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Abstract

We consider Fibonacci heap style integer priority queues supporting find-min, insert, and decrease key
operations in constant time. We present a deterministic linear space solution that with n integer keys
supports delete in Oðlog log nÞ time. If the integers are in the range ½0;NÞ; we can also support delete in
Oðlog log NÞ time.
Even for the special case of monotone priority queues, where the minimum has to be non-decreasing, the

best previous bounds on delete were Oððlog nÞ1=ð3�eÞÞ and Oððlog NÞ1=ð4�eÞÞ: These previous bounds used
both randomization and amortization. Our new bounds are deterministic, worst-case, with no restriction to
monotonicity, and exponentially faster.
As a classical application, for a directed graph with n nodes and m edges with non-negative integer

weights, we get single source shortest paths in Oðm þ n log log nÞ time, or Oðm þ n log log CÞ if C is the
maximal edge weight. The latter solves an open problem of Ahuja, Mehlhorn, Orlin, and Tarjan from 1990.
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In 1984, Fredman and Tarjan introduced Fibonacci heaps [15], which is a priority queue over a
dynamic ordered set H supporting the following operations:

find-minðHÞ Returns an element from H with minimum key value in constant time.
insertðH; aÞ Adds the element a to H in constant time.
dec-keyðH; a; xÞ Reduces the key value of element a to x in constant time. If the current key

value of a was smaller than x; it is an error.
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deleteðH; aÞ Deletes element a from H in t ¼ Oðlog nÞ time where n is the current size of H:
It is important to note that we distinguish between an element and its key value. The Fibonacci

heap stores information with the elements that it can benefit from in connection with a dec-key
operation.
The classic application of Fibonacci heaps is inside Dijkstra algorithm [12]. For a weighted

graph with n nodes and m edges they solve the single source shortest path problem in time
Oðm þ ntÞ ¼ Oðm þ n log nÞ:
For general ordered sets supporting only comparisons, Fredman and Tarjan’s delete time of

Oðlog nÞ is optimal. However, here we show

Theorem 1. We can implement a priority queue in linear space that with n integer keys in the range
½0;NÞ supports find-min; insert, and dec-key in constant time, and delete in Oðlog log minfn;NgÞ
time.

Even for the special case of monotone priority queues, where the minimum has to be non-
decreasing, as in Dijkstra’s single source shortest path algorithm, the best previous bounds on

delete were Oððlog nÞ1=ð3�eÞÞ and OððlogNÞ1=ð4�eÞÞ due to Raman [25]. These previous bounds used
both randomization and amortization. Our new bounds a deterministic, worst-case, with no
restriction to monotonicity, and most importantly, exponentially faster.
The bounds in Theorem 1 match the current best bounds of Thorup [28] for a basic priority

queue, that is, a priority queue as above but without a constant-time dec-key operation. In fact,
any improvement of the Oðlog log nÞ bound would lead to a better sorting algorithm. More
precisely, we can sort n keys by first inserting them all in a priority queue and second extract them
in sorted order. Using the priority queue of Theorem 1, this takes Oðn log log nÞ time, matching
the best current sorting bound due to Han [19]. With randomization, however, Han and Thorup

have shown how to sort in Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time, and with a general reduction from basic

priority queues to sorting, Thorup [28] has shown that this implies a basic priority queue with

delete in Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time. Combining the latter with dec-key in constant time is left

as a major open problem.
From Theorem 1, we immediately get

Corollary 2. We can solve the single source shortest path problem for a directed graph with n nodes
and m edges with weights in the range ½0;CÞ in linear space and Oðm þ n log log minfn;CgÞ time.

Proof. We use the priority queue from Theorem 1 in Dijkstra’s algorithm. A small point to
observe, however, is that the priority queue in Dijkstra’s algorithm only needs to deal with
integers in the range ½0;CÞ even though the distances may be up to nC: We just have to bucket
distances d according to Id=Cm: Then, for i ¼ 0;y; n; we deal with distances in bucket i in the
range ½iC; ði þ 1ÞCÞ: The overhead from the bucketing is constant time per operation. This idea
essentially goes back to Dial in 1969 [11]. &

The Oðm þ n log logCÞ time bound from Corollary 2 solves an open problem of Ahuja et al. [1]
from 1990.
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1.1. The integer key model

Our computational model is word RAM, modeling what we program in a standard programming
language such as C [22]. We have a processor determined word-size W ; limiting how big integers we
can operate on in constant time. On the other hand, we assume that each input integer fits in a single
word. Also, we assume that WXlog n so that we can address the different keys with single words.
The machine instructions are those available via C. Besides direct and indirect addressing and
conditional jumps, we have functions, such as addition and multiplication, operating on a constant
number of words. The memory is divided into words, addressed 0; 1; 2;y The time is the number of
instructions performed and the space is the maximal address used.
The essential advantage of dealing with integer keys is that we can use them to compute

addresses in bucket-based algorithms. A classic example of this is the folklore algorithm radix
sort, which according to Knuth [23] is referenced as far back as in 1929 by Comrie in a document
describing punched-card equipment [8]. Another classic example is multiplicative hashing which
dates back at least to 1956 [14]. Finally, for the SSSP problem itself, the use of buckets go back at
least to Dial’s algorithm from 1969 [11].
We note that our integer priority queue also works for floating point numbers; for the IEEE 754

floating-point standard [21] is designed so that the ordering of floating point numbers can be
deduced by perceiving their representations as integers. Thus the Oðm þ n log log nÞ time bound from
Corollary 2 holds equally well for floating point numbers. However, for floating point numbers, we
do not get bounds in terms of the maximal weight. Similarly, we note that our priority queues can be
applied to signed negative and positive integers. More precisely, if we flip the signbit of signed
integers and view them as unsigned, we preserve their ordering. Applying this transformation to
signed integers, we can use our priority queue for non-negative integers. However, Dijkstra’s
algorithm only works for non-negative integers, so this has no impact on Corollary 2.

Our algorithms use multiplication, which is not an AC0 operation [6]. However, if we restrict

ourselves to AC0 operations such as addition, shift, and bit-wise boolean operations, we can solve

the SSSP problem in Oðm þ nðlog log minfn;CgÞ1þeÞ time using a monotone AC0 variant of the
priority queue from Theorem 1.

1.2. History

The history behind our result is best cast in terms of its implications for the single source
shortest path problem (SSSP).

1.2.1. Bounds in terms of C

Back in 1969, Dial [11] developed an Oðm þ nCÞ time SSSP algorithm for integer weights in the
range ½0;CÞ: For contrast, if we use the data structure of van Emde Boas, Kaas, and Zilstra [30,31]
from 1977, supporting both insert and delete in Oðlog logNÞ time, we get a solution in
Oðm log logCÞ time. As commented in [1]:

Based on the existence of the Van Emde Boas-Kaas-Zilstra data structure, one might hope for a
bound of Oðm þ n log logCÞ: Obtaining such a bound is an open problem.
Ahuja, Mehlhorn, Orlin, and Tarjan, 1990.
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As stated in Corollary 2, we obtain in this paper exactly the bound hoped by Ahuja et al. [1].

Ahuja et al. [1] proceeded to provide a SSSP algorithm with running time Oðm þ n
ffiffiffiffiffiffiffiffiffiffiffiffi
logC

p
Þ: In

1997, using randomization, this bound was improved by Cherkassky, Goldberg, and Silverstein

[7] to Oðm þ n
ffiffiffiffiffiffiffiffiffiffiffiffi
logC3

p 1þeÞ expected time for any fixed e40: Later in 1997, this was further

improved by Raman [25] to Oðm þ n
ffiffiffiffiffiffiffiffiffiffiffiffi
logC4

p 1þeÞ expected time. We note that the per node cost in

all the above bounds is ðlogCÞOð1Þ; hence that our per node cost of Oðlog logCÞ from Corollary 2
is an exponential improvement.
Of other related results, Thorup [26] has shown that SSSP with non-negative integer weights

can be solved in linear time if the graph is undirected. Hagerup [18] generalized Thorup’s
algorithm for directed graphs, solving SSSP in Oðm log log CÞ time and linear space. For contrast,
the previously mentioned Oðm log logCÞ time bound with van Emde Boas’ data structure needs
either randomization or Oðm þ CeÞ space. Here e may be any positive constant. Yet Ce is not
bounded in terms of m: As mentioned, our new Oðm þ n log logCÞ time bound is achieved
deterministically in linear space, that is, space linear in m:

1.2.2. Bounds in terms of n
Shortly after the development of their Oðn log n=log log nÞ time integer sorting algorithm in

1990, Fredman and Willard [16] showed that integer SSSP could be solved in Oðm þ
n log n=log log nÞ time. In 1995, using randomization, Thorup [27] improved this to Oðm þ
n

ffiffiffiffiffiffiffiffiffiffi
log n

p 1þeÞ expected time. He also solved the SSSP problem in Oðm log log nÞ expected time, thus
getting bounds in terms of n matching those we had in terms of C after the above mentioned
results of Ahuja et al. [1] in 1990.

