
Discrete Mathematics 307 (2007) 472–483
www.elsevier.com/locate/disc

Recognizing Cartesian products in linear time

Wilfried Imricha, Iztok Peterinb

aChair of Applied Mathematics, Montanuniversität Leoben, A-8700 Leoben, Austria
bFaculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia

Received 12 September 2003; received in revised form 17 February 2005; accepted 26 September 2005
Available online 1 September 2006

Abstract

We present an algorithm that determines the prime factors of connected graphs with respect to the Cartesian product in linear
time and space. This improves a result of Aurenhammer et al. [Cartesian graph factorization at logarithmic cost per edge, Comput.
Complexity 2 (1992) 331–349], who compute the prime factors in O(m log n) time, where m denotes the number of vertices of G
and n the number of edges. Our algorithm is conceptually simpler. It gains its efficiency by the introduction of edge-labellings.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Cartesian product graphs; Linear algorithm; Decomposition

1. Introduction

Cartesian products are common in graph theory. Typical examples are hypercubes, Hamming graphs, and grid
graphs. Hypercubes are powers of K2, Hamming graphs products of complete graphs, and grid graphs products of
paths. These products and their isometric subgraphs have numerous applications in diverse areas, such as Computer
Science, Mathematical Chemistry and Biology.

The Cartesian product also has unique algebraic, structural and metric properties. They were investigated in the 1960s
by Sabidussi [7] and Vizing [8]. One of these properties is the representation of graphs as the Cartesian product of
prime graphs, where a graph is called prime if it cannot be presented as the product of two nontrivial graphs, that is, as
the product of two graphs with at least two vertices. Independently Sabidussi and Vizing showed that every connected
finite graph has a prime factor decomposition with respect to the Cartesian product that is unique up to the order and
isomorphisms of the factors. (For disconnected graphs the factorization is not unique.)

Sabidussi also studied Cartesian products of finite or infinite graphs with infinitely many factors and Vizing the
domination number. A conjecture of Vizing [9] from that time about the domination number of Cartesian products is
still open.1

With the advent of complexity theory in the 1970s the question arose whether one could find the prime factorization
of connected graphs in polynomial time. The first positive answer was given in 1985 by Feigenbaum et al. [4], who
presented an algorithm of complexity O(n4.5), where n denotes the number of vertices of the investigated graph. Their
work extends a method of Sabidussi [7]. Winkler [10] independently found an entirely different algorithm of complexity

E-mail addresses: imrich@unileoben.ac.at (W. Imrich), iztok.peterin@uni-mb.si (I. Peterin).
1 Vizing conjectures that the domination number of the Cartesian product of two graphs is bounded from below by the product of the domination

numbers of the factors.

0012-365X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.09.038

http://www.elsevier.com/locate/disc
mailto:imrich@unileoben.ac.at
mailto:iztok.peterin@uni-mb.si

W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483 473

O(n4) and Feder [3] continued with an algorithm that requires O(mn) time and O(m) space. This was further improved
to O(m log n) time and O(m) space by Aurenhammer et al. [2].

The algorithm presented here is linear in time and space and conceptually simpler. For a given graph G it computes
the partition of the edge set of G that is associated with the prime factor decomposition of G. This edge partition is an
intrinsic, metric property of G. We only have to find it, we do not impose any additional structure on G by decomposing
it into prime factors. No coordinatization of the vertices is needed. In order to prove its correctness, we rely on result
about the structure of Cartesian products as presented in [6].

The idea behind our algorithm is simple: given a connected graph G, select a vertex v0 of minimum degree, list the
edges in BFS order with respect to v0. Assume that every edge incident with v0 is in a different factor. Scan the edges
in BFS order and use this information to determine to which factor the other edges belong. This will be called the
coloring and labelling algorithm. If it fails for an edge, then there are too many factors. Merge them as needed. Then
check whether the conditions for Cartesian products are satisfied. This is the consistency check. If it fails, then there
are too many factors. Merge as required. The algorithm ends when the last edge has been successfully processed.2

The algorithm is linear,3 that is, linear in the size of the input. For a connected graph this is equivalent to saying
it is linear in the number m of edges if the graph is given by its adjacency list. Since every edge has to be processed,
every coloring and labelling operation as well as every consistency check must be effected in constant time. For the
merge operations we observe that there cannot be more factors than the minimum degree d0, hence at most d0 merge
operations are necessary. For each one of them we can use O(n) time, where n is the number of vertices, because
nd0 �2m.

This is only possible with a carefully chosen data structure, which also has to satisfy the additional restriction of
O(m) space.

The paper begins with three fundamental lemmas about the Cartesian product. Each of these lemmas is the basis of
one of the main parts of the algorithm. The Square Lemma is essential for the coloring and labelling algorithms, the
Isomorphism Lemma for the consistency check and the Refinement Lemma for the correctness of the merge operations.

2. Preliminaries

The Cartesian product G�H of the graphs G = (V (G), E(G)) and H = (V (H), E(H)) is a graph with vertex set
V (G) × V (H), where the vertices (a, x) and (b, y) are adjacent if ab ∈ E(G) and x = y, or if a = b and xy ∈ E(H).

