the conjecture

that there always exists a coloring with at least one stable pair of vertices. The idea is
that if a coloring with non-trivial stability classes exists, then the quotient automaton
(A=≡) has fewer states than A. The quotient automaton is also strongly connected
and aperiodic if the original automaton has these properties. One uses mathematical
induction and assumes that the quotient automaton can be relabeled into a synchronized
automaton. The relabeling can be lifted to the original automaton, providing it with a
synchronized coloring because a relabeling does not break the stability of any nodes
that were in the same stability class.
In the following we adapt this reasoning to the Eulerian case, and prove:

Theorem 1. The road coloring conjecture is true for Eulerian digraphs.

Proof. We use mathematical induction on the number of vertices. If |V |=1 the claim is
trivial. Assume then that G=(V; E) is an admissible, strongly connected and aperiodic
Eulerian digraph with |V |¿1, and that the road coloring conjecture has been proved
for such digraphs with fewer vertices.
Let us start with a fully non-synchronized coloring of G, where all vertices have

diOerent colors on all entering and leaving edges (Lemma 1). Let x be a vertex and
a and b two colors such that fa(x) 
=fb(x). These must exist because otherwise the
digraph would be periodic. Let y=fa(x) and z=fb(x). Let us swap the colors of
edges x→y and x→ z. Then two edges labeled a enter z, and two edges labeled b
enter node y. Because all other nodes have one edge of each color entering them, it
is clear that for any set S of vertices

z ∈ S; y =∈ S ⇒ |f−1
a (S)|¿ |S|
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and

y ∈ S; z =∈ S ⇒ |f−1
b (S)|¿ |S|:

Therefore, any maximum size synchronized set of vertices must either contain both y
and z or neither of them. Consequently, any word w from Proposition 1 synchronizes
y and z.
Let us prove that y≡ z: Let u∈�∗ be arbitrary, and let w be a word satisfying

Proposition 1. Then also uw satis!es Proposition 1, which means that fuw(y)=fuw(z).
Because there are non-trivial stability classes the quotient automaton (A=≡) has fewer

states than the original automaton. It is clear that (the underlying digraph of) the
quotient automaton is admissible, strongly connected and aperiodic, because the original
digraph G has these properties. To prove that it is also Eulerian, it is enough to show
that there are edges of all colors entering all stability classes. This is trivially true
for any class that contains any node diOerent from y and z as all these nodes have
incoming edges of all colors. And since y and z are in the same stability class, also
that class has entering edges of all colors.
The quotient automaton has fewer states, so according to the induction hypothesis

there exists a synchronized recoloring of the quotient automaton. This induces a syn-
chronized coloring of the original automaton as follows: We recolor each vertex x
using the same permutation of colors that was used to recolor the equivalence class
containing x. Each stable pair of vertices remains stable because the recoloring re-
spects the stability classes. In addition, there exists a word w that takes all states into
one equivalence class. Such w is any synchronizing word of the recolored quotient
automaton. This means that the re-colored automaton is synchronized.

The reasoning fails on non-Eulerian digraphs. It is, however, easy to see that even in
the non-Eulerian case nodes x and y are stable if and only if every maximum weight
synchronized set either contains both x and y or neither of them. In other words,
stability classes are intersections of maximum weight synchronized sets.

4. The #Cern%y’s conjecture

We have proved that Eulerian digraphs have synchronized colorings. In this sec-
tion we show that any such coloring admits a synchronizing word of length at most
(n− 1)(n− 2) + 1, where n= |V |.
Let us view the vertex set V as an orthonormal basis of the n-dimensional vector

space Rn, and subsets of V as vectors obtained as sums of their elements: Set S ⊆V
is viewed as the vector

∑
x∈S x.

It is useful to view functions f−1
a as linear transformations of this vector space, for

all a∈�. Because we know how each f−1
a acts on the vectors in the basis V , there

is a unique way to extend f−1
a into a linear Rn→Rn mapping. In other words, the

transformation matrix of f−1
a with respect to basis V is the transpose of the adjacency

matrix for edges colored with a.
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Fig. 2. A DFA de!ning linear functions f−1
a and f−1

b over R4.

Note that f−1
a (S) for S ⊆V has the same meaning as before. Its old de!nition

is consistent with the linearity. As before, functions f−1
w for w∈�∗ are obtained as

compositions of the single letter functions f−1
a . Our reason for investigating functions

f−1
w is the fact that w is synchronizing if and only if f−1

w maps one of the basis
vectors into the vector (1; 1; : : : ; 1) representing set V .

Example 2. Consider the DFA in Fig. 2. We have, e.g., f−1
a (1; 0; 0; 1)= (0; 1; 1; 1) and

f−1
aba (1; 0; 0; 0)= (1; 1; 1; 1). Word aba is synchronizing.