In 1996, Raman solved the SSSP deterministically in Oðm þ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n log log n

p
Þ time and linear

space [24]. Later, in 1997, using randomization, he solved SSSP in Oðm þ n
ffiffiffiffiffiffiffiffiffiffi
log n3

p 1þeÞ expected
time [25]. However, as stated in Corollary 2, we solve the SSSP problem deterministically in linear
space and Oðm þ n log log nÞ time. Thus, we improve the per node cost with respect to n
exponentially, as we did it with respect to C in Section 1.2.1.

We note that the recent randomized Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ sorting algorithm of Han and Thorup [20]

together with Thorup’s reduction from SSSP to sorting [27] imply that we can now solve SSSP in

Oðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time. This leaves as a natural challenge, the problem of solving SSSP in

Oðm þ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time. However, from the stand point of deterministic algorithms, we

note that since Dijkstra’s SSSP algorithm [12] sorts the nodes in order of increasing distance from
the source, our deterministic Oðm þ n log log nÞ time Dijkstra implementation cannot be
improved without improving the current best Oðn log log nÞ time bound of Han [19] for
deterministic sorting.

1.3. Techniques

Our new data structure for priority queues with dec-key in constant time combines Andersson’s
exponential search trees [3] with the recent priority queues of Thorup [28]. The fundamental new
idea is to shift keys between levels in a search tree so as to support dec-key in constant time.
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1.4. Contents

First we present a simpler amortized version of the priority queue from Theorem 1. This
conveys most of the new ideas, and the amortization is not a problem for the application inside
Dijkstra’s single source shortest path algorithm. In particular, our amortized version of Theorem
1 implies Corollary 2. Next we present a worst-case priority queue as claimed in Theorem 1.

Finally, we present a monotone implementation using only AC0 operations.

2. Preliminaries

In this section, we describe some basic terminology and results to be used in the rest of the
paper.
When we say list, we think of a doubly linked list, that is, with predecessor and successor

pointers between the elements. Also, we have direct access to the first and the last element, called
the head and the tail, respectively. Thus, in constant time, we can insert and delete elements and
concatenate and split lists. If the elements are ordered, we call it a sorted list. If we do not care at
all about the ordering, we call it a bucket.
In 1990, Ahuja et al. [1, Section 2] showed that for integers in the range ½0;NÞ; Fibonacci heaps

can be implemented with deletes in OðlogNÞ time, improving over the original Oðlog nÞ time if
N ¼ noð1Þ: The lemma below presents a completely general such reduction that works for any
priority queue.

Lemma 3. Let tðn;NÞ be the delete time for a priority queue for up to n integers in the range ½0;NÞ
supporting insert and dec-key in constant time. Then tðn;NÞptðN;NÞ: This holds whether t is
amortized or worst-case.

Proof. If NXn; there is nothing to prove, so we assume Non: First we consider the simpler case
of a monotone (non-decreasing minimum) priority queue with amortized bounds. If we end up
with more than N keys, we make an array, mapping key values into buckets of keys with that
value. We can then find the right bucket for a key in constant time, thus implementing the updates
themselves in constant time. We also need to maintain the minimum value m: Since the priority
queue is monotone, the minimum can only change when the last key with minimum value m is
deleted, and then we just step up m till we reach a value with a non-empty bucket of keys. In total,
we only step m up Non times, so the cost per key is constant.
We will now avoid the assumption of monotonicity. If we end up with N keys in our priority

queue, we make a bucket sort in OðNÞ time, producing a sorted list of key values, each with an
associated bucket of keys with that value. The priority queue itself is thereby emptied. From now,
we need to operate both on a priority queue, and on the sorted list. We need to check both for the
minimum. New keys are inserted in the priority queue. A key is deleted from wherever it resides. If
a key in the priority queue is decreased, it is done within the priority queue. If a key in the list is
decreased, it is removed from the list and inserted in the priority queue, all in constant time. Now,
if the priority queue gets full again with N keys, and we already have a list, we just produce a new
list in OðNÞ time, and then merge the new list with the old list in OðNÞ time. This includes uniting
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buckets for the same key value so that the final list has only one bucket for each key value. Thus it
only takes OðNÞ time to empty the priority queue into the list, which is constant time per key
transferred.
Finally, we observe that the above is easy to de-amortize. We just start emptying the priority queue

when it gets up to 0:75N keys, and complete the emptying over the next 0:25N operations. &

Finally, we will need the concept of splitting: by splitting an ordered set X over k splitters
y1oy2o?oyk; we mean that we partition X into sets X0;X1;y;Xk such that for i ¼ 1;y; k;
maxXi�1oyipminXi: We note that if X consists of a singleton element x; then this is the
standard search problem of finding the maximal i such that yipx: We shall use the following
lemma of Han and Thorup [20]:

Lemma 4. For any constant e40; we can split n integer keys over n1�e splitters in linear time and
space.

3. A simpler amortized priority queue

In this section, we describe a simpler amortized version of the priority queue of Theorem 1. It is
convenient to have all keys distinct and finite, leaving the value N for special purposes. For a
linear space construction like ours, the uniqueness can be achieved by augmenting each key with
its address of log n þ Oð1Þ bits. Keys are still contained in a constant number of words, so this will
not affect our asymptotic bounds.
We will now turn to our construction, which is illustrated in Fig. 1. We will maintain a list of

Oðlog log nÞ level splitters s0; s1;y; sc; s0 ¼ 0; so that the number of keys in the interval Ii ¼
½si; siþ1Þ is in the order of ni ¼ Að5=4Þi

keys. Here A ¼ Yðlog nÞ and scþ1 ¼ N; and we allow fewer
keys in ½sc;NÞ:We think here of A ¼ n0 ¼ Yðlog nÞ as fixed. We shall return to the fixedness of A
in the very end of this section.

The keys in interval Ii are said to be on level i: These keys are split into Yðn1=3i Þ local sets

Xi0;y:;Xik; each with Yðn2=3i Þ keys. For comparison, the number of keys in interval Ii�1 is

Yðn4=5i Þ: If there is only one local set on the last level c; it is allowed Oðn2=3c Þ keys. Between the

local sets, we have local splitters si1;y; sik such that for j ¼ 1;y; k;maxXið j�1Þosijpmin Xij: It is

convenient to define si0 ¼ si and siðkþ1Þ ¼ siþ1: Then XijD½sij; sið jþ1ÞÞ for j ¼ 0;y; k: Finally, each

level i has an associated buffer Bi of Oðn1=2i Þ update keys, that is keys to be inserted or deleted,

with values in Ii:
Above, the indices are used abstractly for clarity of exposition, not to indicate direct physical

access using the indices. In our implementation, the level splitters are stored in a sorted list
ðs0; s1;y; sqÞ; q ¼ Oðlog log nÞ: With each level splitter si; we store the number of keys at that

level. Also, si is head of a sorted list of local splitters, si0;y; sik: Together with each sij we store a

bucket with the local set Xij as well as the size of Xij:With such a representation, given a pointer to

a local set Xij; we can, for example, join Xij with its successor set Xið jþ1Þ in constant time, setting

Xij ¼ Xij,Xið jþ1Þ; and deleting sið jþ1Þ from the local splitter list.
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As a special case, the first local set X00 on level 0 is stored both as a bucket and in a Fibonacci

heap [15]. Since this local set is of size Oððlog nÞ2=3Þ; it supports deletes in Oðlog log nÞ amortized
time. We call X00 the min-set and the Fibonacci heap the min-priority queue. The local splitter s01
between the min-set and the next local set X01 is called the min-splitter. The level 0 buffer B0 does
not contain any keys below the min-splitter, so the global minimum is always found by querying
the min-priority queue.
Finally, we have Fredman and Willard’s atomic heap from [17] over the Oðlog log nÞ level

splitters. Then, given a key value x; in constant time, we can find its level i with xAIi ¼ ½si; siþ1Þ:
Also, in constant amortized time, we can change the value of a level splitter, or add or delete a last
level splitter skþ1: We call this atomic heap the directory. As will be detailed in Section 5.1, it is

possible to avoid the use of atomic heaps in a pure AC0 construction.