The Cartesian product is associative, commutative, and has the one vertex graph K1 as a unit.
By the associativity we can write G1� · · · �Gk for a product G of graphs G1, . . . , Gk and can label the vertices

of G by the set of all k-tuples (v1, v2, . . . , vk), where vi ∈ Gi for 1� i�k. If v is labelled by (v1, v2, . . . , vk) we set
piv = vi and call vi the ith coordinate of v. The mapping pi projects G onto Gi . If we restrict pi to the subgraph
induced by all vertices that differ from a given vertex w only in the ith coordinate, it clearly becomes an isomorphism.
This subgraph is known as the Gi-layer through w and denoted by Gw

i .
As an example, consider the graph G of Fig. 1. Considered as C5�C4 the layers are five- and four-cycles, considered

as C5�K2�K2 the layers are five-cycles and sets of parallel edges.
For the distance dG(u, v) between two vertices u, v ∈ V (G) we have

dG(u, v) =
k∑

i=1

dGi
(piu, piv). (1)

This immediately implies that the layers of a product are convex subgraphs, that is, every shortest path between two
vertices of one and the same Gw

i is already contained in Gw
i .

In the sequel it will be convenient to select a root v0 ∈ G and to identify every Gi with G
v0
i . The layers through v0

are then called unit layers. With this terminology every vertex v ∈ Gi is equal to piv. Moreover, v0 is contained in all
factors Gi , but otherwise the sets V (Gi)\{v0} are mutually disjoint. The reader might like to visualize the unit-layers
of the graph G in Fig. 1 both as a product C5�C4 and C5�K2�K2.

2 See also the short summary of the algorithm at the end of the paper.
3 In Section 3 we also describe a technically much simpler algorithm of complexity O(m2).

474 W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483

Fig. 1. G = C5�K2�K2 = C5�C4.

The preimage p−1
i (v) of any vertex v ∈ Gi is a set of vertices in G that induces a subgraph isomorphic to

G∗
i =

∏
k �=i

Gk .

Any such graph is a G∗
i -layer of Gi�G∗

i .
Furthermore the subgraph induced by p−1

i (u) ∪ p−1
i (v), where uv ∈ E(Gi), is isomorphic to K2�G∗

i . We call it
the tower with base uv. The K2-layers of this product are a matching between p−1

i (u) and p−1
i (v). These matching

edges induce an isomorphism between the subgraphs of G induced by p−1
i (u) and p−1

i (v). We call the set of these
edges the preimage of uv ∈ E(Gi). (The tower with base of v0v in Fig. 1 is easily visualized as K2�C5 for the
representation of G as C5�C4. For the representation of G as C5�K2�K2 the tower is K2 � (C5�K2), that is, the graph
G itself.)

We now define an edge-coloring that reflects the layer structure of G. We first observe that the coordinate vectors4 of
two adjacent vertices u, v differ in exactly one place. Let this place be i. Then uv ∈ Gu

i and we say that uv has color i,
in symbols c(uv) = i. We call this a proper product coloring of G. (The graph G of Fig. 1 admits five proper product
colorings. One with three colors for the representations C5�A�B, where A�B�K2, three with two colors for the
decompositions C5 � (A�B), (C5�A)�B, (C5�B)�A, and one with one and the same color for all edges.)

Every edge is contained in exactly one layer; the edge sets of the layers of G partition the edge-set of G. The edges
of color i in the product G = G1� · · · �Gk form a spanning subgraph of G and every connected component of this
subgraph is a Gi-layer.

The projections pi and the isomorphism properties of the layers of G allow the characterization of Cartesian products,
as we shall illustrate below.

It is easy to see that the restriction of pi to Gw
i is an isomorphism from Gw

i onto Gi . If there is an edge between
two Gi-layers Gu

i and Gv
i we say they are adjacent. Clearly the edges between any two adjacent Gi-layers Gu

i and Gv
i

induce an isomorphism (and a matching) between them. It is (pv
i)−1pu

i , where px
j denotes the restriction of pi to Gx

i .
Suppose e1e2 . . . e� is a path P that connects the Gi-layer Gu

i with Gw
i , and that no ei has color i. Then concatenation

of the isomorphisms induced by the ej yields an isomorphism of Gu
i onto Gw

i . (Note that pi(P) is a single vertex.)
This isomorphism is uniquely determined and is, analogously to the above, just (pw

i)−1pu
i . This is a consequence of

the fact that every maximal connected subgraph of G that contains no edges of color i, where i is arbitrarily chosen,
meets every Gi layer in exactly one vertex. Now the lemma.

Lemma 2.1 (Isomorphism Lemma). Let G = (V , E) be a connected graph and E1, E2, . . . , Ek a partition of E.
Suppose that every connected component of (V , ∪j �=iEj) meets every connected component of (V , Ei) in exactly

4 Recall that the coordinate vectors are just labels of length k that satisfy several properties, see above.

W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483 475

Fig. 2. The square property.

one vertex and that the edge set between any two components of (V , Ei) induces an isomorphism between them if it is
nonempty. Then

G =
∏

Gi ,

where the Gi are arbitrary components of the graphs (V , Ei).

