
ENS Lyon Training Camp. Day 04. Maximum Flow. Advanced group

29 October 2015

Problem A. Tea
Input file: tea.in

Output file: tea.out

Time limit: 2 seconds
Memory limit: 64 megabytes

In numerous departments of some huge company there are n peo-
ple working. They enjoy drinking tea during the break. But they
are disciplined therefore they have only one break daily. To make
this break as pleasant as possible each of the employees drinks
tea with one of their favorite tastes. An employee could drink tea
with different tastes at different days. Varietes of tea are num-
bered from 1 to m for convenience.

Recently, the employees of the department bought a large set
of teabags. This set contains a1 teabags of the first variety, a2

teabags of the second variety, . . . , and am teabags of the m-th
variety. Now they want to know, how long will they have enough
teabags, so that each of the employees could drink some tea of his
favorite variety each day?

Each employee in the department drinks one cup of tea that brews
one teabag. Teabags are not brewed again.

Input

The first line of the input file contains two integers n, m
(1 ≤ n,m ≤ 50). The second line contains m integers a1, . . . , am

(1 ≤ ai ≤ 106 for all i from 1 to m). Each of the following n lines
contains description of favorite tastes of employees. The i-th line
describes i-th employee in the following format: positive integer
ki — number of favorite varietes following ki integers from 1 to
m — numbers of this varietes.

Output

The sole line of the output should contain the maximum number
of days during which employees will have enough sufficient number
of bags.

Example

tea.in tea.out

3 3

2 7 4

2 1 2

1 2

2 2 3

4

Problem B. Domino Tiling

Input file: dominoes.in

Output file: dominoes.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Given a field of a size n×m. Some of the cells of this field are busy,
others are free. One can put dominoes on the field. Dominoes are
pieces composed of several squares, such that each square has the
size equal to the size of a field cell. A domino can be put on the
field only in such a way that each square from the domino fits
perfectly in a certain cell of the field.

In this problem, you have only two types of dominoes. A domino
of type 1 has the size of 1 × 2 and costs a euro cents. A domino
of type 2 has the size of 1 × 1 and costs b euro cents. You need
to tile the field using the smallest sum of money possible.

To tile a field by dominoes means to put several dominoes on
this field such that every square of every domino lies on some free

field cell and every free field cell is covered by exactly one domino

square.

You can rotate 1 × 2 dominoes: that is, it can be considered as
either having width of 1 and height of 2, or width of 2 and height
of 1.

Input

The first line of the input file contains four numbers n, m, a,
b (1 ≤ n,m ≤ 300, a, b are integers not exceeding 1000 by the
absolute value). Each of the next n lines contain m symbols: a
dot “.” denotes a free cell, an asterisk “*” denotes a busy cell.

Output

Output a single number: the minimum amount of money which
is needed to tile the given field.

Example

dominoes.in dominoes.out

2 3 3 2

.**

.*.

5

Problem C. Experimental treatment

Input file: experimental.in

Output file: experimental.out

Time limit: 2 seconds
Memory limit: 64 megabytes

After a lot of unsuccessful tries to diagnose desease of new patient,
MD House decided to try new experimental treatment. During
the treatment each hour Forman offered patient to choose and
drink one of the two pills. It is known, that right after the n-
th pill was chosen, the patient suddenly recovers. The patient
remembers how many pills of each type he drinks, and Forman
knows all the pairs of pills, which he offered throughout the time.
Because you need to know, what pills are helped, House wants to
reestablish the type of each pill, chosen by the patient. Please,
help him.

Input

The first line contains the number of pills, chosen by the patient,
n and the number of different types of pills, which are in the
hospital, m (1 ≤ n ≤ 1000, 2 ≤ m ≤ 1000). Each i-th line,
starting from the second till (n+1)-th, contains the pair of integers
ai, bi (1 ≤ ai, bi ≤ m, ai 6= bi) — the ids of the types of pills,
which were offered by Forman at (i − 1)-th hour. The last line
contains m numbers cj — the number of chosen pills of the type
j (0 ≤ cj ≤ n). The types are numerated from 1.

