
ENS Lyon Training Camp. Day 02. Advanced group
Codeforces and other problems compilation

27 October 2015

Problem A. Chip Play
Input file: chip.in

Output file: chip.out

Time limit: 4 seconds
Memory limit: 256 megabytes

Consider the following game. We have a rectangular field n ×m
in size. Some squares of the field contain chips. Each chip has an
arrow painted on it. Thus, each chip on the field points in one
of the following directions: up, down, left or right. The player
should choose a chip and make a move with it.

The move is the following sequence of actions. The chosen chip is
marked as the current one. After that the player checks whether
there are more chips in the same row (or in the same column) with
the current one that are pointed by the arrow on the current chip.
If there is at least one chip then the closest of them is marked as
the new current chip and the former current chip is removed from
the field. After that the process is repeated. This process can
be repeated several times. If a new chip is not found, then the
current chip is removed from the field and the player’s move ends.
By the end of a move the player receives several points equal to
the number of the deleted chips.

Given initial chip arrangement, determine the maximum number
of points that a player can receive during one move. Also deter-
mine the number of such moves.

Input

The first line contains two integers n and m
(n,m ≥ 1, n × m ≤ 5000). Then follow n lines containing
m characters each, which forms the game field description. “.”
means that this square is empty. “L”, “R”, “U”, “D” mean that
this square contains a chip and an arrow on it says left, right,
up or down correspondingly. It is guaranteed that a field has at
least one chip.

Output

Print two numbers — the maximum number of points a player
can get after a move and the number of different moves that yield
this maximum number of points.

Examples

chip.in chip.out

4 4

DRLD

U.UL

.UUR

RDDL

10 1

3 5

.D...

RRRLL

.U...

6 2

Note
In the first sample the max-
imum number of points is
earned by the chip in the po-
sition (3, 3). You can see its
progress at the picture on the
right. All other chips earn
fewer points.

Problem B. Two Sets
Input file: twosets.in

Output file: twosets.out

Time limit: 1 second
Memory limit: 256 megabytes

Little X has n distinct integers: p1, p2, . . . , pn and two more inte-
gers a and b. He wants to divide all of them into two sets A and
B. The following two conditions must be satisfied:

• If the number x belongs to set A, then the number a − x
must also belong to set A.

• If the number x belongs to set B, then the number b − x
must also belong to set B.

Help Little X divide the numbers into two sets or determine that
it is impossible.

Input

The first line contains three space-separated integers n, a, b
(1 ≤ n ≤ 105; 1 ≤ a, b ≤ 109). The next line contains n space-
separated distinct integers p1, p2, . . . , pn (1 ≤ pi ≤ 109).

Output

If there is a way to divide the numbers into two sets, then print
“YES” in the first line. Then print n integers: b1, b2, . . . , bn (bi
equals either 0, or 1), describing the division. If bi equals 0, then
pi belongs to set A, otherwise it belongs to set B.

If it is impossible, print “NO” (without the quotes).

Examples

twosets.in twosets.out

4 5 9

2 3 4 5

YES

0 0 1 1

3 3 4

1 2 4

NO

Note

It’s OK if all the numbers are in the same set, and the other one
is empty.

Problem C. Context Advertising
Input file: context.in

Output file: context.in

Time limit: 2 seconds
Memory limit: 256 megabytes

Advertising has become part of our routine. And now, in the era of
progressive technologies, we need your ideas to make advertising
better!

In this problem we’ll look at a simplified version of context ad-
vertising. You’ve got a text consisting of exactly n words. A
standard advertising banner has exactly r lines, each line can
contain at most c characters. The potential customer always likes
it when they can see lots of advertising, so you should determine
which maximum number of consecutive words from the text can
be written on the banner. Single words in one line of the banner
should be separated by spaces. You are allowed to insert more
than one space at once. Note that you are not allowed to break
the words, that is, each word in the text must occupy exactly one
line in the banner. Besides, you cannot change the word order,
that is, if you read the banner text consecutively, from top to

Page 1 of 7



ENS Lyon Training Camp. Day 02. Advanced group
Codeforces and other problems compilation

27 October 2015

bottom and from left to right, you should get some consecutive
part of the advertisement text.

