ENS Lyon. Day 2. Basic group: Problem Analysis

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- Problem L
- Questions

ENS Lyon. Day 2. Basic group: Problem Analysis

October 27, 2015

Problem A. Sum

Statement

- Given array of *n* elements;
- Queries: find sum in the interval, change value of an element.

Solution

Segment tree

ENS Lyon. Day 2. Basic group: Problem Analysis

Problem A

- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L
- Questions

Problem B. Range Variation Query

Statement

- Given array of *n* elements;
- Queries: find difference between the maximal and minimal values in the range, change value of an element.

Solution

- Keep two segment trees: one for minimum and one for maximum;
- Update elements in both trees.

ENS Lyon. Day 2. Basic group: Problem Analysis

Problem A

- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- ^Droblem L
- Questions

Problem C. Sum 2

Statement

- Given an array of *n* elements;
- Queries: find the sum over all elements in the range, change value of all elements in the range.

Solution

- Segment tree with range update;
- Lazy propagation.

ENS Lyon. Day 2. Basic group: Problem Analysis

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Questions

Problem D. RMQ

Statement

- Given array of *n* elements;
- Queries: find the maximum in the range, add value to all elements in the range.

Solution

- Segment tree with range update;
- Lazy propagation;

- Problem A
- Problem B
- Problem C

Problem D

Problem E

- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L
- Questions

Problem E. Signchange

Statement

- Given array of *n* elements;
- Queries: find the alternating sum of elements in the range, change value of an element;

Solution

- Keep two segment tree: one for the elements with odd indices and one for the elements with even indices;
- Update element in the corresponding tree.

ENS Lyon. Day 2. Basic group: Problem Analysis

- Problem A
- Problem B
- Problem C
- Problem D

Problem E

- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- ^Droblem L
- Questions

Problem F. K-inversions

Statement

- k-inversion is a sequence of numbers i_1, \ldots, i_k such that $1 \le i_1 < \cdots < i_k \le n$ and $a_{i_1} > \cdots > a_{i_n}$;
- Find the number of k-inversions in the given permutation;
- It is the same to find the number of decreasing subsequences of length k.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L
- Questions

Problem F. K-inversions

Solution

 DP: *dp_{j,i}* is the number of decreasing subsequences of length *j* that ends in *i*;

•
$$dp_{j,i} = \sum_{k < i, a_k > a_i} dp_{k,j-1};$$

- Do not keep all matrices, only two last layers;
- Sum could be calculated efficiently using segment tree.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem 1
- Problem J
- Problem K
- Problem L
- Questions

Problem G. RMQ Inverse Problem

Statement

- Q(i,j) minimum element in the range from i to j;
- Restore array, given the sequence of queries and responces;

Solution

- Initialy array is filled with infinity;
- For each query Q(i, j) = x set value x for all elements in range from i to j;
- Array does not exist if you try to set value in the vertex where it was set before;

- -

ENS Lyon. Day 2. Basic group: Problem Analysis

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- Problem L
- Questions

9/24

Problem H. Bus

Statement

- Passengers enters and exists;
- Minimize the number of times, when one passenger passes another

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- Problem L
- Questions

Problem H. Bus

Solution (idea)

- Three cases:
 - [a_i, b_i] ⊂ [a_j, b_j], seat of i should be closer to entry;
 - $[a_i, b_i] \cap [a_j, b_j] = \emptyset$, they will not pass each other;
 - Otherwise, they will pass each other exactly once anyway;
- Place passengers in order of increasing of theirs *a_i*;
- To calculate a number of passes algorithm use segment tree.