Output

Output the sequence of n numbers, where i-th number is equal
to the type of the pill, chosen at i-th hour. If there are multiple
answers, output any. If there are no answers, print −1.

Page 1 of 5

ENS Lyon Training Camp. Day 04. Maximum Flow. Advanced group

29 October 2015

Example

experimental.in experimental.out

3 3

1 2

1 3

2 3

1 2 0

2 1 2

3 3

1 2

1 3

2 3

1 1 0

-1

Problem D. Maximum flow
Input file: maxflow.in

Output file: maxflow.out

Time limit: 2 second
Memory limit: 64 megabytes

An oriented graph is given where each edge has an integer ca-
pacity. Find the maximum flow from the vertex 1 to the vertex
n.

Input

The first line of the input file contains integers n and m – the
number of vertices and the number of edges, correspondingly
(2 ≤ n ≤ 100, 1 ≤ m ≤ 1000). The next m lines contain three
non-negative integers each describing an edge – the source, the
target and the capacity of the edge. The vertices are numbered
starting from 1, and the capacities do not exceed 105.

Output

Output a single number – the maximum flow from the vertex 1
to the vertex n.

Examples

maxflow.in maxflow.out

4 5

1 2 1

1 3 2

3 2 1

2 4 2

3 4 1

3

Problem E. Evacuation
Input file: evacuation.in

Output file: evacuation.out

Time limit: 2 seconds
Memory limit: 64 megabytes

In T minutes the army of Loky will attack Earth. Avengers can’t
have time to prevent portals in New-York from opening, so Cap-
tain America decided to evacuate all citizens He only need to
check, if everybody could be in safe position before the start of
invasion.

The surroundings of New-York could be represened as the number
of small cities, connected between themselfs with one-directional
roads. Each road is characterized by its length and capacity. The
length of the ro l means, that if you enter it at time t, the car will
be at the end l minutes, in t+ l. The capacity of road s means,
that each minute, at most s cars could enter it. When you get
to the city, each car could enter some other road or it could stop
there for any time, and then move again.

Captain America have already decided, in which city the citizens
need to be. Also, he knows, how many cars there are in the
city. Now, he needs to check, if all citizens could evacuate before
invasion, and if so, the minimal time which evacuation could take,
and the minimal number of cars, which will be late, otherwise.

Input

The first line contains four integers n, m, K and T
(1 ≤ n × T ≤ 10 000, 1 ≤ m,K ≤ 10 000) — the number of
cities around New-York, the number of roads, the number of cars
and the time to the invasion, respectively. Next m lines contain
the description of roads between cities.

Each road is described with four integers u, v, l s (1 ≤ u, v ≤ n,
u 6= v, 1 ≤ s ≤ 3 000, 1 ≤ l ≤ 200) — in-point, out-point, its
length and capacity, respectively.

There could be only at most one road between two cities. New-
York has index 1, and the safe city has index n. In time 0 all cars
are in New-York.

Output

If all citizen could get to the safe city in no bigger than T minutes,
print the minimal number of minutes, to achieve that. Otherwise,
print the minimal number of cars, which will be late.

Example

evacuation.in evacuation.out

5 5 10 10

1 2 2 2

2 3 1 1

2 4 1 1

4 5 2 4

3 5 2 4

9

Problem F. Path Covering

Input file: paths.in

Output file: paths.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Given an oriented acyclic graph. Determine the minimum number
of non-intersecting paths which cover all vertices.

Two paths are non-intersecting if they don’t have common ver-
tices.

Input

The first line of the input file contains n and m, the number of
vertices and the number of edges of the graph, correspondingly
(2 ≤ n ≤ 1000, 0 ≤ m ≤ 105). The next m lines contain two
integers each describing an edge: the source and the target vertices
of the edge.