More formally, the statement can be written like that. Let’s say
that all words are indexed from 1 to n in the order in which they
occur in the advertisement text. Then you have to choose all
words, starting from some i-th one and ending with some j-th
one (1 ≤ i ≤ j ≤ n), so that all of them could be written on
the banner. There must be as many words as possible. See the
samples for clarifications.

Input

The first input line contains three integers n, r, c
(1 ≤ n, r, c ≤ 106; r × c ≤ 106). The next line contains a text,
consisting of n words. The words consist only of lowercase English
letters and are not empty. The words in the lines are separated by
single spaces. The total number of characters in all words doesn’t
exceed 5 · 106.

Output

Print at most r lines, in each line print at most c characters — the
optimal advertisement banner. If there are multiple advertisement
banners, print any of them.

Note that some lines of the banner can be empty. You are
allowed not to print such lines.

Examples

context.in context.in

9 4 12

this is a sample text

for croc final round

this is a

sample text

for croc

final round

9 1 9

this is a sample text

for croc final round

this is a

6 2 3

croc a a a croc a

a a

a

2 2 5

first second

first

Problem D. RMQ Inverse Problem
Input file: rmq.in

Output file: rmq.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Consider an array of n elements. Let Q(i, j) be the response to
a query for finding the minimum among elements of the array
from i to j inclusive. Your task is to restore an array given some
queries and their responses.

Input

The first line of the input contains two integers n and m
(1 ≤ n,m ≤ 100 000) — the number of the elements in the array
and the number of queries, respectively. Each of the following m
lines contains a description of a query: three integers i, j and q
denoting that Q(i, j) = q (1 ≤ i ≤ j ≤ n, −231 ≤ q ≤ 231 − 1).

Output

If required array does not exist, output single line which contains
the single word “inconsistent”. In the other case the first line
must contain the single word “consistent”. The second line must
contain n integers — elements of the required array. All integers

must be in the interval from −231 to 231 − 1 inclusive. If there
are different solutions, output any of them.

Example

rmq.in rmq.out

3 2

1 2 1

2 3 2

consistent

1 2 3

3 3

1 2 1

1 1 2

2 3 2

inconsistent

Problem E. Queue
Input file: queue.in

Output file: queue.out

Time limit: 2 seconds
Memory limit: 256 megabytes

On a cold winter evening our hero Vasya stood in a railway queue
to buy a ticket for Codeforces championship final. As it usually
happens, the cashier said he was going to be away for 5 minutes
and left for an hour. Then Vasya, not to get bored, started to
analyze such a mechanism as a queue. The findings astonished
Vasya.

Every man is characterized by two numbers: ai, which is the
importance of his current task (the greater the number is, the
more important the task is) and number ci, which is a picture
of his conscience. Numbers ai form the permutation of numbers
from 1 to n.

Let the queue consist of n−1 people at the moment. Let’s look at
the way the person who came number n behaves. First, he stands
at the end of the queue and the does the following: if importance
of the task ai of the man in front of him is less than an, they swap
their places (it looks like this: the man number n asks the one
before him: “Erm... Excuse me please but it’s very important
for me... could you please let me move up the queue?”), then
he again poses the question to the man in front of him and so
on. But in case when ai is greater than an, moving up the queue
stops. However, the man number n can perform the operation no
more than cn times.

In our task let us suppose that by the moment when the man
number n joins the queue, the process of swaps between n−1 will
have stopped. If the swap is possible it necessarily takes place.

Your task is to help Vasya model the described process and find
the order in which the people will stand in queue when all the
swaps stops.