A graph satisfies the isomorphism property if it satisfies the assumptions of the Isomorphism Lemma.
Let two components C and D of (V , Ei) be adjacent. To verify that the edges between adjacent components C and

D of (V , Ei) induce an isomorphism between them it clearly suffices to check that every edge of C and D is contained
in exactly one square consisting of one edge in C, one in D and two edges between C and D. This gives rise to the
Square Lemma.

Lemma 2.2 (Square Lemma). Let G be a properly colored Cartesian product. If e and f are incident edges of different
colors, then there exists exactly one square without diagonals that contains e and f.

It is clear what we mean by the square property, see Fig. 2.
Suppose the edges of a graph G are colored in such a way that the square property is satisfied. Then we can infer

rather strong assertions about the coloring of certain induced subgraphs. For example, all edges in a triangle have the
same color and all edges in a square with at least one diagonal have the same color.

Also, all edges in a K2,3 are of the same color, because any two edges incident in a vertex of degree two are contained
in two squares without diagonals, and not just one.

Furthermore any two opposite edges of a square have the same color and, most importantly, any two incident edges
uv, vw have the same color if v is the only common neighbor of u and w.

We conclude this section with a formulation of the unique prime factorization property of connected graphs as we
shall use it in this paper. Before stating it we wish to remark that we do not always distinguish between a partition of a
set and the associated edge-coloring or the equivalence relation whose equivalence classes are just the sets in the given
partition. The equivalence relations inherited from a product decomposition are also called product relations.

Lemma 2.3 (Refinement Lemma). All product relations with respect to the prime factor decompositions of a connected
graph G are identical or finer than any other product relation of G.

For a proof we refer to [6]. Note that the product relation, resp. product coloring, that corresponds to the decomposition
C5�K2�K2 of the graph G of Fig. 1 is finer than all the other product relations of G. Thus C5�K2�K2 is the prime
factorization of G. Of course it is not difficult to see directly.

Clearly this holds in general—the finest coloring that satisfies the isomorphism property gives rise to the unique
finest product relation and therefore, to the prime factorization of connected graphs. It is our aim to find this coloring
in linear time and space.

3. A direct algorithm for the finest product relation

The aim of this section is to demonstrate that the finest product relation is an intrinsic relation of connected graphs
that depends only on the metric. It also shows that there is a straightforward O(m2) algorithm to compute the finest

476 W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483

product relation and thus the prime factorization of a connected graph. The results shed some light on the underlying
ideas of the paper but are not needed in the sequel, so this section can be skipped.

We begin with the definition of two relations � and � on the edge set E(G) of a connected graph G. Two edges
e = xy and f = uv are in the relation � if

d(x, u) + d(y, v) �= d(x, v) + d(y, u), (2)

and they are in the relation � if y = u is the only common neighbor of x and v. Let � denote the transitive closure of the
union of � with �,

� = (� ∪ �)∗.

Theorem 3.1 (Feder [3]). Let G be a finite connected graph. Then (� ∪ �)∗ is the finest product relation of G.

For a proof see [3] or [6]. To see how the theorem works, consider the graph G of Fig. 1. Any two adjacent edges in
one of the pentagons are in the relation �, and thus any two nonadjacent edges of a pentagon in the relation �∗, that is,
in the transitive closure of �. Moreover, any two parallel edges (in the figure) are in the relation �. Thus, any two edges
in the union of the pentagons are in the relation �. Any two horizontal edges are in the relation � as well as any two
of the remaining edges. This gives a partition of E(G). It is readily checked that no two edges in different sets of this
partition are in the relation � or �. We have thus determined the relation �G. Clearly it gives rise to the factorization
C5�K2�K2.

Lemma 3.2. The prime factorization of a connected graph on m edges can be determined within time and space
complexity O(m2).

Proof. It suffices to show that � can be determined within time and space complexity O(m2). To see this, we begin
with � and observe that there are m2 pairs of edges in G. For every such pair we have to find four distances, and
check whether Eq. (2) is satisfied. This can be done in constant time with the aid of the distance matrix, which can be
determined in O(mn) time.

To find � it suffices to consider all vertices u and check for any other vertex v whether it is adjacent to u or any of its
neighbors. Thus, there are n (d(u) + 1) adjacences to be checked for every vertex u. Since

∑
u

n(d(u) + 1) = n
∑
u

(d(u) + 1) = O(nm),

the time complexity for determining � is O(nm).
Thus, the at most m2 pairs of edges in that are in the relations � or � can be found within time complexity O(m2).

Hence the transitive closure of � ∪ � can also be found within O(m2) time.5 Clearly this straightforward algorithm
also requires O(m2) space. �

Theorem 3.1 is a very special result, because it tells us two things: it makes a deep assertion about the structure of
Cartesian products and simultaneously yields a straightforward polynomial algorithm to find the prime factorization
of connected graphs. Interestingly, this theorem also holds for infinite connected graphs, see [5].

