
ENS Lyon Training Camp. Day 03. NCPC–2011. Advanced group
28 October 2015

Problem A. Robots on a grid
Input file: robots.in

Output file: robots.out

Time limit: 2 seconds
Memory limit: 256 megabytes

You have recently made a grid traversing robot that can find its
way from the top left corner of a grid to the bottom right corner.
However, you had forgotten all your AI programming skills, so
you only programmed your robot to go rightwards and downwards
(that’s after all where the goal is). You have placed your robot
on a grid with some obstacles, and you sit and observe. However,
after a while you get tired of observing it getting stuck, and ask
yourself “How many paths are there from the start position to
the goal position?”, and “If there are none, could the robot have
made it to the goal if it could walk upwards and leftwards?”

So you decide to write a program that, given a grid of size n× n
with some obstacles marked on it where the robot cannot walk,
counts the different ways the robot could go from the top left
corner s to the bottom right t, and if none, tests if it were possible
if it could walk up and left as well. However, your program does
not handle very large numbers, so the answer should be given
modulo 231 − 1.

Input

On the first line is one integer, 1 ≤ n ≤ 1000. Then follows n
lines, each with n characters, where each character is one of “.”
and “#”, where “.” is to be interpreted as a walkable tile and “#”
as a non-walkable tile. There will never be a wall at s, and there
will never be a wall at t.

Output

Output one line with the number of different paths starting in
s and ending in t (modulo 231 − 1) or “THE GAME IS A LIE”
if you cannot go from s to t going only rightwards and down-
wards but you can if you are allowed to go left and up as well, or
“INCONCEIVABLE” if there simply is no path from s to t.

Example

robots.in robots.out

5

.....

#..#.

#..#.

...#.

.....

6

7

......#

####...

.#.....

.#...#.

.#.....

.#..###

.#.....

THE GAME IS A LIE

Problem B. Mega Inversions
Input file: megainversions.in

Output file: megainversions.out

Time limit: 2 seconds
Memory limit: 256 megabytes

The n2 upper bound for any sorting algorithm is easy to obtain:
just take two elements that are misplaced with respect to each

other and swap them. Conrad conceived an algorithm that pro-
ceeds by taking not two, but three misplaced elements. That is,
take three elements ai > aj > ak with i < j < k and place them
in order ak, aj , ai. Now if for the original algorithm the steps are
bounded by the maximum number of inversions n(n−1)

2
, Conrad

is at his wits’ end as to the upper bound for such triples in a given
sequence. He asks you to write a program that counts the number
of such triples.

Input

The first line of the input is the length of the sequence,
1 ≤ n ≤ 105. The next line contains the integer sequence a1,
a2, . . . , an. You can assume that all ai ∈ [1, n].

Output

Output the number of inverted triples.

Example

megainversions.in megainversions.out

3

1 2 3

0

4

3 3 2 1

2

Problem C. Death Knight Hero
Input file: deathknight.in

Output file: deathknight.out

Time limit: 2 seconds
Memory limit: 256 megabytes

There once was a champion of WoW
Arthasdk the name he was bestowed
He Death Gripped you to his side
His Chains of Ice stopped your stride
And Obliterates made you say “OWW!”

But one day our hero got puzzled
His Death Grip totally fizzled
In his darkest despair
He could barely hear
“OMG NOOB u Chains of Iced than u Death
Gripped”

Input

You are given a recording of the abilities our hero used in his
battles. The first line of input will contain a single integer n
(1 ≤ n ≤ 100), the number of battles our hero played. Then follow
n lines each with a sequence of ki (1 ≤ ki ≤ 1000) characters, each
of which are either “C”, “D” or “O”. These denote the sequence of
abilities used by our hero in the i-th battle. “C” is Chains of Ice,
“D” is Death Grip and “O” is Obliterate.

Output

Output the number of battles our hero won, assuming he won
each battle where he did not Chains of Ice immediately followed
by Death Grip.