Input

The first input line contains an integer n which is the number of
people who has joined the queue (1 ≤ n ≤ 105). In the next n
lines descriptions of the people are given in order of their coming
— space-separated integers ai and ci (1 ≤ ai ≤ n, 0 ≤ ci ≤ n).
Every description is located on s single line. All the ai’s are
different.

Output

Output the permutation of numbers from 1 to n, which signifies
the queue formed according to the above described rules, starting
from the beginning to the end. In this succession the i-th num-
ber stands for the number of a person who will stand in line on
the place number i after the swaps ends. People are numbered

Page 2 of 7



ENS Lyon Training Camp. Day 02. Advanced group
Codeforces and other problems compilation

27 October 2015

starting with 1 in the order in which they were given in the input.
Separate numbers by a space.

Examples

queue.in queue.out

2

1 0

2 1

2 1

3

1 3

2 3

3 3

3 2 1

5

2 3

1 4

4 3

3 1

5 2

3 1 5 4 2

Problem F. Reverse
Input file: reverse.in

Output file: reverse.out

Time limit: 5 seconds
Memory limit: 256 megabytes

Physical education teacher has learned to count the total height
of all students staying in a row on the positions from l to r a long
time ago. But children play a trick on him. At some moment in
time children on position from l to r are swapped. The teacher
noticed that they always “reverse” the segment. That means l-th
student swaps with r-th student, (l + 1)-th student swaps with
(r − 1)-th student and so on. He decided to not to scold them,
but to count the total height on all scheduled intervals.

Input

The first line contains two integers n and m
(1 ≤ n,m ≤ 200 000) — the number of children and the
number of events. The second line contains n natural numbers —
the heights of children in the order in the row. The height of
every child does not exceed 2 · 105. Each of the following m
line contains a description of an event: three numbers q, l, r
(0 ≤ q ≤ 1, 1 ≤ l ≤ r ≤ n). The number q shows a type of the
event: 0 corresponds to a query to calculate the total height of
children with numbers from l to r, 1 shows that children with
numbers from l to r “reverse” their interval. All numbers in the
input file are integers.

Output

For every event of kind 0 output a single number on the separate
line — an answer for this query.

Example

reverse.in reverse.out

5 6

1 2 3 4 5

0 1 5

0 2 4

1 2 4

0 1 3

0 4 5

0 3 5

15

9

8

7

10

Problem G. Move To Front!
Input file: movetofront.in

Output file: movetofront.out

Time limit: 6 seconds
Memory limit: 256 megabytes

Corporal Ducar enjoys to give commands to his troop. His favorite
command is ”Move to front!”. Corporal aligns his soldiers in a
row and gives some commands, and each of them is formulated
as “Soldiers from l to r, move to front!”. Before Ducar gave the
first command, the soldiers had been numbered from 1 to n, from
left to right. When soldiers hear a command “Soldiers from l to
r, move to front!”, soldiers with numbers from l to r move to the
beginning of the row in the same order in which they are.

For example, if at some moment in time the soldiers stand in an
order 1, 3, 6, 2, 5, 4, then after the command “Soldiers from 2 to 3,
move to front!” the new order is 3, 6, 1, 2, 5, 4. If soldiers from 3
to 4 are moved to front by next command of corporal, than new
order is already so 1, 2, 3, 6, 5, 4.

Given the sequence of the commands of the corporal, your task is
to find the order of soldiers after all commands.

Input

The first line contains two integers n and m (1 ≤ n ≤ 100 000,
1 ≤ m ≤ 100 000) — the number of the soldiers and the num-
ber of commands, respectively. Each of the following m line
contains description of the commands: two integers li and ri
(1 ≤ li ≤ ri ≤ n).

Output

The single line must contain n integers — the order of the soldiers
after the execution of all commands.

Example

movetofront.in movetofront.out

6 3

2 4

3 5

2 2

1 4 5 2 3 6

Problem H. Bus
Input file: taxibus.in

Output file: taxibus.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Usually the residents of Flatland use buses to travel in the city.
Unfortunately, there is a problem — buses are designed in the way
that passengers feel discomfort passing each other on the way to
free seats.