3.1. The basic workings

We will now sketch the workings of our priority queue construction. First, on each level, the
buffer size is designed so that it, when full, can be emptied over local set in constant time per
update key using Lemma 4. Since the directory identifies the level in constant time, this essentially
means that we can place keys in the data structure in constant time per key. The real cost
of our data structure has to do with restructuring when the sizes of local sets or levels get
out of wack. Redistributing keys between local sets is essentially standard, and is described in
Section 3.2.
The interesting new stuff is the redistribution of keys between levels, as illustrated in Fig. 2. If a

key is deleted from level i; for levels j ¼ i; i þ 1;y; we want to shift in a key from level j þ 1:
Clearly this would preserve the sizes of the levels. However, to do the shifts in amortized constant
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time, we shift in a whole local level j þ 1 set to level j at the time. With Oðlog log nÞ levels, we pay
Oðlog log nÞ amortized time for the shifting in connection with a delete. This also includes the
delete from the min-priority queue if i ¼ 0:
The most interesting thing is that we can decrease a key in constant amortized time. When a key

is decreased from level k to level i; for j ¼ i;y; k � 1; we want to shift out a key from level j to
level j þ 1: This requires Oðlog log nÞ shifts, but the point is that a shift out takes much less than
constant time on the average. Shifting out from level j is done by joining enough of the last local
level j sets so that they qualify as a local level j þ 1 set. We then shift that whole set out to level
j þ 1: This only takes constant time per local level j set as the union is a simple concatenation of

lists. Since local level j sets have size Yðn2=3j Þ; the shift out cost per key is Oð1=n
2=3
j Þ; and summing

over the levels, the decrease cost is
Pk

j¼i Oð1=n
2=3
j Þ ¼ Oð1Þ: We note that an insert can be viewed

as a decrease of an infinite key, and it is implemented as the decrease above, but with k the
maximal current level. Hence insert takes constant time like decrease.
In the real shifting of keys between levels, we also have to worry about shifting update keys in

buffers, but this does not affect the overall bounds. The details of the shifting are described in
Section 3.3.
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3.2. Distributing keys in local sets

We will now describe how to insert and delete keys from level i in constant time per key. This

includes keeping the local sets of sizes between ð0:5� oð1ÞÞn2=3i and ð2:0þ oð1ÞÞn2=3i : In this part,

we ignore that the levels themselves may get too many or too few keys.
When keys are inserted or deleted, the directory first finds their level i; and they are then placed

as update keys in the buffer Bi: Every time the buffer size reaches n
1=2
i ; using Lemma 4, we split it

over the Oðn1=3i Þ local splitters in constant time per update key. For each update key, we now

know its local set. We can then insert or delete the key from the local set and update the set
counter, both in constant time.
With deletes, it may seem that we could bypass the buffers, and just deleted the key from

whatever local set it was in. However, we need to know which local set we delete from in order to
update the counter of the local set.
Each time we have emptied the buffer and updated the local sets, we check the counters of all

the affected local sets. If a local subset has more than 2n
2=3
i keys, we split it in two. Since only n

1=2
i

buffer keys are placed at the time, the local subset being split has ð2þ oð1ÞÞn2=3i keys. In Oðn2=3i Þ
time, we identify and split the subset over a median, which is made a new local splitter. The

resulting local subsets have ð1þ oð1ÞÞn2=3i keys. Similarly, if a subset has below 0:5n
2=3
i keys, we

join it with a neighbor, getting between n
2=3
i � oð1Þ and 2:5n

2=3
i keys, and split that in two if it is of

size bigger than 1:5n
2=3
i : We continue this way until each local set has size between 0:5n

2=3
i and

2n
2=3
i :
To analyze the above, we note that whether a local subset is created from a join or a split, its

start size is between 0:75n
2=3
i and 1:5n

2=3
i : This means that it takes at least 0:25n

2=3
i new updates to

the local subset before it initiates a new join or a split as above. Since join and split take Oðn2=3i Þ
time, they are done in constant time per update.
As an exception to the above is if an update is to the min-set on level 0; that is, if the value is

below the min-splitter s01: In this case, we bypass B0 and update the min-set directly. If the min-set
gets too many or too few keys, we make a split or join with its neighbor X02 as described above. In
case of a join, we get a new bigger min-splitter s001 ¼ s02; and we have to scan the buffer B0 for keys

below s001 and place them in the new min-set X 0
01: Finally, we construct a new min-priority queue,

inserting each key from the new min-set in constant time. Even with the above extra work,

splitting or joining the min-set takes Oðn2=30 Þ time, just like any other local split or join on level 0:

Hence the cost is constant per update to the min-set.

3.3. Redistributing keys between levels

Over time, we may get too many or too few keys in some of the levels. If level i gets more than ni

keys, we shift out some of the bigger keys to level i þ 1: As a special case, if level i is the last level,
we first have to create a new last level splitter siþ1 whose initial value is N:
Conversely, if level i is not last and gets less than ni=2 keys, we shift in some keys from level

i þ 1: If level i þ 1 is the last level, and we empty this level, we remove the level splitter siþ1:
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As sketched in Section 3.1, it is much faster shifting out than shifting in, and this asymmetry is
the key to our constant time decrease-key operation.

Shift out First we empty the level i buffer Bi; in time Oðn1=2i Þ: Next, we collect local sets of Ii

starting from the tail, that is, with the larger keys, until we have enough keys for a local level i þ 1

set S: More precisely, we stop collecting local level i sets when we have Xn
2=3
iþ1 ¼ n

5=6
i keys. The

local level i sets each have size Yðn2=3i Þ; so S gets n
5=6
i þ Oðn2=3i Þ ¼ ð1þ oð1ÞÞn2=3iþ1 keys. This size is

fine with our accounting from Section 3.2 which assumed start sizes anywhere between 0:75n
2=3
i

and 1:5n
2=3
i : The local sets are joined in constant time per set, so they are all found and collected in

Oðn5=6i =n
2=3
i Þ ¼ Oðn1=6i Þ time. Finally, the local splitter in front of the collected local sets is made

the new splitter si whereas old splitter si is used as the local splitter after the new local level i þ 1

set S: The total time for shifting out is Oðn1=2i þ n
1=6
i Þ ¼ Oðn1=2i Þ:

We note here that the min-set cannot be shifted out this way, for we only shift out a small
fraction of the last local sets of a level, but the min-set is the first local set on level 0: More

precisely, for i ¼ 0; out of the Yðn0Þ keys on level 0; the set S shifted out contains Yðn5=60 Þ largest
keys whereas the min-set contains Yðn2=30 Þ smallest keys. Since n0 ¼ oð1Þ; it follows that the two
sets are well separated. Consequently, when joining sets for S; we do not need to worry about the
min-priority queue.