Output

Output a single number k, the minimum number of non-
intersecting paths to cover all vertices.

Examples

paths.in paths.out

3 3

1 3

3 2

1 2

1

Page 2 of 5

ENS Lyon Training Camp. Day 04. Maximum Flow. Advanced group

29 October 2015

Problem G. Molecule
Input file: molecule.in

Output file: molecule.out

Time limit: 1 second
Memory limit: 64 megabytes

Arthur and Leonard play in the following game. In some cells of
rectangle Arthur draws one of the chemical elements ‘H’, ‘O’, ‘N’
and ‘C’, after that Leonard need to draw lines between symbols in
neighbouring cells, such that he will get correct molecules. Unfor-
tunately, Arthur likes drawing a huge amount of symbols, while
Leonard can’t even understand whether it is possible to draw the
lines in described way. Help him to answer on that question.

In this problem the lines between chemical elements create a cor-
rect molecule, if they satisfy following conditions:

• each line connect elements, written in cells, which are neigh-
bours by side;

• between each pair of elements there is at most one line;

• each element should have exactly the defined number of ad-
jacent lines (1 for H, 2 for O, 3 for N, 4 for C);

• empty cells don’t have adjacent lines; and

• at least one cell contains an element inside.

Input

The first line contains two integer numbers n and m
(1 ≤ n,m ≤ 50) – the sizes of the rectangle. Then n lines fol-
lows, with exactly m symbols in each, defining the distribution of
elements in the rectangle; empty cells are denoted by symbol “.”.

Output

The sole line of the output should contain one word “Valid”, if it
possible to draw lines with described conditions, and “Invalid”
otherwise.

Example

molecule.in molecule.out

3 4

HOH.

NCOH

OO..

Valid

3 4

HOH.

NCOH

OONH

Invalid

Problem H. Agrarian Reform

Input file: agrarian.in

Output file: agrarian.out

Time limit: 2 seconds
Memory limit: 256 megabytes

The King of Squaredom is planning the agrarian reform. The
Squaredom has the form of rectangle of m × n squares. Squares
are identified by pairs (x, y) where x ranges from 1 to m, and y
ranges from 1 to n. Each square is either occupied by a peasant’s
house, or contains a swamp, or is a field. The King would like
to assign peasants to fields, so that each peasant was assigned to
exactly one field, and each field was assigned as most one peasant.

The King asked his Minister of Agronomy to prepare the list of
peasants. After that he would assign them to fields. The Private
Counselor of the King has found out the algorithm the King will
use to assign peasants to fields.

The King would look through the peasants in order they are listed
by the Minister of Agronomy. For each peasant he would find the
closest to his house field that has no peasant assigned to it yet.
That field would be assigned to this peasant. If there are several
such fields, the field which has the smallest x will be chosen, if
there are still several such fields, the field which has the smallest y
among them will be chosen. The distance between squares (x1, y1)
and (x2, y2) is |x1 − x2|+ |y1 − y2|.

The Minister of Agronomy would like to order peasants in such a
way that the sum of distances between peasant and the field he
is assigned to for all peasants were as small as possible. Help him
to find such order.

Input

The first line of the input file contains four integer numbers: m,
n, k and s — the size of the field, the number of peasants, and the
number of swamps, respectively (1 ≤ m,n ≤ 20, 1 ≤ k ≤ mn/2,
0 ≤ s ≤ mn − 2k). The following k lines contain coordinates of
squares where peasants live, the i-th of these lines contains two
integer numbers xi, yi (1 ≤ xi ≤ m, 1 ≤ yi ≤ n). No two peasants
live in the same square.

The following s lines contain coordinates of squares containing
swamps.

Output

Output k numbers— the order in which the Minister of Agronomy
should order peasants so that the King assigned them to the fields
in the optimal way.