Spiridon works as a bus driver for a long time. And he knows,
that all passengers ride on a bus day by day. Therefore he decided
to arrange places among passangers, in the way to minimize the
number of times, when one passenger passes another to get to his
place.

It is known when each passenger enters and leaves bus. All places
are arranged in a row and are numbered from 1 to n starting from
the closest seat to entry. When passenger sitting on the i-th place
goes to the exit, he passes all passengers who are sitting on the
seats with numbers less than i.

During the ride, passengers do not change their place during the
ride.

Page 3 of 7



ENS Lyon Training Camp. Day 02. Advanced group
Codeforces and other problems compilation

27 October 2015

Input

The first line contains single integer n (1 ≤ n ≤ 100 000) —
the number of passengers. Each of the following n lines contains
two integers ai, bi — the indices of bus stops on which the i-th
passenger enters and leaves bus, respectively. At each bus stop at
most one person enters or leaves the bus.

Output

The first line must contain the single integer — the mimimal
number of passes of passengers past each other. The second line
must contain n integers — for each passenger output the place on
which passenger should sit.

Example

taxibus.in taxibus.out

2

1 4

2 3

0

2 1

5

1 8

3 6

2 4

9 10

5 7

2

10 2 4 1 1

Problem I. XOR on Segment
Input file: xor.in

Output file: xor.out

Time limit: 4 seconds
Memory limit: 256 megabytes

You’ve got an array a, consisting of n integers a1, a2, . . . , an. You
are allowed to perform two operations on this array:

1. Calculate the sum of current array elements on the segment
[l, r], that is, count value al + al+1 + · · ·+ ar.

2. Apply the xor operation with a given number x to each
array element on the segment [l, r], that is, execute
al = al ⊕ x, al+1 = al+1 ⊕ x, . . . , ar = ar ⊕ x. This op-
eration changes exactly r − l + 1 array elements.

Expression x⊕y means applying bitwise xor operation to numbers
x and y. The given operation exists in all modern programming
languages, for example in language C++ and Java it is marked
as “^”, in Pascal — as “xor”.

You’ve got a list of m operations of the indicated type. Your task
is to perform all given operations, for each sum query you should
print the result you get.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the size
of the array. The second line contains space-separated integers
a1, a2, . . . , an (0 ≤ ai ≤ 106) — the original array.

The third line contains integer m (1 ≤ m ≤ 5 ·104) — the number
of operations with the array. The i-th of the following m lines
first contains an integer ti (1 ≤ ti ≤ 2) — the type of the i-th
query. If ti = 1, then this is the query of the sum, if ti = 2, then
this is the query to change array elements. If the i-th operation
is of type 1, then next follow two integers li, ri (1 ≤ li ≤ ri ≤ n).
If the i-th operation is of type 2, then next follow three integers
li, ri, xi (1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 106). The numbers on the
lines are separated by single spaces.

Output

For each query of type 1 print in a single line the sum of numbers
on the given segment. Print the answers to the queries in the
order in which the queries go in the input.

Please, do not use the %lld specifier to read or write 64-bit inte-
gers in C++. It is preferred to use the cin, cout streams, or the
%I64d specifier.

Examples

xor.in xor.out

5

4 10 3 13 7

8

1 2 4

2 1 3 3

1 2 4

1 3 3

2 2 5 5

1 1 5

2 1 2 10

1 2 3

26

22

0

34

11

6

4 7 4 0 7 3

5

2 2 3 8

1 1 5

2 3 5 1

2 4 5 6

1 2 3

38

28

Problem J. Two Captains
Input file: twocaptains.in

Output file: twocaptains.out

Time limit: 3 seconds
Memory limit: 256 megabytes

As it is known, Jack Sparrow and Barbossa are captains of The
Black Pearl. The ship carries exactly n cannons, located in a
row. During the battle, both captains give orders to their sailors
simultaneously each minite. There are three different kinds of
orders:

• send l r — send his sailors to shoot from the cannons with
numbers from l to r inclusive;

• back l r — recall all his sailors from the cannons with num-
bers from l to r inclusive. If there are no sailors obeying
this captain on some cannons from this segment, nothing
happens;

• rum — bring one more bottle of rum.