Example

deathknight.in deathknight.out

3

DCOOO

DODOCD

COD

2

Page 1 of 4

ENS Lyon Training Camp. Day 03. NCPC–2011. Advanced group
28 October 2015

Problem D. Elevator
Input file: elevator.in

Output file: elevator.out

Time limit: 2 seconds
Memory limit: 256 megabytes

You are on your way to your first job interview as a program tester,
and you are already late. The interview is in a skyscraper and you
are currently in floor s, where you see an elevator. Upon entering
the elevator, you learn that it has only two buttons, marked “UP
u” and “DOWN d”. You conclude that the UP-button takes the
elevator u floors up (if there aren’t enough floors, pressing the
UP-botton does nothing, or at least so you assume), whereas the
DOWN-button takes you d stories down (or none if there aren’t
enough). Knowing that the interview is at floor g, and that there
are only f floors in the building, you quickly decide to write a
program that gives you the amount of button pushes you need
to perform. If you simply cannot reach the correct floor, your
program halts with the message “use the stairs”.

Given input f , s, g, u and d (floors, start, goal, up, down), find
the shortest sequence of button presses you must press in order
to get from s to g, given a building of f floors, or output “use
the stairs” if you cannot get from s to g by the given elevator.

Input

The input will consist of one line, namely f s g u d, where
1 ≤ s, g ≤ f ≤ 106 and 0 ≤ u, d ≤ 106. The floors are one-
indexed, i.e. if there are 10 stories, s and g be in [1, 10].

Output

You must reply with the minimum numbers of pushes you must
make in order to get from s to g, or output “use the stairs” if
it is impossible given the configuration of the elevator.

Example

elevator.in elevator.out

10 1 10 2 1 6

100 2 1 1 0 use the stairs

Problem E. ls
Input file: ls.in

Output file: ls.out

Time limit: 2 seconds
Memory limit: 256 megabytes

You are implementing an operating system, and now need to write
a program to list files in a directory: “ls”. You want the user to be
able to list only files that match a given pattern that can include
wildcards (*), for example *.c. A wildcard matches zero or more
characters of any kind.

Input

The first line contains a string P , containing 1–100 characters “a”–
“z”, “*” and “.”. This is the pattern. The second line contains
an integer N , 1 ≤ N ≤ 100, which is the number of files in the
directory. Then follows N lines containing the names of the files
in the directory. Each line is a string containing 1–100 characters
“a”–“z” and “.”.

Output

The output shall consist of the filenames that match the pattern,
P , each on its own line, in the same order that they were given
as input.

Example

ls.in ls.out

.

4

main.c

a.out

readme

yacc

main.c

a.out

*a*a*a

4

aaa

aaaaa

aaaaax

abababa

aaa

aaaaa

abababa

Problem F. Knigs of the Forest
Input file: moose.in

Output file: moose.out

Time limit: 2 seconds
Memory limit: 256 megabytes

All moose are knigs of the forest, but your latest moose-friend,
Karl-Älgtav, is more interesting than most. In part because of his
fondness of fermented blueberries, and in part because of the tribe
he lives in. Each year his tribe holds a tournament to determine
that year’s alpha-moose. The winner gets to mate with all the
moose-chicks, and then permanently leaves the tribe. The pool
of contenders stays constant over the years, apart from the old
alpha-moose being replaced by a newcomer in each tournament.

Karl-Älgtav has recently begun to wonder when it will be his turn
to win all the chicks, and has asked you to help him determine this.
He has supplied a list of the strength of each of the other male
moose in his tribe that will compete during the next n− 1 years,
along with their time of entry into the tournament. Assuming
that the winner each year is the moose with greatest strength,
determine when Karl-Älgtav becomes the alpha-moose.

Input

The first line of input contains two space separated integers
k (1 ≤ k ≤ 105) and n (1 ≤ n ≤ 105), denoting the size of
the tournament pool and the number of years for which you have
been supplied sufficient information.

Next is a single line describing Karl-Älgtav, containing the two
integers y (2011 ≤ y ≤ 2011 + n − 1) and p (0 ≤ p ≤ 231 − 1).
These are his year of entry into the tournament and his strength,
respectively.

Then follow n+ k− 2 lines describing each of the other moose, in
the same format as for Karl-Älgtav.