Example

agrarian.in agrarian.out

3 5 5 0

2 3

2 4

1 3

2 2

3 3

3 4 2 1 5

Problem I. Teams
Input file: teams.in

Output file: teams.out

Time limit: 2 seconds
Memory limit: 64 megabytes

The main contest of “SWEERC” is coming soon. Teams came
from n different universities; from each university exactly two
teams came. The team already have taken place, when the orga-
nizers was discovered that some teams from the same university
sit very close to each other. The organizers have serious problems
with rearranging participants of the olympiad.

Tables at which teams sit are placed in a row. The distance
between two adjacent tables equals 10 meters. The organizers
want to make the minimal distance between workplaces of two
teams from the same school as bigger as possible.

The organizers should move to a new location all the equipment of
a team. Therefore the organizers want to move team in a way that
the sum of distances between old and new workplaces of teams is
as small as possible.

For example, consider two teams from universities 1, 2, 3 and 4
are involved into competition. Consider the initial distribution
is 1, 3, 2, 2, 1, 4, 4, 3 (for each workplace the id of the university
of the team is specified). In this case the teams from university

Page 3 of 5

ENS Lyon Training Camp. Day 04. Maximum Flow. Advanced group

29 October 2015

2 sit too close, as well as the teams from university 4. If jury
rearranges teams in the following order 1, 3, 2, 4, 1, 3, 2, 4, the dis-
tance between two teams from the same school is not less than 40
meters. The greater distance could not be achieved.

For this example the sum of the distances between the old and
new positions of all teams is 0+0+0+20+0+20+30+10 = 80
meteres, it is minimal for the initial location of the teams.

Given the initial location of the teams your task is rearrange teams
in a way to maximize the minimal distance between teams from
the same school. Moreover, new arrangement of teams should
be chosen from all possible arrangements, such that the sum of
distances between old and new positions is minimal as possible.

Input

The first line of the input file contains a single number n — the
number of teams (1 ≤ n ≤ 100). The second line contains the
sequence a1, a2, . . . , a2n — the initial location of teams. For each
team the number of schools which team represents is specified. It
is guaranteed that sequence contains only numbers from 1 to n
and each number occurs exactly twice.

Output

The sole line of the output should contain: how to rearrange teams
to maximize the minimal distance between teams from the same
school. Moreover, new arrangenment of teams should be chosen
from the all possible arrangements, such that the sum of distances
between old and new positions is minimal as possible. If there are
several optimal solutions, output any of them.

Example

teams.in teams.out

4

1 3 2 2 1 4 4 3

1 3 2 4 1 3 2 4

Problem J. Minimum cost maximum flow
Input file: mincost.in

Output file: mincost.out

Time limit: 2 seconds
Memory limit: 64 megabytes

An oriented graph is given, where each edge has a capacity and
a cost. Find the minimum cost maximum flow from the vertex 1
to the vertex n.

Input

The first line of the input file contains n and m, the number of
vertices and the number of edges correspondingly (2 ≤ n ≤ 100,
1 ≤ m ≤ 1000). The next m lines contain four non-negative
integers each which describe an edge: the source vertex, the target
vertex, the capacity and the cost. The vertices are numbered
starting from 1. Capacities and costs do not exceed 105.

Output

Output the single number – the cost of the minimum cost max-
imum flow from the vertex 1 to the vertex n. It is guaranteed
that the answer does not exceed 263 − 1, and the graph does not
contain cycles with negative costs.

Examples

mincost.in mincost.out

4 5

1 2 1 2

1 3 2 2

3 2 1 1

2 4 2 1

3 4 2 3

12

Problem K. The flow in network
Input file: flow.in

Output file: flow.out

Time limit: 2 seconds
Memory limit: 64 megabytes

In many problems on graph theory, the concepts of network and
flow are widely used,

Network is the directed graph G = (V,E), where for each edge
(u, v) ∈ V the value c(u, v) ≥ 0 is given, named capacity of
the edge. In the case (u, v) /∈ V it is convenient to think that
c(u, v) = 0. In the network there are two special vertices: source

s and sink t.