Every order is executed immediately and battle continues one
more minute until the next order. If at any moment of time sailors
obeing different captains stay on the same cannon, they will fight
and kill each other. This situation isn’t suitable for both captains,
so they ask you to help them with solution of this problem.

Before the start of another battle, captain Jack Sparrow and Bar-
bossa make plans of their actions. The plan of captain Jack Spar-
row consists of m1 orders and the plan of Barbossa consists of
m2 orders. At the beginning of the i-th minute of battle, each
captain gives his sailors the i-th order from his plan if the plan
consists of at least i orders. Your task is to fix plans in the way
all sailors will stay alive. The only available modification for you
is to insert some orders rum in any places of plans. Since captains

Page 4 of 7



ENS Lyon Training Camp. Day 02. Advanced group
Codeforces and other problems compilation

27 October 2015

do not enjoy change plans, the total number of additional orders
should be minimal.

Input

The first line contains single integer n (1 ≤ n ≤ 109) — the
number of cannons on the ship.

The second line contains an integer m1 (1 ≤ m1 ≤ 3 000) — the
number of orders in the plan of Captain Jack Sparrow. Each of the
following m1 lines contains description of this orders. The orders
are given as described above. For all instructions that used l, r
1 ≤ l ≤ r ≤ n. It is guaranteed that the last order is back 1n.

The next line contains an integer m2 (1 ≤ m2 ≤ 3 000) — the
number of orders in the plan of Barbossa. Each of the following
m2 lines contains description of this orders. The orders are given
as described above. For all orders that used l, r 1 ≤ l ≤ r ≤ n. It
is guaranteed that the last order is back 1n.

Output

The single line must contain the single integer — the minimal
number of additional orders.

Example

twocaptains.in twocaptains.out

3

4

send 1 1

send 2 2

back 1 1

back 1 3

5

send 2 3

send 1 1

back 2 2

rum

back 1 3

3

Problem K. Rectangles
Input file: rects.in

Output file: rects.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Consider n rectangles on the plane such that any two of them
do not have common points. A rectangle B is farther than a
rectangle A, if B’s top left corner lies strictly below and strictly
right than bottom right corner of A.

A sequence of rectangles R1, R2, . . . , Rk is called a chain, if for all
i the rectangle Ri is farther than the rectangle Ri−1. Weight of
chain is the sum of the numbers writen in rectangles of this chain.

Your task is to find the chain of rectangles with maximal possible
weight.

Input

The first line contains single integer n (1 ≤ n ≤ 100 000) —
the number of the rectangles. Let x-axis goes from left to right
and y-axis goes from down to up. Each of the following n lines
contains five integers — coordinates xi,1, yi,1 of left bottom corner,
coordinates xi,2, yi,2 top right corner and the number ai writen in
the i-th rectangle. All coordinates do not exceed 109 in absolute
value. Numbers writen inside rectangles are positive and do not
exceed 109. Every rectangle do not lie inside another rectangle.

Output

The first line must contain a single integer — the maximal pos-
sible weight of chain of rectangles. The second line must contain
numbers of rectangles forming such chain in the corresponding
order. If there are several optimal solutions, output any of them.

Example

rects.in rects.out

4

1 1 2 2 6

3 1 4 2 5

0 3 1 4 5

5 1 6 2 4

10

3 2

Problem L. Windows 2
Input file: windows2.in

Output file: windows2.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Consider rectangular windows on the screen with sides parallel to
the coordinate axis. Some of them can overlap. Your task is to
find area covered by this windows.