Note that exactly k of the moose will have 2011 as their year of
entry, and that the remaining n− 1 moose will have unique years
of entry. You may assume that the strength of each moose is
unique.

Output

The year Karl-Älgtav wins the tournament, or “unknown” if the
given data is insufficient for determining this.

Page 2 of 4

ENS Lyon Training Camp. Day 03. NCPC–2011. Advanced group
28 October 2015

Example

moose.in moose.out

2 4

2013 2

2011 1

2011 3

2014 4

2012 6

2013

2 4

2011 1

2013 2

2012 4

2011 5

2014 3

unknown

Problem G. Car Trouble
Input file: cartrouble.in

Output file: cartrouble.out

Time limit: 2 seconds
Memory limit: 256 megabytes

The city center of an unnamed Nordic university town consists
of what was once a medieval city with narrow winding streets
completely surrounded by a high wall protecting the city against
Swedish invaders and other unwanted elements. The wall has
since been removed and replaced by a system of interconnecting
roads completely circumscribing the old part of the town. The
roads inside still remains more or less the same as it was in the
middle ages, which of course comes in conflict with modern re-
quirements for accessibility by car, resulting in a maze of twisty
little one-way streets, all alike, mixed with slightly wider two-way
streets.

Making changes to the traffic routes in such a city can easily cause
unexpected side-effects if you do not plan carefully ahead. The
story goes that a prominent member of the city council once sub-
mitted a proposal to the council regarding extensive changes to
how the traffic should be organized in the city center. The pro-
posal did have the merit that it would be very easy to drive in to
the central square, but it would unfortunately also be impossible
to drive out again. The council member in question later went on
to become minister of justice in the country under the parole that
society should be harder on criminals – “it should be easy to go
to jail, but difficult to get out again”.

To avoid mistakes as the one above, the city planners need you to
develop a tool that can help them discover any traffic problems
in the planning stage. The planners need to be alerted of two
different situations. The first situation is that a street exists in the
city center from which you cannot reach the surrounding, circular,
system of roads, i.e., you are trapped inside the city. The second
situation is that a street exists in the city that cannot be reached
from the surrounding system of roads, i.e., it is unreachable.

Input

The input consists of a description of how streets connect to each
other and the surrounding circular road system. Each street (or
a segment of a street) within the city center is represented by an
arbitrary integer id number (0 < id < 1000). The surrounding
circular road system is represented by the special id number 0.

First line: An integer giving the number of streets (including the
surrounding road system, 0 < streets ≤ 1000).

The following lines: One line for each street (no particular order
required and the surrounding road system is included) consisting
of a number of integers. First, an integer giving the id number

of the street. Second, the number of (other) streets that can be
reached from this street. Third, a sequence of street id numbers
indicating which streets can be reached from this street.

Output

One line for each street on which you would be trapped within
the city consisting of the text “TRAPPED X” where X is replaced
by street id number in question.

Then, one line for each street within the city that is unreach-
able from the surrounding system of roads consisting of the text
“UNREACHABLE X” where X should be replaced by the street id in
question.

If no problems are found, i.e., you are not trapped in any street
and every street is reachable, you should print a single line con-
taining the text “NO PROBLEMS”.

If multiple streets cause you to get trapped – or are unreachable –
you should list them in the same order they were entered in the
input (within respective category).

Example

cartrouble.in cartrouble.out

6

0 1 1

1 1 2

2 3 1 3 0

3 0

4 2 5 0

5 1 4

TRAPPED 3

UNREACHABLE 4

UNREACHABLE 5

2

1 1 0

0 1 1

NO PROBLEMS

Problem H. Private Space
Input file: space.in

Output file: space.out

Time limit: 2 seconds
Memory limit: 256 megabytes

People are going to the movies in groups (or alone), but normally
only care to socialize within that group. Being Scandinavian,
each group of people would like to sit at least one space apart
from any other group of people to ensure their privacy, unless of
course they sit at the end of a row. The number of seats per row in
the cinema starts at X and decreases with one seat per row (down
to a number of 1 seat per row). The number of groups of varying
sizes is given as a vector (N1, . . . , Nn), where N1 is the number
of people going alone, N2 is the number of people going as a pair
etc. Calculate the seat-width, X, of the widest row, which will
create a solution that seats all (groups of) visitors using as few
rows of seats as possible. The cinema also has a limited capacity,
so the widest row may not exceed 12 seats.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 12),
giving the size of the largest group in the test case.