Shift in First we empty the level i þ 1 buffer Biþ1; in time Oðn1=2iþ1Þ ¼ Oðn5=8i Þ: Next we take the
first local level i set and insert its contents in level i; via the level i buffer Bi as described in Section

3.2 at constant cost per key. Since there are Oðn2=3iþ1Þ ¼ Oðn5=6i Þ keys, the total time for shifting in
is Oðn5=6i Þ:

3.3.1. Analysis

First we consider how keys get distributed between levels in connection with an update. Before
the update each level i has between ni=2 and ni keys, except that the last level c may have fewer
keys. The update itself can change these numbers by one, but that may start a cascade of shifts
between levels. We will show that our data structure behaves nicely as long as no level performs
more than one shift. In particular, we will show that no level can initiate a second shift.
A first important implication of each level having done at most one shift is that only the last

level may run out of keys for the shifts. More precisely, consider any level ioc: With one shift on

each level, we may lose Oðn2=3i Þ keys to level i � 1 and Oðn5=6i Þ keys to level i þ 1: We had at least

ni=2 keys on level i before the update, so ni=2� Oðn5=6i Þ40 keys remain. Concerning level c; it
cannot shift in as long as it is the last level, so if it makes a shift, it is a shift out. If level c shifts
out, creating level cþ 1; it is because it has more than nc keys, and then it cannot be emptied by a
shift in on level c� 1: If level c does not shift out, it may run out of keys due to a shift in on level
c� 1; but that just implies that c� 1 becomes the new last level.
We now want to show that no level i can be first to initiate a second shift. Suppose the first shift

on level i was a shift out. The reason for the shift out was that level i had more than ni keys. On

the other hand, level i had at most ni keys before the update. In the shift out, level i loses Yðn5=6i Þ

ARTICLE IN PRESS

M. Thorup / Journal of Computer and System Sciences 69 (2004) 330–353 339



keys to level i þ 1: It may also exchange Oðn2=3i Þ keys with level i � 1: Nevertheless, as long as no

level performs more than one shift, after its shift out, level i will have ni �Yðn5=6i Þ7Yðn2=3i Þ ¼
ni �Yðn5=6i Þ keys. Since this is between ni=2 and ni; we conclude that level i cannot be the first to

initiate a second shift.
Now suppose the first shift on level i was a shift in. Since the last level does not shift in, this

implies that i was not the last level, hence that it had at least ni=2 keys before the update. On the
other hand, the reason for the shift in was that level i had less than ni=2 keys. Normally level i will

shift in Yðn5=6i Þ keys from level i þ 1: Including an exchange of Oðn2=3i Þ keys with level i � 1; level i

will then have ni=2þYðn5=6i Þ7Yðn2=3i Þ ¼ ni=2þYðn5=6i Þ keys, preventing it from initiating a

second shift. We note that level i may shift in less keys if it empties level i þ 1 as the last level. In
that case, level i may end up with fewer keys, but then it is the last level, so it cannot shift in again.
Since it needs ni keys to shift out, it cannot be first to initiate a second shift.
Thus, we conclude that no level performs more than one shift, hence that all the analysis above

is valid. In particular this implies that the redistribution between levels terminates after an update,
leaving level i with between ni=2 and ni keys for the next update.
Amortization In general, each shift on level i will be amortized over updates done since that of

the last activity on level i: Here an activity on level i is either a shift or the creation of level i as a
new last level. Logically, it could also be the destruction of level i; but obviously, when we
consider a shift on level i; the last activity on level i cannot be its destruction.
Shift out First, we consider a shift out on level i: We want to argue that there has been at least

Yðn5=6i Þ keys inserted or decreased below siþ1 since the last activity. To this end, we first bound the
number of keys below siþ1 just after the last activity.

If the last activity was the creation of level i; it left us with Yðn2=3i Þ keys on level i: Also, our

previous analysis shows that a shift in would have left us with ni=2þ Oðn5=6i Þ keys and that a shift
out would have left us with ni �Yðn5=6i Þ keys on level i: Moreover, we had at most

Pi�1
j¼0 nj ¼

Oðn4=5i Þ keys smaller than si: Hence, after the last activity, we had at most ni �Yðn5=6i Þ keys

smaller than siþ1:
To make a new shift out on level i; we need at least ni keys on level i; hence at least that many

keys smaller than siþ1: Thus, there must be at least ni � ðni �Yðn5=6i ÞÞ ¼ Yðn5=6i Þ new keys smaller

than siþ1; and each of these is either due to an insert or dec-key operation. Including the time to

empty buffer Bi; the shift out takes Oðn1=2i Þ time. Hence the cost at level i associated with each of

the new insert or dec-key operations is Oðn1=2i =n
5=6
i Þ ¼ Oðn�1=3

i Þ: Summing over all levels, the cost
of shifting out is Oð

POðlog log nÞ
i¼0 n

�1=3
i Þ ¼ Oð1Þ per insert or dec-key:

Shift in We now consider a shift in on level i: The analysis is very similar to that for shift out.
The last activity cannot be a creation of level i as the last level, for then, to shift in, we first need a
shift out to create a level i þ 1: Thus the last activity was a shift. If the last shift was a shift out, it

leaves us with ni �Yðn5=6i Þ keys on level i: If it was a shift in, since it did not empty level i þ 1; it

leaves us with 0:5ni þYðn5=6i Þ keys on level i: Thus we have at least 0:5ni þYðn5=6i Þ keys on level i

after the last activity. Also, to make a new shift in, including the keys smaller than si; we have at
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most 0:5ni þ Oðn4=5i Þ keys smaller than siþ1: Consequently, we have lost at least 0:5ni þYðn5=6i Þ �
ð0:5ni þ Oðn4=5i ÞÞ ¼ Yðn5=6i Þ keys smaller than siþ1; and this loss is all due to deletes. Since the shift

in takes Oðn5=6i Þ time, the level i cost associated with each of these delete operations is constant.

Summing over all Oðlog log nÞ levels, the cost of shifting out is Oð
POðlog log nÞ

i¼0 1Þ ¼ Oðlog log nÞ per
delete operation. This cost also includes a deletion from the min-priority queue if the key is in the
min-set.
In fact, we can tighten the last analysis a bit based on the rank q of a deleted key x: Here the

rank is the number of keys that are smaller than q:We note that deleting a key only costs on level i
if the key is smaller than siþ1: However, we know that siþ1 has rank YðniÞ except if i is the last

level. Moreover, niþ1 ¼ n
5=4
i : Hence, the number of levels i with siþ14x is Oð1þ log log n

log q
Þ;

bounding the shift out cost for deleting x:We note that this cost also includes an Oðlog log nÞ time
deletion from the min-priority queue if the key is in the min-set, for if x is in the min-set, we have

q ¼ Oðlog nÞ; and then ð1þ log log n
log q

Þ ¼ Yðlog log nÞ: The interesting point in the Oð1þ log log n
log q

Þ
bound is that we pay less deleting keys of higher rank. In particular, we pay constant amortized

time for keys of rank nOð1Þ:

3.3.2. The size of the min-set
Finally, we make some remarks concerning out choice of A ¼ n0 ¼ Yðlog nÞ: We said that we

would think of A as fixed, but what happens if n varies? One standard solution is a complete linear
time rebuilding of the priority queue every time n changes by a factor 2: However, the only reason
that we picked A as growing with n is that we wanted it to be non-constant for simple asymptotic

calculations like Oðn5=6i Þoni: However, with exact calculations, all these inequalities are satisfied

for some sufficiently large constant A; and we can therefore just use this fixed constant value for
A: Theoretically, this means that we could just use an unsorted list for the min-priority queue, but
from a practical perspective this would be provokingly bad.
Concluding our amortized construction, we have shown:

Theorem 5. We can implement a priority queue that with capacity for n integer keys in the range

½0;NÞ in linear space supporting find-min; insert, and dec-key in constant amortized time, and delete

in Oð1þ log log n
log q

Þ ¼ Oðlog log nÞ amortized time.

Together with Lemma 3 this gives us an amortized version of Theorem 1. Also, plugged into
Dijkstra’s algorithm, Theorem 5 and Lemma 3 give us the single source shortest paths results in
Corollary 2.

4. The worst-case efficient priority queue

In this section, we will show how to de-amortize the construction from the previous section, so
as to get worst-case bounds of Theorem 1. A first simple change is to implement the min-priority
queue with a relaxed heap [13] instead of a Fibonacci heaps [15] so as to get worst-case times for
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the min-priority queue. Similarly, we get worst-case time for the directory using the q-heap from
[17] instead of the atomic heap from [17].
Our fundamental problem for worst-case bounds is that we cannot take the priority queue

down for repair so as to redistribute keys between local sets and levels. All this has to happen as
back-ground processes while supporting find-min; insert, and dec-key in constant time and delete

in Oðlog log nÞ time.