Input

The first line contains single integer n (1 ≤ n ≤ 50 000) — the
number of windows. Each of the following n lines contains co-
ordinates of windows x(1,i), y(1,i), x(2,i), y(2,i), where (x(1,i), y(1,i))
are coordinates of the left top corner, and (x(2,i), y(2,i)) are co-
ordinates of the right bottom corner of the i-th window (on the
computer screen x coordinate grows down and y coordinate grows
from left to right). All coordinates are integers and their absolute
values do not exceed 109.

Output

The single line must contain the single integer — the area covered
by windows.

Example

windows2.in windows2.out

2

0 0 3 3

1 1 4 4

14

Problem M. Lucky Array
Input file: lucky.in

Output file: lucky.out

Time limit: 4 seconds
Memory limit: 256 megabytes

Petya loves lucky numbers. Everybody knows that lucky numbers
are positive integers whose decimal representation contains only
the lucky digits 4 and 7. For example, numbers 47, 744, 4 are
lucky and 5, 17, 467 are not.

Petya has an array consisting of n numbers. He wants to perform
m operations of two types:

• add l r d — add an integer d to all elements whose
indexes belong to the interval from l to r, inclusive
(1 ≤ l ≤ r ≤ n, 1 ≤ d ≤ 104);

• count l r — find and print on the screen how many lucky
numbers there are among elements with indexes that belong
to the interval from l to r inclusive (1 ≤ l ≤ r ≤ n). Each

Page 5 of 7



ENS Lyon Training Camp. Day 02. Advanced group
Codeforces and other problems compilation

27 October 2015

lucky number should be counted as many times as it appears
in the interval.

Petya has a list of all operations. The operations are such that
after all additions the array won’t have numbers that would ex-
ceed 104. Help Petya write a program that would perform these
operations.

Input

The first line contains two integers n and m (1 ≤ n,m ≤ 105) —
the number of numbers in the array and the number of operations
correspondingly. The second line contains n positive integers,
none of which exceeds 104 — those are the array numbers. Next
m lines contain operations, one per line. They correspond to the
description given in the statement.

It is guaranteed that after all operations are fulfilled each number
in the array will not exceed 104.

Output

For each operation of the second type print the single number on
the single line — the number of lucky numbers in the correspond-
ing interval.

Examples

lucky.in lucky.out

3 6

2 3 4

count 1 3

count 1 2

add 1 3 2

count 1 3

add 2 3 3

count 1 3

1

0

1

1

4 5

4 4 4 4

count 1 4

add 1 4 3

count 1 4

add 2 3 40

count 1 4

4

4

4

Note

In the first sample after the first addition the array will look in
the following manner:

4 5 6

After the second addition:

4 8 9

The second sample after the first addition:

7 7 7 7

After the second addition:

7 47 47 7

Problem N. Shooting Gallery
Input file: shooting.in

Output file: shooting.out

Time limit: 5 seconds
Memory limit: 256 megabytes

Berland amusement park shooting gallery is rightly acknowledged
as one of the best in the world. Every day the country’s best

shooters master their skills there and the many visitors compete
in clay pigeon shooting to win decent prizes. And the head of
the park has recently decided to make an online version of the
shooting gallery. During the elaboration process it turned out
that the program that imitates the process of shooting effectively,
is needed. To formulate the requirements to the program, the
shooting gallery was formally described. A 3D Cartesian system
of coordinates was introduced, where the X axis ran across the
gallery floor along the line, along which the shooters are located,
the Y axis ran vertically along the gallery wall and the positive
direction of the Z axis matched the shooting direction. Let’s call
the XOY plane a shooting plane and let’s assume that all the
bullets are out of the muzzles at the points of this area and fly
parallel to the Z axis. Every clay pigeon can be represented as
a rectangle whose sides are parallel to X and Y axes, and it has
a positive z-coordinate. The distance between a clay pigeon and
the shooting plane is always different for every target. The bullet
hits the target if it goes through the inner area or border of the
rectangle corresponding to it. When the bullet hits the target, the
target falls down vertically into the crawl-space of the shooting
gallery and cannot be shot at any more. The targets are tough
enough, that’s why a bullet can not pierce a target all the way
through and if a bullet hits a target it can’t fly on. In input
the simulator program is given the arrangement of all the targets
and also of all the shots in the order of their appearance. The
program should determine which target was hit by which shot. If
you haven’t guessed it yet, you are the one who is to write such a
program.