Then follows a line with n integers, the i-th integer (1-indexed)
denoting the number of groups of i persons who need to be seated.

Output

A single number: the size of the smallest widest row that will
accommodate all the guests. If this number is greater than 12,
output “impossible” instead.

Page 3 of 4

ENS Lyon Training Camp. Day 03. NCPC–2011. Advanced group
28 October 2015

Example

space.in space.out

3

0 1 1

3

3

2 1 1

4

Problem I. Prime Time
Input file: primetime.in

Output file: primetime.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Odd and Even have had their share of fun times playing the good
old prime game. They start with an arbitrary natural number,
and take turns either adding 1 or dividing by a prime (assuming
the result is still a natural number), and the one to reach 1 is the
winner.

However, now that they have a new friend, Ingmariay, they have
decided to expand the rules of the game to allow for three-player
action: Instead of determining a winner for each round of play,
they instead score points; the lowest number each of them has
claimed during the round is the amount of points they get. (If
any of them did not have the opportunity to claim any numbers,
the starting number will be their score for that round.) At the
end of the day, the player with the fewest points wins. And to
avoid bad blood between themselves, they have all agreed that
each of them only will focus on minimizing their own scores, and
that whenever a player can choose different numbers that will
result in the same score, that player will choose the lowest of
those numbers. They have also agreed on a fixed order of play:
Odd → Even → Ingmariay → . . . , but they alternate who gets to
start.

You recently missed one of their exciting evenings of play, because
you had to make problems for the NCPC event. Fortunately for
you, they had recorded the numbers and starting players for each
round, and told you that since they always play optimally, you
could use this to simulate the event for yourself. Oh joy!

As an example round, assume that Even is chosen as the starting
player, and with the starting number 15. Then Even claims 16,
Ingmariay 8, Odd 4, Even 2 and Ingmariay 1. Odd gets 4 points,
Even 2 and Ingmariay 1.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 1000),
the number of rounds they played that evening.

Then follow n lines each beginning with the first character of the
name of the starting player (either “O”, “E” or “I”), followed by
a space and then the starting number for that round, in the range
[1, 10000].

Note that, if the starting number is 1, all players receive 0 points
for that round.

Output

Output a single line with the score at the end of the day for each of
the three contestants, in the order “Odd”, “Even”, “Ingmariay”.

Example

primetime.in primetime.out

1

O 4

2 1 4

3

O 13

I 14

E 15

6 29 16

Problem J. Enemy Division
Input file: enemydivision.in

Output file: enemydivision.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Captain Keram has to make a difficult decision. It is year 2147
and there is a big war in the world. His soldiers have been to-
gether since the war started, two years ago, and some of them
have become enemies. Luckily, each soldier has at most three
enemies.

They need to attack another country soon, and Keram is worried
that soldiers who are enemies might not cooperate well during
the battle. He has decided to divide them into groups such that
every soldier has at most one enemy in his group. He also wants
to make it simple, so he wants to use as few groups as possible.
Can you divide the soldiers into groups for him?

Input

On the first line there are two integers n and m, 2 ≤ n ≤ 100 000,
0 ≤ m ≤ 3n/2, where n is the number of soldiers and m is the
number of enemy pairs. Then follow m lines, each containing two
space separated integers ai, bi, denoting that soldiers ai and bi
are enemies, where 1 ≤ ai < bi ≤ n. You can assume that all
soldiers have at most three enemies.

Output

The first line of output contains the minimal number of groups of
soldiers k. Each of the next k lines contains a space separated list
of a soldiers in a unique group.

Example

enemydivision.in enemydivision.out

4 4

1 2

2 3

3 4

1 4

2

1 3

2 4

Page 4 of 4

