ENS Lyon. Day 2. Basic group: Problem Analysis

Problem B Problem C

October 27, 2015
Problem J
Problem K
Problem L
Questions

Problem A. Sum

Statement

- Given array of n elements;
- Queries: find sum in the interval, change value of an element.

Solution

- Segment tree

Problem B. Range Variation Query

ENS Lyon. Day 2. Basic group: Problem Analysis

- Given array of n elements;
- Queries: find difference between the maximal and minimal values in the range, change value of an element.

Solution

- Keep two segment trees: one for minimum and one for maximum;
- Update elements in both trees.

Problem B
Problem C Problem D Problem E Problem F Problem G

Problem C. Sum 2

Statement

- Given an array of n elements;
- Queries: find the sum over all elements in the range, change value of all elements in the range.

Solution

- Segment tree with range update;
- Lazy propagation.

Problem D. RMQ

Statement

- Given array of n elements;
- Queries: find the maximum in the range, add value to all elements in the range.

Solution

- Segment tree with range update;
- Lazy propagation;

Problem E. Signchange

ENS Lyon. Day
2. Basic group: Problem Analysis

Statement

- Given array of n elements;
- Queries: find the alternating sum of elements in the range, change value of an element;

Solution

- Keep two segment tree: one for the elements with odd indices and one for the elements with even indices;
- Update element in the corresponding tree.

Problem F. K-inversions

Statement

- k-inversion is a sequence of numbers i_{1}, \ldots, i_{k} such that $1 \leq i_{1}<\cdots<i_{k} \leq n$ and $a_{i_{1}}>\cdots>a_{i_{n}}$;
- Find the number of k-inversions in the given permutation;
- It is the same to find the number of decreasing subsequences of length k.

2. Basic group: Problem Analysis

Problem F. K-inversions

Solution

- DP: $d p_{j, i}$ is the number of decreasing subsequences of length j that ends in i;
- $d p_{j, i}=\sum_{k<i, a_{k}>a_{i}} d p_{k, j-1}$;
- Do not keep all matrices, only two last layers;
- Sum could be calculated efficiently using segment tree.

Problem G. RMQ Inverse Problem

ENS Lyon. Day 2. Basic group: Problem Analysis

Statement

- $Q(i, j)$ - minimum element in the range from i to j;
- Restore array, given the sequence of queries and responces;

Solution

- Initially array is filled with infinity;
- For each query $Q(i, j)=x$ set value x for all elements in range from i to j;
- Array does not exist if you try to set value in the vertex where it was set before;

Problem H. Bus

Statement

- Passengers enters and exists;
- Minimize the number of times, when one passenger passes another

Problem H. Bus

Solution (idea)

- Three cases:
- $\left[a_{i}, b_{i}\right] \subset\left[a_{j}, b_{j}\right]$, seat of i should be closer to entry;
- $\left[a_{i}, b_{i}\right] \cap\left[a_{j}, b_{j}\right]=\emptyset$, they will not pass each other;
- Otherwise, they will pass each other exactly once anyway;
- Place passengers in order of increasing of theirs a_{i};
- To calculate a number of passes algorithm use segment tree.

2. Basic group: Problem Analysis

Problem H. Bus

Solution

- Scanline with two kinds of events: enters and exits;
- When i-th passenger enters, assign 1 to his seat;
- When i-th passenger exits, assign 0 to his seat;
- For both kinds of events we use set and sum in segment tree.

Problem I. Rectangles

ENS Lyon. Day
2. Basic group: Problem Analysis

Statement

- Given n rectangles, any two of them do not have common points;
- B is farther than A if B's top left corner lies strictly below and strictly right than bottom right corner of A;
- Chain is sequence R_{1}, \ldots, R_{k}, s.t. for all i R_{i} is father than R_{i-1};
- Weight of chain is sum of the numbers inside rectangles;
- Find the chain with maximal weight.

Problem I. Rectangles

Solution

- Sort rectangles by their x value;
- Compress y coordinates, scanline, two kinds of events:
- ST keeps length of maximal weight of chain;
- Rectangle i starts; add a_{i} to range $\left[y_{m} i n, y_{i}\right]$;
- Find the maximum in the segment tree;
- To restore the answer.

Problem J. Windows

Statement

- Given n overlapping rectangular windows;
- Find point covered by the maximal number of windows.

Problem J. Windows

Solution

- Scanline, sort rectangles by x coordinates, compress y coordinates;
- ST stores how many rectangles cover y-range;
- Events of two kinds:
- Rectangular starts; add +1 in the range [y_{1}, y_{2}];
- Rectangular ends; add -1 in the range [y_{1}, y_{2}];

ENS Lyon. Day 2. Basic group: Problem Analysis

- Find maximum in the array after each event of first type.

Problem K. Windows 2

Statement

- Given n overlapping rectangular windows
- Find the area covered by this windows

Problem K. Windows 2

Solution

- Scanline, sort rectangles by x coordinates, compress y coordinates;
- Calculate uncovered area, so the result is equal to the difference between all area and uncovered area;
- Events of two types:
- Rectangular starts; add +1 in the range
[y_{1}, y_{2}];
- Rectangular ends; add -1 in the range $\left[y_{1}, y_{2}\right] ;$
- The minimum (0) corresponds to uncovered y-s;

Problem L. Two captains

Statement

- Two captains, three kinds of orders:
- send / r - send sailors toward the cannons with numbers from / to r; back / r-recall all his sailors from the cannons with numbers from $/$ to r rum - bring bottle of rum
- If sailors obeing different captains stay on the same cannon, they kill each other
- Insert minimal number of rum orders to the plans to save sailors

ENS Lyon. Day 2. Basic group: Problem Analysis

Problem L. Two captains

Solution

- DP: canFirst $[i][j]$ - can the 1 -st captain give i-th orders, if the 2-nd captain gave j orders; canFirst $[i][j]$ is true in the following cases:
- i-th order is back or rum
- order is send $/ r$ and there is no sailors of the second captain (after j orders) staying on cannons [$/$, r]
- The same dynamic for the 2-nd captain: canSecond $[i][j]$.

ENS Lyon. Day 2. Basic group: Problem Analysis

Problem L. Two captains

Solution

- The numbers of sailors of 2-nd captain on the cannons stores in ST;
- send / r; add +1 from / to r;
- back / r; add -1 from / to r;
- rum - nothing happens;
- For each j-th order of the 2-nd captain do the following:
- update ST;
- Calculate canFirst $[i][j]$ for all values of i.

2. Basic group: Problem Analysis

Problem L. Two captains

Solution

- DP: rum $[i][j]$ - minimal number of rum orders to save sailors after i orders of the 1 -st captain and j orders of the 2 -nd captain.

ENS Lyon. Day
2. Basic group: Problem Analysis

Problem L. Two captains

Solution

- How to calculate?
- If canFirst $[i][j]$ and canSecond $[i][j]$ and they don't send their sailors to the same cannon, then $\operatorname{rum}[i][j]=\operatorname{rum}[i-1][j-1]$;
- If canFirst $[i][j]$, then
$\operatorname{rum}[i][j]=\operatorname{rum}[i-1][j]+1 ; 2$-nd gave rum order;
- If canSecond $[i][j]$, then
$\operatorname{rum}[i][j]=\operatorname{rum}[i][j-1]+1 ; 1$-nd gave rum order.
Problem Analysis

Questions
Questions?