Input

The first line contains an integer n (1 ≤ n ≤ 105) — the
number of targets. Each of the subsequent n lines contains
the description of a target. The target is described by five
integers xl, xr, yl, yr, z, that determine it’s location in space
(0 ≤ xl < xr ≤ 107, 0 ≤ yl < yr ≤ 107, 0 < z ≤ 107). The
next line contains an integer m (1 ≤ m ≤ 105), determining the
number of shots. Then in m lines shots are described. Every shot
is determined by the coordinates of a bullet on the shooting plane
(x, y) (0 ≤ x, y ≤ 107, the coordinates of bullets are integers).
The shots are given in the order of their firing. The intervals
between shots are large enough, and a target falls very quickly,
that’s why assume that a falling target can not be an obstruction
for all the shots following the one that hit it.

Output

For every shot in the single line print the number of the target
which the shot has hit, or 0, if the bullet did not hit any target.
The targets are numbered starting from 1 in the order in which
they were given in the input data.

Examples

shooting.in shooting.out

2

1 4 1 4 1

2 5 2 6 2

4

0 0

3 3

4 5

3 5

0

1

2

0

Page 6 of 7



ENS Lyon Training Camp. Day 02. Advanced group
Codeforces and other problems compilation

27 October 2015

Problem O. Edges in MST
Input file: mst.in

Output file: mst.out

Time limit: 2 seconds
Memory limit: 256 megabytes

You are given a connected weighted undirected graph without any
loops and multiple edges.

Let us remind you that a graph’s spanning tree is defined as an
acyclic connected subgraph of the given graph that includes all of
the graph’s vertexes. The weight of a tree is defined as the sum of
weights of the edges that the given tree contains. The minimum
spanning tree (MST) of a graph is defined as the graph’s spanning
tree having the minimum possible weight. For any connected
graph obviously exists the minimum spanning tree, but in the
general case, a graph’s minimum spanning tree is not unique.

Your task is to determine the following for each edge of the given
graph: whether it is either included in any MST, or included at
least in one MST, or not included in any MST.

Input

The first line contains two integers n and m (2 ≤ n ≤ 105,

n − 1 ≤ m ≤ min(105, n(n−1)
2

)) — the number of the graph’s
vertexes and edges, correspondingly. Then follow m lines, each
of them contains three integers — the description of the graph’s
edges as “ai bi wi” (1 ≤ ai, bi ≤ n, 1 ≤ wi ≤ 106, ai ̸= bi), where
ai and bi are the numbers of vertexes connected by the i-th edge,
wi is the edge’s weight. It is guaranteed that the graph is con-
nected and doesn’t contain loops or multiple edges.

Output

Print m lines — the answers for all edges. If the i-th edge is
included in any MST, print “any”; if the i-th edge is included
at least in one MST, print “at least one”; if the i-th edge isn’t
included in any MST, print “none”. Print the answers for the
edges in the order in which the edges are specified in the input.

Examples

mst.in mst.out

4 5

1 2 101

1 3 100

2 3 2

2 4 2

3 4 1

none

any

at least one

at least one

any

3 3

1 2 1

2 3 1

1 3 2

any

any

none

3 3

1 2 1

2 3 1

1 3 1

at least one

at least one

at least one

Note

In the second sample the MST is unique for the given graph: it
contains two first edges.

In the third sample any two edges form the MST for the given
graph. That means that each edge is included at least in one
MST.

Page 7 of 7