It should be noted that Feder [3] improved the complexity of this approach by showing that �∗ can be determined in
O(mn) time and space. As (� ∪ �)∗ = (�∗ ∪ �)∗ it is not necessary to determine �. This also implies that �∗ cannot
contain more than O(mn) pairs of edges. Since this also holds for � both the space and time complexity of the prime
factorization reduce to O(mn).

In the next section we develop a different approach for finding the product coloring of a connected graph.

5 Consider a graph H with V (H) = E(G), where any two edges e, f are adjacent in H if they are in at least one of the relations � or �. Then the
equivalence classes of � correspond to the connected components of H and can be found within time complexity O(|E(H)|) = O(m2).

W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483 477

4. Factorization with additional information

Clearly every graph is a Cartesian product—albeit a trivial one in most cases. Our task is to find the decomposition.
Here we find it with some additional information. We show how to find the product coloring of a graph, provided that
the colors of the edges incident with a vertex v0 are known. The only other data of G that we require is the adjacency
list.

The importance of the following proposition is the method of proving it: one begins with the coloring of the edges
incident with a root vertex v0 and extends it to all edges of the graph in BFS order. The complexity of this approach is
O(mn).

Proposition 4.1. Let G = G1�G2� · · · �Gk be a connected graph. Suppose the colors of the product coloring of
G with respect to the given decomposition are known for the edges incident with a root vertex v0. Then the product
coloring can be recovered in BFS order with respect to the root v0 in O(mn) time and O(n2) space.

Proof. We begin by arranging the vertices of G in BFS order with respect to the root v0 and denote the distance levels
with respect to this ordering by Li , i = 1, . . . , r . In other words, Li = {v | dG(v0, v) = i}. Furthermore we partition the
set of edges incident with every vertex u into three sets: the set of down-edges, cross-edges and up-edges. Note that an
up-edge uv of u is a down-edge of v. It is thus convenient to consider our edges as ordered pairs of vertices,6 such
that the statement xy is a down-edge means that xy is a down-edge with respect to x. For cross edges the statement the
cross edge xy will mean the cross edge xy with respect to the vertex x.

We color the cross edges of L1 first. This is easy, because every triangle is monochromatic. For every cross-edge uv

in L1 we only have to set c(uv) = c(uv0).
Then we proceed by induction. We assume that we have colored every edge up to the cross-edges of Li and continue

with the down-edges and then the cross-edges of Li+1. Here we do not have to consider the up-edges of Li separately,
because they are also down-edges of Li+1. To color the down-edges of Li+1 we scan the vertices u ∈ Li+1 in BFS
order and fix a down-edge uv.

1. Suppose this is the only down-edge of u. Since v ∈ Li , i�1, there exists a down-edge vx. Clearly v is the only
common neighbor of u and x. Thus c(uv) = c(vx).

2. The other possibility is that there are other down-edges. For every such down-edge uw we look for a vertex x that
is adjacent to v and w. If such a vertex exists, then c(uv) = c(wx) and c(uw) = c(vx), no matter whether ux and
wx have the same or different colors. If no such x exists, then we consider any down-neighbor x of v. As before, v

is the only common neighbor of u and x and so c(uv) = c(vx). Analogously we color uw in this case.

For the cross-edges of Li+1 we scan the vertices of Li+1 again. For every vertex u that is an endpoint of a cross-edge
we select an arbitrary cross-edge uv and a down-edge uw. As before we look for common neighbors x of v and w.
If such an x exists, then c(uv) = c(wx), otherwise c(uv) = c(uw).

To find the Gi we observe that it suffices to find the G
v0
i . Since they are convex, a vertex v is in V (G

v0
i) if and only

if all of its down-neighbors have color i. A scan of V (G) readily produces these vertices, and the adjacency lists of the
G

v0
i are just the i-chromatic sublists of the adjacency list of G, restricted to V (G

v0
i).

In Section 2 we called the G
v0
i unit-layers. We will call their vertices unit-layer vertices henceforth. Clearly all

vertices of L1 are unit-layer vertices.
All down-neighbors and cross-neighbors of a unit-layer vertex u ∈ G

v0
i are also in G

v0
i . This is a consequence of the

convexity of layers in a product. (See also Lemma 7.29 on p. 235 in [6].)
For an estimate of the complexity of our procedure we note that we fix a down-neighbor v of every vertex u ∈ Li ,

i > 0, and then scan all cross- and down-edges of u, so we have a total of at most 2m steps to perform, where m denotes
the number of edges of G. For every pair of the already determined edges uv and uw we then search for common
neighbors of v and w. We have fewer than n = |V (G)| possible choices for x. If we work with the adjacency matrix of
G the checks whether x is adjacent to u or w can be performed in constant time. Thus, we arrive at an overall complexity
of O(mn) time and O(n2) space for this unrefined approach. �

6 If we consider every edge [u, v] as a set consisting of the two arcs (u, v) and (v, u) we obtain a partition of the set of arcs of G.