4.1. Distributing between local sets

For each level i; we want a system so that update keys can be injected in constant time. The

local sets will be kept at sizes between n
2=3
i =4 and n

2=3
i : Also, we will have a maximum of n

1=2
i

update keys outside the local sets in the buffer Bi:

The buffer Bi is divided into two chambers, B0
i and B1

i ; each with up to n
1=2
i =2 update keys. The

buffer system works in rounds of n
1=2
i =2 buffer steps, each taking constant time. When a round

begins, B0
i is empty while B1

i has up to n
1=2
i =2 update keys. During a round, we accept new update

keys in B0
i ; at most one for each buffer step. Meanwhile, we scan the list of Yðn1=3Þ local splitters,

split the update keys from B1
i over the scanned splitters, and update the local sets with the update

keys from B1
i : As we shall discuss below, the whole emptying of B1

i into the local sets take Oðn1=2i Þ
time, so this can be done in constant time per buffer step. At the end of the round, B0

i has at most

n
1=2
i =2 update keys while B1

i is empty, so to get ready for the next round, we simply swap the two.

We now need to argue that the emptying of B1
i into the local sets takes Oðn1=2i Þ time. The

scanning of local splitters only takes Oðn1=3i Þ time. Also, since jB1
i jon

1=2
i ; by Lemma 4, we can split

B1
i over the scanned local splitters in Oðn1=2i Þ time. The scanning and splitting is distributed over

the first half of the buffer round, that is over n
1=2
i =4 constant time buffer steps. We now want to

place two update keys in each of the remaining n
1=2
i =4 buffer steps. Having done the splitting, this

would be trivial if the local splitters did not change. However, the splitting only distributes the
buffer keys on the scanned local splitters, and meanwhile, the local splitter list may have changed.
We want to show how in constant time, we can place each update key from a scanned local

splitter in a current local set while keeping the sizes of the local sets in balance. For this we will use
a general balancing schedule from [5, Section 3.2]. The schedule tells us when we should start
joining and splitting local sets. The joins and splits are processes that are implemented over
multiple updates to the priority queue. During such a process, the involved local sets cannot
participate in any other join or split processes.
Each time we place an update to a local set, if there is a join or split process involving the local

set or one of its neighbors, we will spend constant time on a balance step in that process. We note
here that each buffer step can place two update keys, hence perform two balance steps.

Setting b ¼ n
2=3
i =60; D ¼ 1; and m ¼ 15 in Proposition 15 from [5], we get b ¼ n

3=2
i =60 balance

steps to complete each process while maintaining local set sizes between mb ¼ n
2=3
i =4 and

ð3mþ Dþ 14Þb ¼ n
2=3
i :
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Now, consider a join of two neighboring local sets X and X 0: Let s and s0 be the local splitters in
front of them, hence with s0 between X and X 0: The join, setting X ¼ X,X 0; removes s0 from the
local splitter list. This takes constant time. However, s0 may not be out of the picture yet, for the

current buffer round may already have scanned s0: Then, when it splits B1
i over its scanned local

splitters, some update keys may arrive s0: So far, these are just forwarded to s in constant time.
We need, however, to argue that a current buffer round involving s0 will terminate before the

current join process, hence that no updates will arrive at s0 after the join is finished. As stated

earlier, we have n
2=3
i =60 balance steps to complete a join process, and each balance step is caused

by an update key to a nearby local set. Since each buffer round sends at most n
1=2
i =2 update keys

to the local sets, there must be many buffer rounds during the current join process.

More precisely, we will have at least Iðn2=3i =60Þ=ðn1=2i =2Þm ¼ Oðn1=6i Þ ¼ oð1Þ buffer rounds

during the current join process. Thus we conclude that the current buffer rounds terminates
before the current join process, hence that s0 can be removed completely when the join process
finishes.
For a split of a local set X ; we first find a median s0 to split X :While finding the median, we put

new update keys to X aside. The median is found in Oðn2=3i Þ time, and we divide this over the first
half of the n

2=3
i =60 balance steps, spending constant time in each of these n

2=3
i =120 balance steps, as

required. Now, s0 is added to the local splitter list, to be included in subsequent scans. During the

remaining n
2=3
i =120 balance steps, we take all keys in X and all update keys to X ; including those

we put aside, and split them over s0 into X and X 0: This is at most n
2=3
i þ n

2=3
i =60 keys and update

keys, so the splitting over s0 can be done in constant time per balance step. Of importance for the
scheduling from [5, Proposition 15], we note that the difference in size between X and X 0 is due to

update keys, hence of size at most n
2=3
i =60 ¼ Db (actually, it could be 1=2 more if X was of odd

size initial size, but, technically, we can always apply the first update before finding the median).

As for joins, we have many buffer rounds during the last n
2=3
i =120 balance steps, and after the first

one is finished, we will start receiving update keys at s0 for X 0: The split is thus reflected in the
buffer scans before the end of the split process.
Summing up, the above is a buffer system that allows us support updates to level i in constant

time while maintaining the sizes of the local sets between n
2=3
i =4 and n

2=3
i : Each update was

implemented via a constant time buffer step, but we note that buffer steps can also be performed
without an update. We know that any key currently in the buffer will be in the local sets by the

end of the next buffer round, hence after at most n
1=2
i buffer steps.

Finally, the scheduling from [5, Proposition 15] imposes some restrictions for the shifting
between levels. When a local set created from level i � 1 arrives the head of level i; it should be of

size between ðmþ 3Þb ¼ 3
10

n
2=3
i and ð2mþ Dþ 9Þb ¼ 2

3
n
2=3
i : Also, when we want to collect local sets

to be shifted in or out, we cannot pick out arbitrary local sets. For example, we cannot pick out a
local set in a join or split process. The schedule from [5, Proposition 15] combines local sets in
uncuttable segments, each with a constant number of local sets, and with a total of between

ðmþ 3Þb ¼ 3
10

n
2=3
i and ð5mþ Dþ 19Þb ¼ 19

12
n
2=3
i keys. The first or last uncuttable segment on level i

can be identified and extracted in constant time.
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4.2. Redistributing keys between levels

We are now going to describe how keys are shifted between level. The general, a shift process
start by identifying the set S to be shifted with surrounding splitters. Then we perform buffer steps
so as to flush buffers for updates to S: Finally, in constant time, we shift the set to the other level.
The shifting on each level will be divided into constant time shift steps. Every time we get an

update to the priority queue, we do a shift step on some level, in a round-robin fashion: we have a
level counter j; perform a shift step on level j; and increment j; or set j to 0 if j is the maximal level.
Also, every time we delete a key below siþ1; we do a shift step on level i: For example, a delete
below s1 causes a shift step on all levels.
When a shift step is performed on a level i; it goes to any current shift process on level i: If level i

is not currently shifting, we check the number of keys. If it is above ni; we start shifting out. If i is
not the last level and the number is below 0:5ni; we start shifting in.

To describe the shifting, we will use auxiliary variables s�i and sþi with s�i psipsþi : When

shifting in or out on level i; the affected keys will be between s�iþ1 and sþiþ1: When done, we will

have s�iþ1 ¼ siþ1 ¼ sþiþ1:We will show that sþi {s�iþ1; hence that the shiftings on levels i � 1 and i do

interfere with each other.

4.2.1. Shifting out

Shifting keys out from level i to level i þ 1 is done as follows. First we collect uncuttable

segments of local sets, starting from the tail, until we pass 0:5n
2=3
iþ1 ¼ 0:5n

5=6
i keys. More precisely,

in the first shift step, we set Sout
i ¼ | and s�iþ1 ¼ siþ1: In each subsequent shift step, we take the last

uncuttable segment U ; which is before s�i ; and join it to Sout
i ; setting s�iþ1 to be the local splitter

before U : Recall here U consists of a constant number of local sets. Even if some of these are part

of join and split processes, we can halt these processes and join them with Sout
i in constant time.