The flow in network G is the function f : V × V → R, for which
three propery hold:

• Capacity constraint — ∀u, v ∈ V f(u, v) ≤ c(u, v);

• Antisymmetry — ∀u, v ∈ V f(u, v) = −f(v, u);

• Conservation of flows — ∀u ∈ V \ {s, t}
∑

v∈V
f(u, v) = 0.

You are given a network and some function on the pairs of vertices.
Check that this function is the flow in the given network.

Input

The first line contains the number of vertices in network
N (2 ≤ N ≤ 100). The vertices in the network have ids from
1 to N .

The next N lines contain the capacity of edges. Each such line
contains N numbers. The j-th number in i + 1-th line defines
c(i, j). All capacities are non-negative and are not bigger than
104. It is guaranteed that c(i, i) = 0.

A single blank line follows.

The next N lines contain the values of the function f in the same
format. These values don’t exceed 104 by the absolute value.

The source of the network is the vertex 1, and the sink is the
vertex N .

Output

The first line of the output shoud contain YES, if the function is
a flow, and NO, otherwise.

Page 4 of 5

ENS Lyon Training Camp. Day 04. Maximum Flow. Advanced group

29 October 2015

Examples

flow.in flow.out

4

0 1 3 0

0 0 0 2

0 0 0 4

0 0 0 0

0 1 2 0

-1 0 0 1

-2 0 0 2

0 -1 -2 0

YES

4

0 1 3 0

0 0 0 2

0 0 0 4

0 0 0 0

0 2 1 0

-2 0 0 2

-1 0 0 1

0 -2 -1 0

NO

Problem L. Game
Input file: game.in

Output file: game.out

Time limit: 2 seconds
Memory limit: 64 megabytes

The King of Byteland holds an annual intellectual game. By the
rules of the game all players are split into two teams, and each
player is given a list of clues. During the game, all participants
could exchange their clues using the following rules: each player
P1 of the first team could choose the player P2 of the other team
and ask him for his clue, which the P1 don’t know. If there are
multiple such clues, P2 could tell him any of them. Each player
of the first team could ask for the clue exactly one person of the
second team, but in the meantime it is possible, that the person
from the second team is asked by many players. The first team
wins, if they could get all the clues. Help the captain to know, if
his team could get all the clues, not depending on the answers of
the players in the second team.

Input

The first line contains three integer numbers n,m
(1 ≤ n,m ≤ 500) and k (1 ≤ k ≤ 5000) – the sizes of
teams and the number of clues, respectively. Each of the next
n+m lines contains the information about clues, which is held at
the start of the game in the following format. The first number
in the line corresponds to the number of the clues of the player,
and next numbers are the ids of the clues – natural numbers, not
bigger than k.

Output

If the first team could collect all the clues, in the first line print
“1”. On the second line print n integers, for each player of the
first team specify, whon from the second team he should ask. If
there are multiple answers, print any of them. If the first team
couldn’t get all the clues, then in the sole line print “2”.

Example

game.in game.out

3 2 4

1 1

1 2

1 3

2 1 4

1 3

1

1 2 2

3 2 4

1 1

1 2

1 3

3 1 2 4

3 1 3 4

2

Problem M. Bipartite Matching

Input file: matching.in

Output file: matching.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Given a bipartite unweighed graph. You are asked to find a max-
imum bipartite matching.

Input

The first line of the input file contains three integers n, m k
(1 ≤ n,m ≤ 200, 1 ≤ k ≤ n×m) — the number of vertices in the
first and the second parts of the graph (more precisely, each part
has n vertices), and the number of graph edges, correspondingly.

k lines follow, each of them contains two numbers ai and bi, which
denotes an edge going from the vertex ai from the first part of the
graph to the vertex bi of the second part of the graph. In each
part, vertices are numbered starting from 1.

Output

Output a single number: the maximum number of edges in the
bipartite matching.

Examples

matching.in matching.out

3 3 5

1 1

1 3

2 1

2 2

3 2

3

Page 5 of 5