478 W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483

5. Coordinatizing a product

In our algorithm we do not need the coordinatization of the vertices. We wish to show here that one can obtain the
coordinates of a Cartesian product in linear time and space once the colors of the edges are known.

Theorem 5.1. Let G = G1�G2� · · · �Gk be a connected graph. Suppose the product coloring of G with
respect to the given decomposition is known. Then the product can be coordinatized in O(m) time and space.

Proof. Again we begin with a BFS ordering of the vertices. For the coordinatization then need a coordinate vector of
length k for every vertex, where k is the number of factors. Clearly k is bounded by the minimum degree d0 of G. Since
n d0 �2m the total space needed for these vectors is O(m).

By definition the ith coordinate of a vertex u is pi(u). If we identify every Gi with the unit-layer G
v0
i and the vertices

of G with their BFS-numbers, then the ith coordinate of u is the BFS-number of pi(u). As shown in [6] we can then
coordinatize the vertices of G as follows:

Begin the BFS-numbering with 0 and let the coordinate vector of v0 consist of k zeros. Then scan all other vertices
u of G in BFS order.

If u is a unit-layer vertex in G
v0
i set the ith place of u equal to the BFS-number of u and all other places to zero.

If u is not a unit-layer vertex there must be down-edges uv and uw of different colors. Set ui = max(vi, wi) for
1� i�k.

Clearly the time complexity for this procedure is O(m). �

6. Labelling the edges of a product

In this section we refine the coloring of the edges and call it labelling. All edges in the preimage of a unit layer edge
will receive the same label. We show that products can be labelled, and thus also colored, in linear time. This labelling
allows to tell the position of every edge with respect to the given product decomposition in constant time. In the next
one and a half pages we describe the data structure used for storing the labels. Actually, the label will turn out to be the
position of an edge in an array of edges with the same endpoint and color.

Note that we used the coordinate vectors for the characterization of the position of vertices in the product, the
total length of these vectors being O(m). For the position of an edge uv in the product we use the initial ver-
tex u, the color i of uv and the projection pi(uv), that is, piupiv. This edge is the base of uv. It is in the ith
unit layer G

v0
i , has the same color as uv, and, because of Eq. (1), is a down-, resp., cross-, or up-edge, if and

only if uv is a down-, resp., cross-, or up-edge. Below we describe how to store information about the base
efficiently.

The BFS-ordering of Section 4 partitions the set of edges incident with every vertex into arrays of down-, cross-,
and up-edges. Every such array is further partitioned into subarrays of edges of the same color. We use the position j of
pi(uv) in its sublist to be able to locate pi(uv) fast and call n(uv)=j the name of uv. In general n(uv) will be different
from n(vu). The pair 〈c(uv), n(uv)〉 is then the label of uv, in symbols �(uv). Together with pc(uv)u it describes the
position of uv in the product.

The position of the initial edge of every color in such an array of down-, cross-, and up-edges is stored in a vector
of length d(v0), thus the jth element of any such subarray of edges of the same color can be accessed in constant
time.

Clearly the labelling is well defined. It depends on the ordering of the down- and cross-edges of every unit-layer
vertex (all down- and cross-edges of a unit-layer vertex have the same color) and on the ordering of the up-edges of
color i in the lists of up-edges of color i for the vertices of G

v0
i . (Up-edges of other colors of the vertices in G

v0
i different

from v0 are not unit-layer edges.) The ordering of the other monochromatic sublists of the lists of down-, cross-, and
up-edges does not effect the labelling. We shall reorder the monochromatic sublists of edges that are not unit-layer
edges according to their names.

It is convenient to generate an edge-list that tells of every edge uv its origin u, its terminus v, whether it is a down-
cross- or up-edge as well as its color and name. This way we can find the position of the edge in its monochromatic
subarray in constant time once its number is known.

W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483 479

We also modify the adjacency matrix by inserting the name of the edge uv in position (u, v) in order to obtain the
labelling of uv in constant time if the adjacency of u and v is checked.

Our data structure thus consists of original adjacency list of the given graph, the modified edge list, and the modified
adjacency matrix. Moreover the vertices are now arranged in BFS order, every vertex has a BFS-number and a BFS-
level, an optional coordinate vector of length at most d(v0), and is associated with three arrays: the arrays of down-,
cross-, and up-edges.

Every array is subdivided into subarrays of monochromatic edges, where the positions of the initial edge in the
subarray are stored in a vector of length d(v0). Clearly the time needed to build the data structure without the subdivision
of these arrays is linear in m. We have to show that the subdivision can also be effected in linear time.

With the exception of the adjacency matrix, the space needed is linear in m too. It is the topic of the next section
to show that we do not need the full adjacency matrix and that we can make due with constructing single lines of the
adjacency matrix a constant number of times.

Theorem 6.1. Let G=G1�G2� · · · �Gk be a connected graph. Suppose the colors of the product coloring of G with
respect to the given decomposition are known for the edges incident with a vertex v0 of minimum degree. Then the
edges of G can be labelled in O(m) time.