We stop the expansion of Sout
i when it has 0:5n

5=6
i or more keys. This fixes s�iþ1: Throughout the

shift-out process, all new updates to level i and all updates coming out of Bi are compared with

s�iþ1; and if not smaller, transferred to Sout
i :

When the expansion of Sout
i is completed, we perform a buffer step on Bi in each of the

subsequent n
1=2
i shift steps. This flushes Bi for all updates to Sout

i : The priority queue contains no
more updates in ½s�iþ1; siþ1Þ:
In a last shift step of the shift out, we set ðsiþ1; sðiþ1Þ1Þ ¼ ðs�iþ1; siþ1Þ; that is, we replace siþ1 with

s�iþ1 in the level splitter list and turn the old siþ1 into the first local level i þ 1 splitter. Now, Sout
i is

the local level i þ 1 set between siþ1 and sðiþ1Þ1: We also set sþiþ1 ¼ siþ1: We note that if i was the

last level, the above creates level i þ 1 with a single local set Sout
i :We then set s�iþ2; s�iþ2; and sþiþ2 to

N: This completes the last shift step in the shift out process.

4.2.2. Shifting in

The shift-in process on level i goes as follows. In the first shift step, we pick Sin
i as the join

of the local sets in the first uncuttable segment on level i þ 1; and let sþiþ1 be the subsequent local

splitter.
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From now on, all new updates to level i þ 1 and all updates coming out of Biþ1 are compared

with sþiþ1; and if smaller, transferred to Sin
i : We note that if we are currently shifting out on level

i þ 1; the same updates are also compared with s�iþ2; but the overhead of these comparisons and

possible transfers remains constant per buffer step and new update. In this cases both levels may
work on flushing Biþ1; but this can only speed up the flushing.

During each of the subsequent n
1=2
iþ1 ¼ n

5=8
i shift steps on level i; we perform a buffer step on level

i þ 1; thus flushing Biþ1 for updates to Sin
i : Now Sin

i is completely updated with all keys in

½siþ1; sþiþ1Þ: In the next shift step, we set siþ1 ¼ sþiþ1 in constant time. The set Sin
i is put on the side

on level i: If level i þ 1 was the last level, level i is the new last level.

The set Sin
i is now viewed as a kind of extra buffer on level i but which only has keys in

½s�iþ1; siþ1Þ: Physically, Sin
i is just a list. When a new update key x arrives level i; it is compared with

s�iþ1: If x is smaller, it is put directly in Bi: If xXs�iþ1; we put it last in Sin
i and put the first key from

Sin
i in Bi:Moreover, for each shift step on level i; we take the two first keys from Sin

i and put them

in Bi; performing two buffer steps on Bi: When Sin
i is empty, we finish the shift in process setting

s�iþ1 ¼ siþ1:

A few remarks are in place to appreciate the above design. At the moment we start emptying

Sin
i ; it contains all keys and updates in ½s�iþ1; siþ1Þ: As Sin

i gets emptied via Bi; we will get local sets

with keys from ½s�iþ1; siþ1Þ: The reason why new updates in ½s�iþ1; siþ1Þ are put behind the keys in Sin
i

is that if they are deletes of keys in Sin
i ; we need to make sure that they arrive the local sets after

the keys they are supposed to delete.

4.3. Correctness

To argue correctness of the above system of shifts, we will prove a number of invariants for all i:

(i) At any time, the number of keys below any of s�iþ1; siþ1; s
þ
iþ1 is YðniÞ; or lower if the splitter is

last and infinite.
(ii) When level i finishes a shift process, the number of keys below siþ1 is between 0:5ni þYðn5=6i Þ

and ni �Yðn5=6i Þ; or anywhere below ni �Yðn5=6i Þ if i becomes the last level.

(iii) Between shift processes or from the creation to the first shift, the number of keys below siþ1 is

between 0:5ni þYðn4=5i Þ and ni þYðn4=5i Þ; except that the number may be lower if i is the last

level.
(iv) Splitter siþ1 splits keys on or below level i from those above.
(v) We have multiple uncuttable segments between sþi and s�iþ1 unless i is the last level.

We will prove the invariants in parallel. We assume that the algorithm halts as soon as some
invariant gets violated. Hence, while running, there has been no past violations. Also, when
disproving a first violation of an invariant for level i; we assume that all preceding invariant are
not violated, and that the invariant itself is not violated for smaller values of i:
We start by proving (iv). Since the algorithm carefully flushes buffers before moving siþ1; the

only worry is the situation where we increase siþ1 to sþiþ1 while having a set Sin
iþ1 of level i þ 1 keys
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shifted in from level i þ 2: Since we do not flush Sin
iþ1; it could potentially contain a key below sþiþ1:

However, while Sin
iþ1 is non-empty, it is contained in ½s�iþ2; siþ2Þ: Then s�iþ2pmin Sin

iþ1 is finite so by

(i) we get sþiþ1os�iþ2: Thus increasing siþ1 to sþiþ1 does not violate (iv).

Next we prove (v). From (i) it follows that there are YðniÞ keys in ½sþi ; s�iþ1Þ: By (iv), all buffer
keys in ½si; siþ1Þ have to be in Bi; which has Oðn1=2i Þ keys. Thus we have YðniÞ keys in the local sets
in ½sþi ; s�iþ1Þ: There are Yðn2=3i Þ such keys per uncuttable segments, so there are Yðn1=3i Þ uncuttable
segments in ½sþi ; s�iþ1Þ:
Between shiftsWe are now going to show (iii); namely, that between shift processes or from the

creation to the first shift process, the number of keys below siþ1 is between 0:5ni þYðn4=5i Þ and
ni þYðn4=5i Þ: For now, we assume that i is not the last level. By (ii), we had between 0:5ni þ
Yðn5=6i Þ and ni �Yðn5=6i Þ keys below siþ1; so (iii) is easily satisfied. There are only Oðlog log nÞ
updates till the next shift step on level i; and this is not enough to violate (iii).
Now, if the next shift step does start shifting in or out, it is because the number of keys in

½si; siþ1Þ is between 0:5ni and ni: By (i) on i � 1; there are Yðni�1Þ ¼ Yðn4=5i Þ keys below si:
Including Oðlog log nÞ updates till the next shift, the number of keys below siþ1 remains between

0:5ni þYðn4=5i Þ and ni þYðn4=5i Þ: This completes the proof of (iii) if i is not the last level. If i the

last level, we note that it is created by a shift out from level i � 1 with Yðn2=3i Þ keys. We can then

apply the proof from when i is not last but ignoring the lower-bounds. This completes the proof of
(iii).

Between shift processes, s�iþ1 ¼ siþ1 ¼ sþiþ1 and then (iii) implies (i). However, since (i) is the first

invariant, we cannot immediately assume any of the other invariants in its proof. For example, we
cannot use (ii) to argue that (i) is satisfied when a shift process finish. However, after that, in the
period till the next shift step, we can assume that (ii) was not previously violated, and then our
argument for (iii) applies to (i). Also, for the period between shift steps, we only used (i) on i � 1
to prove (iii), and this is OK for proving (i) on i: Thus we may conclude that (i) is satisfied from
after a shift process finishes and till the next shift process starts.
Shifting out We will now analyze the numbers of the shift out process assuming that no

invariant get violated. We know we start shifting because we have more than ni keys in ½si; siþ1Þ:
Meanwhile, by (iii), we start with at most ni þYðn4=5i Þ keys below siþ1: Also, we start with

s�iþ1 ¼ siþ1 ¼ sþiþ1:

We will argue that we cannot spend more than 2n
1=6
i shift steps on collecting Sout

i : Since (v)

holds, each shift step successfully collects an uncuttable level i segment with at least 0:3n
2=3
i keys.

In 2n
1=6
i shift steps, we collect 0:6n

5=6
i keys. Meanwhile, we may loose keys due to deletes, either

from the buffer Bi or from new updates. The buffer has at most n
1=2
i updates, and during 2n

1=6
i

shift steps, we have at most Oðn1=6i log log nÞ new updates, so even if all these are deletes from Sout
i ;

it ends up with ð0:6� oð1ÞÞn5=6i keys, contradicting jSout
i jo0:5n

5=6
i : Thus the collection of Sout

i

stops within 2n
1=6
i shift steps. In this period, the number of keys below siþ1 can change by

Oðn1=6i log log nÞ:
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For the collection of Sout
i ; we collect an uncuttable segment of Oðn2=3i Þ keys in each shift step.