If the DFA is Eulerian we say that the weight of a vector is the sum of its compo-
nents (under the basis V ). More generally, a weight of a vector x is the inner product
of x with the left eigenvector e de!ned in the end of Section 2. Note that the two
de!nitions are consistent as in the Eulerian case we have e=(1; 1; : : : ; 1). We denote
the weight of vector x by |x|. Our choice of notation is explained by the fact that
in the Eulerian case the weight of the vector representing a set S ⊆V is the same as
the cardinality of the set. It is important that the weight function x �→ |x| is a linear
function Rn→R.
The weight function satis!es Eq. (1) in Section 2. The equation holds even for

arbitrary vectors, and the general non-Eulerian DFA: For every x ∈ Rn
∑

a∈�
|f−1
a (x)| = k|x|: (2)

It follows from (2) that for every x∈Rn either

(∀a ∈ �) |f−1
a (x)| = |x|

or

(∃a ∈ �) |f−1
a (x)|¿ |x|:

More generally, if |f−1
w (x)| 
= |x| for some w∈�∗ then |f−1

u (x)|¿|x| for some u that
has the same length as w.
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For any given x∈Rn we would like to establish an upper bound for the length of the
shortest word u such that |f−1

u (x)|¿|x|, if such a word exists. Based on the observation
above, it is enough to !nd the shortest word w such that |f−1

w (x)| 
= |x|.
Let

Z0 = {x ∈ Rn | |x| = 0}

be the set of zero weight vectors. Clearly, Z0 is an (n − 1)-dimensional subspace of
Rn. Let

Z1 = {(r; r; : : : ; r) | r ∈ R}

be the one-dimensional subspace of Rn that is generated by V . Because V =∈Z0 ev-
ery vector x∈Rn has a unique representation x= x0 + x1 where xi∈Zi. As we have
f−1
w (x1)= x1 for every w∈�∗, it follows that |f−1

w (x)| 
= |x| if and only if |f−1
w (x0)| 
=

|x0|=0. This on the other hand is equivalent to f−1
w (x0) =∈Z0.

Let us show that if the DFA is synchronized then for every x0∈Z0\{0} there exists
a word w of length at most n− 1 such that f−1

w (x0) =∈Z0. First, we observe that since
the DFA is synchronized there exists some word w such that f−1

w (x0) =∈Z0. In fact, if
w is a synchronizing word that takes the DFA into a state corresponding to a non-zero
coeRcient r in x0 then f−1

w (x0)= (r; r; : : : ; r) =∈Z0. The rest of the claim follows directly
from the following lemma:

Lemma 3. Let U be a linear subspace of Rn, and let x∈U . Let � be an alphabet and
for every a∈� let ’a :Rn→Rn be a linear transformation. For every word w∈�∗

we de3ne the linear transformation ’w that is the composition of the linear trans-
formations ’a corresponding to the letters of w. Then, if there exists a word w such
that ’w(x) =∈U then there exists such word w of length at most dim U .

Proof. Consider vector spaces U0 ⊆U1 ⊆ : : : where Ui is generated by

{’w(x) | length of w is at most i}:

Clearly, if Ui+1 =Ui for some i then Uj =Ui for every j¿i. Namely, Ui+1 =Ui means
that ’a(Ui)⊆Ui for all a∈�.
Let i be the smallest number such that ’w(x) =∈ U for some w of length i, that is,

the smallest i such that Ui*U . This means that in U0 ⊂U1 ⊂ · · ·⊂Ui all inclusions
are proper. In terms of dimensions of the vector spaces:

1 = dim U0 ¡ dim U1 ¡ · · ·¡ dim Ui−1 ¡ dim Ui;

which means that dim Ui−1¿i. But Ui−1 ⊆U so that we also have dim Ui−16 dim U ,
which means that i6 dim U .

If in the lemma we take U =Z0 and ’a=f−1
a we have the desired result. The

following lemma summarizes what we have proved so far.
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Lemma 4. Assume that the DFA is synchronized. Let x∈Rn, x =∈Z1. Then there exists
a word w of length at most n− 1 such that |f−1

w (x)|¿|x|.

Using this lemma we can easily prove the main theorem of this section:

Theorem 2. If the underlying digraph G=(V; E) of a synchronized DFA is Eulerian
then there exists a synchronizing word of length at most (n − 2)(n − 1) + 1, where
n= |V | is the number of vertices.

Proof. The weights of vectors representing sets of vertices are integers. Therefore, it
follows from Lemma 4 that for every proper subset S of V there exists a word w of
length at most n− 1 such that |f−1

w (S)|¿|S|+ 1. By repeatedly applying this result i
times, for any i, we see that for some word w of length at most i × (n− 1) we have
|f−1
w (S)|¿|S|+i, provided |S|+i6|V |. In particular, choosing i= |V |−|S| gives us the

result that for every S ⊆V there exists a word w of length at most (|V |−|S|)× (n−1)
such that f−1

w (S)=V .
Let v be a vertex such that S =f−1

a (v) contains at least two vertices, for some input
letter a. From the previous paragraph we know that f−1

w (S)=V for some word w
whose length is at most (|V |−|S|)(n−1). Hence wa is a synchronizing word of length
at most (|V | − |S|)(n− 1) + 1. In the Eulerian case, |V |= n and |S|¿2.

Note that in the general (non-Eulerian) case the same reasoning gives an upper
bound (|V | −Wmax)× (n − 1) for the length of a shortest synchronizing word, where
Wmax denotes the largest weight of any single vertex, and |V | is the sum of the weights
of all vertices.

5. Conclusion

We have proved two well-known conjectures of symbolic dynamics and automata
theory in the special case when the digraph has uniform in- and outdegrees. Intuitively,
such balance in the incoming edges should make a digraph diRcult to synchronize. Im-
balance oOers (even forces) more opportunities for synchronization: every state that has
more incoming edges than there are letters in the alphabet is a place where synchro-
nization takes place. Our results contrast this view. They indicate that perfect balance
actually oOers opportunities for synchronization. It seems that the “diRcult” types of
graphs to investigate for a general proof of the road coloring and the 1Cern2y conjectures
are digraphs that have nearly—but not fully—balanced indegrees.
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