Proof. We have to describe a linear labelling algorithm. The originally colored edges can easily be labelled. Further-
more, since every edge in L0 ∪L1 is a unit-layer edge the arrays of down- and cross-edges of L1 need not be partitioned.
The coloring of the cross-edges of L1 poses no difficulty, every such edge can be colored in constant time, the names
are assigned as the positions in the respective sub arrays of up-, down-, or cross-edges.

Suppose we have already labelled all edges up to level Li such that we can access edges incident with a given vertex
and label in constant time. We scan all vertices of Li+1 and treat the down edges first. Let u ∈ Li+1.

1. Vertices of down-degree one. If u has down-degree one, then the coloring procedure of Section 4 for the only
down-edge of u can be executed in constant time. Its name is 1.

2. Finding a pivot square for vertices of down-degree larger than one.
2.1. First run. Let uv be the first down-edge of u and vx a down-edge of v. We now check for common vertices of u

and x. This can be done by scanning the down-neighbors of u and checking via the adjacency matrix whether
they are also neighbors of x. (We use the line of x.) The time complexity for finding such a joint neighbor (or
to find out that none exists) is O(d(u)).
If no such neighbor exists, then all down-edges of u and vx have the same color. It is trivial to label all
down-edges of u in this case since u is a unit-layer vertex and no partition of the array of down-edges is
necessary.
Suppose now that there exists a common neighbor w of u and x.
If vx and wx have different colors, then we set �(uv) = �(wx) and �(uw) = �(vx). We can also easily find
the positions of the initial edges of every color in the subarrays of the array of down-edges of u. We only have
to observe that the length of a subarray of any color �= c(uv) has the same length in arrays of down-edges
of u and v and that the length of the subarray of color c(uv) is the same for the down-edges of u and w. The
labelling is effected in constant time, the initial edges of every subarray can be found in O(d(v0)) time.
We call uvxw a pivot square and use it to label the other down-edges of u, but before that we have to treat the
case c(vx) = c(wx).

2.2. Second run. If vx and wx have the same color, then uv and uw also have that color. If all other down-edges
of v are of the same color, then u is a unit-layer vertex, a case that has been treated already. So, let vx′ be a
down-edge with c(uv) �= c(vx′).There must be a common neighbor w′ of u and x′, we can find it by scanning
the down-neighbors of u and checking the adjacency via the adjacency matrix. (We use the line of x′.) Now set
�(uv) = �(w′x′) and �(uw′) = �(vx′). The time complexity for finding w′ and x′ is O(d(u)). Again the initial
edges of the subarrays of the array of down-edges of u can be found in O(d(v0)) time. In this case uvx′w′ is
a pivot square.

3. Labelling all down edges of u with a pivot square. To label the other down-edges of u we use the pivot squares
uvxw, resp., uvx′w′. For simplicity we rename x′ and w′ into x and w for that purpose. Thus, let us scan all down
edges of u and let uy be such a down-edge. Consider the down edge yz with �(yz) = �(uv). Via the adjacency

480 W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483

matrix we check whether z and v are adjacent. (We use the line of v.) If they are, then �(uy) = �(vz). Otherwise
c(uy) = c(uv), but then c(uw) �= c(uy) and we can label uy by means of uw. (Using the line of w.) Clearly the
time complexity for every vertex y is constant, thus the total complexity for this step is O(d(u)).

Hence the complexity of labelling the down-edges of the vertices in Li+1 is

O

⎛
⎝ ∑

u∈Li+1

d(u)

⎞
⎠ .

Similarly one can show that the cross-edges of Li+1 and the up-edges of Li can be labelled within the same time
complexity. �

7. Labelling in linear time and space

Up to now we have indiscriminately used the adjacency matrix whenever we wished to check in constant time
whether two given vertices were adjacent. Unfortunately it requires n2 space, where n denotes the number of vertices of
the graph. It exceeds our aspired space complexity and, even worse, initializing it would destroy the time complexity.
Luckily we need only one line of the adjacency matrix at a time, which saves the space complexity. Concerning
initialization we note that it is possible to effectively obtain the adjacency matrix for a graph G in O(m) time, despite
the fact that O(n2) storage is required. This can be accomplished by a trick first published by Aho et al. [1].

Applying their method to the lines of the adjacency matrix we first observe that the time needed to generate the
line for a vertex x is proportional to d(x). Since

∑
x∈V (G) d(x) = 2m we stay within the aspired time limit, unless we

repeatedly generated lines of vertices with high degree. Care has to be taken to avoid this, we will show below how
this is achieved for the labelling of the down-edges.

Theorem 7.1. Let G=G1�G2� · · · �Gk be a connected graph. Suppose the colors of the product coloring of G with
respect to the given decomposition are known for the edges incident with a vertex v0 of minimum degree. Then G can
be labelled in linear time and space.

Proof. By Theorem 6.1 it suffices to show that the total space requirement of the labelling algorithm can be reduced
to O(m) without increasing the time complexity.

Step 1 in the labelling algorithm for the down-edges of level Li+1 for the vertices of down-degree one poses no
problem.