Moreover, we have Oðlog log nÞ new updates to Sin
i between shift steps, so the collection ends up

with 0:5n
5=6
i þ Oðn2=3i Þ keys in Sout

i : During and after the collection, we have s�iþ1 in front of Sout
i

and siþ1 ¼ sþiþ1 behind Sout
i : Including the Oðn1=2i Þ potential updates in Bi; the number of keys in

½s�iþ1; siþ1Þ is now 0:5n
5=6
i þ Oðn2=3i Þ7Oðn1=2i Þ:

Subsequently, we flush Bi over at most n
1=2
i shift steps. This gives Oðn1=2i log log nÞ new updates

which may affect any interval. The number of keys in Sout
i is then 0:5n

5=6
i þ

Oðn2=3i Þ7Oðn1=2i log log nÞ: This is within the legal size range of ½ 3
10

n
2=3
iþ1;

19
12

n
2=3
iþ1� for shifting Sout

i

out as a new local set on level i þ 1; setting siþ1 and sþiþ1 to s�iþ1:

Adding up all the numbers, we see that we finish with at most ni þ Oðn4=5i Þ þ Oðn1=6i log log nÞ �
0:5n

5=6
i þ Oðn1=2i Þ þ Oðn1=2i log log nÞ ¼ ni �Yðn5=6i Þ keys below si; satisfying (ii). Also, we see that

throughout the shifting, we have between ni � Oðn5=6i Þ and ni þ Oðn4=5Þ keys below each of s�iþ1;

s�iþ1; and sþiþ1; satisfying (i).

We now check that the above argument for (i) and (ii) is not cyclic. First, it is valid to assume that
(i) and (iii) has not been violated by some action before we start shifting out, and the start of the shift
cannot in itself violate these bounds. In particular, this implies that our initial use of (iii) is valid.
Next, concerning the use of (v), the argument goes as follows. We only used (v) to argue that

there would always be an uncuttable segment to include in Sout
i : To reach a contradiction,

consider the first time at which there is no such uncuttable segment. At this point, there has been
no problems in the past, so our the accounting for (i) is valid. Thus, (i) is true. But then (v) is also

true, contradicting that there is no uncuttable segment to collect for Sout
i :

Shifting in Next we analyze the numbers of the shift in process assuming that no invariant gets
violated. We only start shifting in if level i is not last and has less than 0:5ni keys in ½si; siþ1Þ: By (i)
on i � 1; this means that we have at most 0:5ni þYðni�1Þ ¼ 0:5ni þYðn4=5i Þ keys below siþ1: This

matches the lower-bound in (iii), so we conclude that the number of keys below s�iþ1 ¼ siþ1 ¼ sþiþ1

is 0:5ni þYðn4=5i Þ:
In the first shift step, we let Sin

i be the join of the first uncuttable segment on level i þ 1 and

move sþiþ1 to the other side of Sin
i : For now, we assume that level i þ 1 is not the last level. Then the

uncuttable segment exists by (v) and contains Yðn2=3iþ1Þ ¼ Yðn5=6i Þ keys. Next we flush Biþ1 over

Yðn1=2iþ1Þ ¼ Yðn5=8i Þ shift steps, during which we may have Oðn5=8i log log nÞ new updates. Yet, we

preserve jSin
i j ¼ Yðn2=3iþ1Þ ¼ Yðn5=6i Þ:

In the next shift step, we set siþ1 ¼ sþiþ1; and the set Sin
i D½s�iþ1; siþ1Þ is put aside on level i: Let

t ¼ Yðn5=6i Þ be the current size of Sin
i : We know that Sin

i is emptied within the next t=2 shift steps
on level i: During these, we can have Oðt log log nÞ global updates, and out of these, at most t=2

deletes of keys below siþ1: Consequently, the minimum number of keys below siþ1 ends at 0:5ni þ
Yðn4=5i Þ þ t � Oðn5=8i log log nÞ � t=2 ¼ 0:5ni þYðn5=6i Þ: Similar calculations show that the number

of keys below any of s�iþ1; siþ1; and sþiþ1 remain between 0:5ni þYðn4=5i Þ and 0:5ni þYðn5=6i Þ: Thus
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we have shown the statements of (ii) and (i) assuming that level i þ 1 was not last. If level i þ 1 was

last, it may consist of a single local set with Oðn5=6i Þ: In that case, this whole set gets shifted in,

destroying level i þ 1 and setting s�iþ1 ¼ siþ1 ¼ sþiþ1 ¼ N: In that case, we only get an upper-bound

of 0:5ni þYðn5=6i Þ on the number of keys on level i; but that suffices for (ii) and (i) on the last level.
The argument that our usage of (iii) and (v) is valid is identical to the one used for shifting out.

Thus, we have argued that all our invariants are preserved, hence the correctness of our priority
queue algorithm.
Time bounds To analyze the time bounds, it is immediate that we only spend constant time on

each of find-min; insert, and dec-key: The minimum key is found in constant time from the min-
priority queue, and insert and dec-key only perform a constant number of buffer and shift steps
on two levels.
Concerning deleteðxÞ; we only spend constant time on a shift step on each level i with xpsiþ1:

From (i), we know that there are YðniÞ keys below siþ1: This is the same bound we used in our
amortized analysis, so again we conclude that if x has rank q; the number of levels with xpsiþ1 is
Oð1þ log log n � log log qÞ: This is hence the time we spend on shifting in connection with
deleteðxÞ: This time bound also dominates the Oðlog log nÞ time it takes to delete from the min-
priority queue when xps0 and qpA:
Concerning the fixedness of A ¼ n0 ¼ Yðlog nÞ; we have the same choices as in the amortized

version: we can do complete rebuilding in the back-ground while n changes by a factor 2; or we
can replace A with a large enough constant that our asymptotic calculations go through with
exact numbers. This completes the proof of our worst-case result:

Theorem 6. We can implement a priority queue that with n integer keys in the range ½0;NÞ in linear
space supporting find-min; insert, and dec-key in constant time, and delete in Oð1þ log log n �
log log qÞ time for a key of rank q:

Theorem 6 and Lemma 3 together establish Theorem 1, which is the main result of this paper.

5. An AC0 priority queue

In this section, we will develop an efficient priority queue where only standard AC0 functions
are supported on words. This includes functions like addition, shifts, and bit-wise Boolean
operations but excludes multiplication. The two places where we currently use multiplication is in
the atomic priority queues of Fredman and Willard [17] and in the linear time splitting of Han and
Thorup [20].
First, we will show how to bypass the atomic heap. Next we point to a classic monotone priority

queue construction using a non-monotone priority queue for short keys. Finally, we construct an

AC0 priority queue that works efficiently for these shorter keys.

5.1. Avoiding the atomic heap

Currently, we use an atomic heap in the directory, and Thorup [29] has shown that atomic

heaps cannot be implemented with AC0 operations only. However, in the directory, we can use
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splitting instead of the atomic heap. We will use a buffer system similar to the one currently

devised for each level. More precisely, we are going to divide updates in rounds of Yððlog log nÞ2Þ
updates were we work on keys at three different places. When a new updates is made, if the key is
below s1; it is sent directly to level 0: Otherwise, it is placed in a directory buffer B: At the end of a
round, we switch B with an empty buffer. In a round, we also scan the current list of Oðlog log nÞ
level splitters, and use them to split the keys from the buffer of the last round. The splitting takes
linear time, or constant time per update. The result is a set S of updates that are split between the
scanned level splitters. Finally, in a round, every time a new update is made, we pick an update
key x from the set S split it the last round, and inject it on the appropriate level. If the key x was

on level i according to the scanned level splitters, since rounds only take Yððlog log nÞ2Þ updates,
the key x will be on level i � 1; i; or i þ 1 with the current level splitters. Hence, to find the current
level of x; we just need to compare x with si and siþ1:
To see that the above works correctly, we have to argue that the directory cannot contain the

smallest key in the priority queue. We know that when a key x was placed in the directory, it was
as big as s1; hence that there were Yðlog nÞ keys below x: We know that x leaves the directory
within Oðlog log nÞ updates, and these updates include updates below s1 even though these are not
kept in the directory. Hence we will always have Oðlog n � log log nÞ ¼ Oðlog nÞ keys below x
while x is in the directory.
We have now bypassed the atomic heap of Fredman and Willard. The only place left where we

use multiplication is in the linear time splitting of Han and Thorup.