ENS Lyon. Day 2. Basic group: Problem Analysis

roblem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem |

Problem J

Problem K

Problem L

Questions

Problem H. Bus

Solution

- Scanline with two kinds of events: enters and exits;
- When *i*-th passenger enters, assign 1 to his seat;
- When *i*-th passenger exits, assign 0 to his seat;
- For both kinds of events we use set and sum in segment tree.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem l
- Problem J
- Problem K
- ^Droblem L
- Questions

Problem I. Rectangles

Statement

- Given *n* rectangles, any two of them do not have common points;
- B is farther than A if B's top left corner lies strictly below and strictly right than bottom right corner of A;
- Chain is sequence R₁,..., R_k, s.t. for all i
 R_i is father than R_{i-1};
- Weight of chain is sum of the numbers inside rectangles;
- Find the chain with maximal weight.

- roblem A roblem B roblem C roblem D roblem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- Problem L
- Questions

Problem I. Rectangles

Solution

- Sort rectangles by their x value;
- Compress y coordinates, scanline, two kinds of events:
 - ST keeps length of maximal weight of chain;
 - Rectangle i starts; add a_i to range [y_min, y_i];
 - Find the maximum in the segment tree;
 - To restore the answer.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- Problem L
- Questions

Problem J. Windows

Statement

- Given *n* overlapping rectangular windows;
- Find point covered by the maximal number of windows.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- Problem L
- Questions

Problem J. Windows

Solution

- Scanline, sort rectangles by x coordinates, compress y coordinates;
- ST stores how many rectangles cover y-range;
- Events of two kinds:
 - Rectangular starts; add +1 in the range [y₁, y₂];
 - ▶ Rectangular ends; add −1 in the range [y₁, y₂];
- Find maximum in the array after each event of first type.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- ^Droblem L
- Questions

Problem K. Windows 2

Statement

- Given n overlapping rectangular windows
- ► Find the area covered by this windows

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem |
- Problem J
- Problem K
- Problem L
- Questions

Problem K. Windows 2

Solution

- Scanline, sort rectangles by x coordinates, compress y coordinates;
- Calculate uncovered area, so the result is equal to the difference between all area and uncovered area;
- Events of two types:
 - Rectangular starts; add +1 in the range [y₁, y₂];
 - ► Rectangular ends; add -1 in the range [y₁, y₂];
- The minimum (0) corresponds to uncovered y-s;

ENS Lyon. Day 2. Basic group: Problem Analysis

Problem K

18/24

Statement

- Two captains, three kinds of orders:
- send / r send sailors toward the cannons with numbers from / to r;
 back / r recall all his sailors from the cannons with numbers from / to r
 rum bring bottle of rum
- If sailors obeing different captains stay on the same cannon, they kill each other
- Insert minimal number of rum orders to the plans to save sailors

ENS Lyon. Day 2. Basic group: Problem Analysis

Problem L

Solution

- DP: canFirst[i][j] can the 1-st captain give i-th orders, if the 2-nd captain gave j orders; canFirst[i][j] is true in the following cases:
 - *i*-th order is back or rum
 - order is send *l* r and there is no sailors of the second captain (after *j* orders) staying on cannons [*l*, r]
- The same dynamic for the 2-nd captain: canSecond[i][j].

Problem L

Solution

- The numbers of sailors of 2-nd captain on the cannons stores in ST;
 - send I r; add +1 from I to r;
 - back l r; add -1 from l to r;
 - rum nothing happens;
- For each *j*-th order of the 2-nd captain do the following:
 - update ST;
 - Calculate canFirst[i][j] for all values of i.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L
- Questions

Solution

 DP: rum[i][j] — minimal number of rum orders to save sailors after i orders of the 1-st captain and j orders of the 2-nd captain.

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L
- Questions

Solution

- How to calculate?
 - If canFirst[i][j] and canSecond[i][j] and they don't send their sailors to the same cannon, then rum[i][j] = rum[i 1][j 1];
 - ▶ If canFirst[i][j], then rum[i][j] = rum[i - 1][j] + 1; 2-nd gave rum order;
 - If canSecond[i][j], then rum[i][j] = rum[i][j − 1] + 1; 1-nd gave rum order.

Problem L

Questions

Questions?

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L
- Questions