Step 2 is the search for a pivot square. Two runs may be necessary. In the first run an arbitrary down neighbor x of an
arbitrary down-neighbor v of the vertex u of Li+1 that is being considered is needed for neighborhood-checking. Let
us denote x by xu. The down-neighbor xu′ of distance two of another vertex u′ of Li+1 may be identical with xu.

The idea is to determine all such xu before the line of xu in the adjacency matrix is generated and to execute the first
run for all u′ with xu = xu′ . The second run is treated just the same.

In Step 3 two such procedures will be necessary, this time for vertices in level Li .
For the cross-edges and the up-edges similar procedures apply, but now things are slightly easier since the down-

edges are already labelled and since the colors of the up-edges are already known. In either case two such procedures
may be necessary, yielding a total of eight. Thus, no line of the adjacency matrix will have to be generated more than
eight times. �

Since the labelling is a refinement of the coloring, G can also be colored in linear time and space under the assumptions
of the theorem. Moreover, by Theorem 5.1, it can also be coordinatized within the same time and space complexity.

Note that the main lemma needed here was the Square Lemma.

8. Consistency check

The preceding operations worked under the assumption that the given graph was a product and that we knew the
colors of the edges incident with a given vertex. If we are given a coloring and asked to check whether it is a product

W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483 481

coloring it might be tempting to run the labelling algorithm with the information at one vertex and to check whether
the computed coloring coincides with the given one. Of course, if it does not, or if the labelling algorithm breaks down,
for example in Section 6, Step 2.1, where it says “there must be. . .” then the given coloring is not a product coloring.
However, it is quite possible that the labelling algorithm goes through, even if these assumptions are not satisfied, for
example in a cube with a missing edge or a missing vertex.

So we need a more effective way of testing the validity of the assumptions. We turn to the Isomorphism Lemma for
this purpose.

Isomorphisms of graphs are bijections of the vertex-sets that preserve incidence. Using the BFS-ordering of our graphs
we check inductively whether the restrictions of these mappings up to BFS level Li satisfy the all the assumptions and
continue with the next level thereafter.

Proposition 8.1. Suppose that the isomorphism properties hold up to level Li . Then one can check in time proportional
to the sum of numbers of down- and cross-edges of Li+1 and the up-edges of Li whether these properties also hold up
to Li+1.

Proof. We proceed in two steps.

1. For every vertex u ∈ Li+1 that is not a unit-layer vertex we pick two down-edges uv and uw of different color
(we could use the pivot square for this purpose) and check whether the down- and cross-edges of u and v that have
a color different from c(uv) are in one–one correspondence. This means that for every down- or cross-edge uz of
color �= c(uv) there exists exactly one edge vz′ such that �(uz) = �(vz′) and vice versa. Furthermore, zz′ must be
an edge with �(uv) = �(zz′).

2. For the up-edges of vertices in Li we proceed similarly. We scan all vertices u of Li . If u is not a unit-layer vertex,
we choose a pivot square uvxw and test the up-edges of u against those of v and w.
If u is a unit-layer vertex, say u ∈ G

v0
i , we select an arbitrary down-neighbor v of u and check the up-edges of u

and v against each other that have a color different from i.

Since every single check can be performed in constant time because of our edge-labelling the total time needed for
every vertex u is proportional to the degree of u. Thus, the time complexity for this procedure remains linear.

This way we check the isomorphisms between the layers Gu
i and Gv

i , resp., Gw
i . The others need not be checked.

To see this, consider an arbitrary neighbor a of u. Suppose it is a down-neighbor and that c(ua) �= c(uv). We wish to
check the isomorphism between Gu

i and Ga
i induced by the edges between them, where i �= c(uv).

We have to show that for any down- or cross-edge ab of color �= c(ua) there is exactly one edge uc with the same
label as ab such that b and c are adjacent and �(ua) = �(cb). Vice versa, to every down- or cross-edge uc of color
�= c(ua) there is exactly one edge ab with the same label as uc such that b and c are adjacent and �(ua) = �(cb).

We treat the first case. We have already checked the existence of an edge aa′ with the same label as uv. By the
induction hypothesis all isomorphisms up to level Li have been checked. Hence, we can use the Square Lemma. We
complete {a, a′, b} to a square abb′a′, then {v, a′, b′} to a square va′b′c′ and finally {b, b′, c′} to a square bb′c′c. The
edge vc′ has the same label as ab and cc′ the same label as uv. By the isomorphism check between u and v the vertices
u and c are adjacent and uc has the same label as vc′, which is the same as that of ab.

The other cases are similarly verified. �

This procedure is called the consistency check. We have thus shown:

Theorem 8.2. The total time and space complexity for the consistency check is linear.

9. Factorizing by merging colors

Now we have prepared all the tools we need for the prime factorization of a given connected graph G. By the
refinement Lemma it suffices to compute the finest product relation of the given graph G. The coloring it induces is the
product coloring of the unique prime factor decomposition. It is the finest edge coloring satisfying the Isomorphism
Property.

482 W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483

Theorem 9.1. The prime factorization of connected graphs can be found in linear time and space.