5.2. Using a priority queue for short keys in a full-word monotone priority queue

Our goal is to construct an efficient monotone priority queue Q; that is, a priority queue where
the minimum is assumed to be non-decreasing. We construct such a monotone priority queue
from a non-monotone priority queue for much shorter keys. The basic idea goes back to Denardo
and Fox [10], and was further developed by Ahuja et al. [1]. Our simple variant of the construction

has the advantage of being implemented in linear space using only AC0 operations.
We view our full-word key x as consisting of q characters, enumerated 0;y; q � 1 and with

character x½0� being the least significant.
Let m be current minimum in the queue. For each key x; we consider a derived key xm whose

value is a pair ði; aÞ where i is the most significant character in which x and m differ and a ¼ x½i�: If
x ¼ m; we set i ¼ 0: Above, we call i the index and a the character of the derived key xm ¼ ði; aÞ The
derived keys are lexicographically ordered. Clearly

xmoym ) xoy:

By monotonicity, if m changes, it increases, and this can only decrease xm: In more detail, let

mpm0px; xm ¼ ði; aÞ; xm0 ¼ ði0; a0Þ: Then
xm0axm3xm0oxm3m0½i� ¼ x½i�3i0oi

Note that we can have at most q decreases to a derived key due to increases in the minimum m; for
each such decrease in the derived value decreases the index.
We will use a priority queue Qm over the derived keys. These derived keys have only c ¼

log q þ W=q bits. The priority queue Qm will not be monotone. We assume that Qm supports insert
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and dec-key in amortized constant time. Finally, it is important that Qm supports an extended
find-min that can list all keys of minimal value in constant time per key listed.
It is an observation of this paper that such a listing of keys of minimal value allow us to bypass

the standard use of buckets for keys with the same value [1,10]. Such a general identification of

keys with the same value would have given us space problems when restricted to AC0 operations
[4].
When a key x is inserted, we insert xm in Qm:When x is decreased, we decrease xm accordingly in

Qm: Each of these operations take constant amortized time.
When a key x is deleted, the derived key xm is deleted from Qm in some amortized worst-case

time t: If x ¼ m; we need to find a new minimum key. First, let xm ¼ ði; aÞ be the new minimum key
in Qm:
If i ¼ 0; then x is a new minimum key in Q:We then set m ¼ x; and note that this does not affect

the derived character of any key.
If i40; we identify the set X of all keys with minimum derived value ði; aÞ: Among these we find

our new smallest key m0: The keys in X are exactly the keys whose derived value decreases with a

smaller index. For each xAX ; we compute xm0 for a decreased value in Qm0 :
The keys in X are found and decreased in constant time per key, and since this only happens q

times per key, we conclude that we spend constant amortized time per dec-key operation, and
Oðq þ tÞ per key.
A general technique of Alstrup et al. [2] allow us to amortize the per key cost over deletes, even

if most keys are not deleted. That is, we get insert in constant amortized time and delete in
Oðq þ tÞ amortized time. Summing up, we have

Proposition 7. Let W be the word-length and q a parameter. Suppose we have a linear space priority

queue for short keys of length q þ W=q supporting insert and dec-key in amortized constant time and

delete in amortized time t; and which further can list all keys of minimum value in constant time per

key listed. We can then construct a linear space monotone priority queue for full-word keys

supporting insert and dec-key in amortized constant time and delete in amortized time Oðq þ tÞ time.

The reduction uses standard AC0 operations only.

5.3. A fast priority queue for short keys

We will now obtain an efficient priority queue for short keys. Han and Thorup [20] have shown

that the splitting of Lemma 4 can be performed in linear time using only standard AC0 operations

if the keys are short with c ¼ OðW=ðlog log nÞ1þeÞ bits. Here e is a positive constant and W is the
word-length of the computer. Since we have already bypassed the atomic heaps, this essentially

gives us an AC0 implementation of our priority queue from Theorem 6. We do, however, note
that our construction assumed that each key is suffixed with a unique Oðlog nÞ bit identifier. If
c ¼ Oðlog nÞ; this does not affect the key length in the splitting. On the other hand, if c ¼
Oðlog nÞ; we can sort the keys and the splitters in linear time using radix sort. Thus we have an

AC0 implementation for short keys of the priority queue from Theorem 6.
Besides the operations supported in Theorem 6, we want to list all keys with minimum value.

Settling for amortized bounds, first we consider the Fibonacci heaps in the min-queue. Referring
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to the presentation of Fibonacci heaps in [9], each key in the heap-ordered trees should maintain
the children with the same value. Also, we maintain a list of all roots with minimum key value.
This list is easily maintained, for if a root is deleted, the logarithmic delete time allows us to scan
all the remaining roots to produce a new minimum root list from scratch. It is now trivial to list all
the minimum keys in the min-heap.
For the remaining keys in our priority queue, first for each local set, we store the members with

the same value as the preceding local splitter. Then, to list the keys of minimum value in all the
local sets, we scan the list of local splitters, stopping when we get to a local splitter of larger value.
Finally, concerning keys in the dictionary and in the level buffers, we note that we only need to
consider the dictionary if most of the Yðlog nÞ keys below the first splitter s1 are minimum, but

then we can afford to scan all the Oððlog log nÞ2Þ keys in the directory. Similarly, we only
need to consider the buffer Biþ1 if most of the level i keys are minimum, and on level i we have

YðniÞ keys, whereas the buffer Biþ1 only has Oðn1=2iþ1Þ ¼ Oðn5=8i Þ keys, all of which we can afford to
scan.
Thus we have

Lemma 8. Using only standard AC0 operations, we can implement a linear space priority queue that

with OðW=ðlog log nÞ1þeÞ-bit keys and log n-bit identifiers in linear space supporting find-min; insert,
and dec-key in constant time, and delete in Oðlog log nÞ: The find-min operation can also list all keys
of minimum key value in linear time.

We now combine Lemma 8 with Proposition 7. In Proposition 7, we set q ¼ ðlog log nÞ1þe: Since

WXlog n; this gives us a short key length of log q þ W=q ¼ OðW=ðlog log nÞ1þeÞ: Then Lemma 8
gives an amortized delete time of Oðlog log nÞ for short keys. Back in Proposition 7, this gives us

an overall amortized delete time of Oððlog log nÞ1þeÞ: Combining this with Lemma 3, we get

Theorem 9. Using only standard AC0 operations, we can implement a monotone priority queue that
with n integer keys in the range ½0;NÞ in linear space supporting find-min; insert, and dec-key in

constant amortized time, and delete in Oððlog log minfn;NgÞ1þeÞ amortized time. In particular, we
can solve the single source shortest path problem for a directed graph with n nodes and m edges with

weights in the range ½0;CÞ in linear space and Oðm þ nðlog log minfn;CgÞ1þeÞ time.

6. Concluding remarks

We have presented a priority queue that maintains the minimum in a dynamic set of integer
keys. Keys can be inserted and decreased in constant time. If the current number of keys is n; a key
can be deleted in Oðlog log nÞ time. If the integers are in the range ½0;NÞ; we can also support
delete in Oðlog logNÞ time. As a classical application, for a directed graph with n nodes and m

edges with non-negative integer weights, we get single source shortest paths in Oðm þ n log log nÞ
time, or Oðm þ n log log CÞ if C is the maximal edge weight. The latter solves an open problem of
Ahuja, Mehlhorn, Orlin, and Tarjan from 1990.
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Our priority queue can be used to sort n integers deterministically: first we insert them all, and
second we extract them in sorted order. This takes Oðn log log nÞ time and linear space, matching
the current best deterministic shorting bound which is due to Han [19]. Improving our delete time
would thus lead to a better deterministic sorting algorithm.

However, Han and Thorup have shown how to sort in Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time, and with

a general reduction from basic priority queues to sorting, Thorup [28] has shown that this implies

a basic priority queue with delete in Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time. Combining the latter with

dec-key in constant time is left as a major open problem.
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