Proof. We have to present an algorithm. The idea of the algorithm is to start with a coloring that is not coarser than the
finest product coloring and to merge color classes when necessary. Since we can color a product if we know the colors
of the edges incident with a given vertex v0 we start with the relation that assigns different colors to the edges incident
with v0. Since every vertex meets edges of all colors no colors can be missed. It is practical to choose v0 among the
vertices of minimal degree, there cannot be more than d(v0) color. We call these colors initial colors henceforth.

We choose v0 as the basis of the BFS ordering and run the labelling algorithm and the consistency check. It is possible
that both go through. Then the result is the coloring with respect to the prime factor decomposition of G.

Most likely though the labelling algorithm will run into difficulties or the consistency check. For example, if there
are cross-edges in L1 the labelling algorithm breaks down. So, what should we do? The answer is easy, every cross
edge in L1 has to have the same color as its down-edges. Since this is not so, our coloring is too fine, we have too many
colors and merge them whenever necessary.

It will be useful not to recolor any edges though, we simply note the initial colors that have been merged. Since
d(v0)

2 �d(v0)n�2m we need no sophisticated data structure to do this from the point of view of space requirements.
Also, since we cannot have less than one color, we have at most d(v0) merge operations in which two sets (of initial
colors) of total size less than d(v0) are merged. If we order the sets, then this can be done in d(v0) steps. So the total
time needed is linear in m too. The initial color of smallest index in a set of merged colors will be called its principal
color, it is the representative of the set of merged colors. These sets are the new colors. An array of colors as described
in the labelling algorithm will thus consist of subarrays of initial colors and the labels will be given with respect to the
initial colors, of course always keeping in mind to which (principal) color they belong.

In general we will have checked the consistency of the coloring up to level Li and wish to continue. The first step is
the labelling algorithm. When it fails we have to merge colors. A short analysis of the reasons why it may fail shows
that there may be missing vertices, missing edges, too many vertices or too may edges or an array into which the
algorithm tries to put an edge is too short. These cases have been analyzed in [6, p. 237], the answer is always the same:
if something goes wrong the vertex just being considered must be classified as a unit-layer vertex to allow the labelling
algorithm to continue. This means that all initial colors of the down- and cross-edges of this vertex have to be merged.

It is clear that we do not have to recolor any edges. Even more importantly, we do not have to rerun the consistency
check. The reason is that fewer colors mean fewer and larger layers. Hence, fewer consistency checks are necessary
and all the ones performed retain their validity.

After the labelling algorithm has been completed for Li+1 we run the consistency check. Again, if something goes
wrong, the reasons can only be the same as before and we merge colors. The result is, that the consistency checks that
did not work just do not have to be performed any more! �

We conclude the paper with a short summary of the main steps of our algorithm.

Algorithm 9.2.

1. Initialization.
1.1. Choose a vertex v0 of minimum degree and execute the BFS algorithm with base v0.
1.2. Label the up-edges of v0 (with name 1 and distinct colors).

2. For every BFS level Li , i = 1, 2, . . . , r − 1 do
2.1. Label (down-, cross-, and up-) edges of Li .
2.2. Merge colors if necessary.
2.3. Check for the consistency.
2.4. Merge colors if necessary.

Acknowledgment

The senior author wishes to express his gratitude to L. Babai who asked him in 1982 whether there existed a
polynomial algorithm for the prime factorization of connected graphs. Thanks are also due to Ross McConnell and
Daniel Varga for interesting discussions.

W. Imrich, I. Peterin / Discrete Mathematics 307 (2007) 472–483 483

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
[2] F. Aurenhammer, J. Hagauer, W. Imrich, Cartesian graph factorization at logarithmic cost per edge, Comput. Complexity 2 (1992) 331–349.
[3] T. Feder, Product graph representations, J. Graph Theory 16 (1992) 467–488.
[4] J. Feigenbaum, J. Hershberger, A.A. Schäffer, A polynomial time algorithm for finding the prime factors of Cartesian-product graphs, Discrete

Appl. Math. 12 (1985) 123–138.
[5] W. Imrich, Embedding graphs into Cartesian products, in: Graph Theory and its Applications: East and West (Jinan, 1986), Annals of the

New York Academy of Sciences, vol. 576, New York Academy of Sciences, New York, 1989, pp. 266–274.
[6] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[7] G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446–457.
[8] V.G. Vizing, The Cartesian product of graphs (Russian), Vyčisl. Systemy 9 (1963) 30–43, English translation in Comput. Electron Syst. 2 (1966)

352–365.
[9] V.G. Vizing, Some unsolved problems in graph theory, Russian Math. Surveys 23 (1968) 125–141.

[10] P.M. Winkler, Factoring a graph in polynomial time, European J. Combin. 8 (1987) 209–212.

	Recognizing Cartesian products in linear time
	Introduction
	Preliminaries
	A direct algorithm for the finest product relation
	Factorization with additional information
	Coordinatizing a product
	Labelling the edges of a product
	Labelling in linear time and space
	Consistency check
	Factorizing by merging colors
	Acknowledgment
	References

