ENS Lyon Training Camp Day 04. Problem Analysis

Maxim Buzdalov

ITMO UNIVERSITY
October 30, 2015

Problem A. Number of paths in

 acyclic graph
Statement

- Given an acyclic graph with N vertices
- Find the number of paths from 1 to N

ENS Lyon
Training Camp Day 04. Problem Analysis

Maxim Buzdalov

Problem A Problem B

Problem A. Number of paths in

 acyclic graph
Statement

- Given an acyclic graph with N vertices
- Find the number of paths from 1 to N

Solution

- $A(i)$ - the number of paths from 1 to i
- $A(1)=1, A(i \neq 1)=$ sum of all $A(j)$ such that $j \rightarrow i$ is an edge
- Time and space complexity: $O(N)$

Problem B. Knapsack

Statement

- N items, each has weight w_{i} and cost c_{i}
- A knapsack with max weight of W
- Find the subset of items which fit the knapsack and have maximum cost

Problem B. Knapsack

Solution

- $C(i, j)$ - the maximum cost you can have by using some items from $[1 ; i]$ with total weight exactly j
- $B(i, j)$ - whether you should use the item i
- Boundary: $C(x, 0)=0$ for all x
- $C(i, j)$ is a maximum of:
- $C(i-1, j) \leftarrow$ don't get the item i
- $C\left(i-1, j-w_{i}\right)+c_{i} \leftarrow$ get the item i
- Answer: the max of $C(n, j)$ for $j \in[1 ; W]$
- Time and space complexity: $O(N W)$

Problem C. Longest common subsequence

Statement

- Given two sequences $A_{[1 ; N]}$ and $B_{[1 ; M]}$
- What is their longest common subsequence?

Problem C. Longest common subsequence

Solution

- $L(i, j)$ - the LCS length for $A_{[i ; i]}$ and $B_{[1 ; j]}$
- $L(i, j)=\max (L(i-1, j), L(i, j-1))$
- If $A_{i}=B_{j}$, then

$$
L(i, j) \leftarrow \max (L(i, j), 1+L(i-1, j-1))
$$

Problem C. Longest common subsequence

Solution

- $L(i, j)$ - the LCS length for $A_{[1 ; i]}$ and $B_{[1 ; j]}$
- $L(i, j)=\max (L(i-1, j), L(i, j-1))$
- If $A_{i}=B_{j}$, then
$L(i, j) \leftarrow \max (L(i, j), 1+L(i-1, j-1))$
- Restore an answer: $B(i, j)=\left\{i^{-}, j^{-}, i j^{-}\right\}$ (which way to move)
- Can be done without that

Problem C. Longest common subsequence

Solution

- L(i,j) - the LCS length for $A_{[1 ; i]}$ and $B_{[1 ; j]}$
- $L(i, j)=\max (L(i-1, j), L(i, j-1))$
- If $A_{i}=B_{j}$, then

$$
L(i, j) \leftarrow \max (L(i, j), 1+L(i-1, j-1))
$$

- Restore an answer: $B(i, j)=\left\{i^{-}, j^{-}, i j^{-}\right\}$ (which way to move)
- Can be done without that
- Time and space complexity: $O(N M)$

Problem D. Levenshtein distance

Statement

- Given two strings A and B
- Operations: add symbol, remove symbol, replace symbol
- What is the shortest sequence of operations which transforms A to B ?

ENS Lyon Training Camp Day 04. Problem Analysis

Maxim Buzdalov

Problem A
Problem B
Problem C
Problem D
Problem E
Problem F
Droblem G

Problem D. Levenshtein distance

Solution

- $D(i, j)$ - the Levenshtein distance between $A_{[1 ; i]}$ and $B_{[1 ; j]}$
- Initialization: $D(i, 0)=i, D(0, j)=j$
- $D(i, j)$: the general case:
- A_{i} can be removed: $D(i, j) \leftarrow 1+D(i-1, j)$
- B_{j} can be added: $D(i, j) \leftarrow 1+D(i, j-1)$
- A_{i} can be replaced by B_{j} : $D(i, j) \leftarrow 1+D(i-1, j-1)$
- If $A_{i}=B_{j}, D(i, j) \leftarrow D(i-1, j-1)$
- Time and space complexity: $O(|A||B|)$

Problem E. Longest increasing subsequence

Statement

- Given a sequence of integers $A_{[1 ; N]}$
- Find a longest increasing subsequence

Problem E. Longest increasing subsequence

Solution

- $D(i)$ - the length of a LIS which contains i-th element
- $B(i)$ - a pointer to the previous element
- How to compute?
- check all $j<i$ where $A_{j}<A_{i}$
- if $D(j)+1>D(i)$, update $D(i)$ and $B(i)$
- Time complexity: $O\left(N^{2}\right)$
- Space complexity: $O(N)$

Problem F. Maximal weight matching in tree

Statement

- Given a tree with weights on edges
- Find a maximum weight matching

Solution

- Turn an arbitrary vertex into a root
- Dynamic programming: maximum weight matching for a subtree
- Two cases: subtree root is or is not paired with a child

Problem F. Solution

- First, assume that the root is not paired
- Sum best values from children

Problem F. Solution

- First, assume that the root is not paired
- Sum best values from children

Problem F. Solution

- Second, pair root with every child in turn
- For the paired child use unpaired DP value

Problem F. Solution

- Second, pair root with every child in turn
- For the paired child use unpaired DP value

Problem F. Solution

- Second, pair root with every child in turn
- For the paired child use unpaired DP value

Problem F. Solution

- Second, pair root with every child in turn
- For the paired child use unpaired DP value

Problem F. Solution

- Second, pair root with every child in turn
- For the paired child use unpaired DP value

Problem F. Solution

- Second, pair root with every child in turn
- For the paired child use unpaired DP value

ENS Lyon
Training Camp Day 04. Problem

Analysis
Maxim Buzdalov

Problem F

Problem F. Solution

- Second, pair root with every child in turn
- For the paired child use unpaired DP value

ENS Lyon
Training Camp Day 04. Problem

Analysis
Maxim Buzdalov

Problem F

Problem G. Matrix multiplication

Statement

- Given N matrices of size $A_{1} \times A_{2}, A_{2} \times A_{3}$, $\ldots, A_{N} \times A_{N+1}$
- Assume that it takes $X \cdot Y \cdot Z$ operations to multiply a matrix $X \times Y$ by a matrix $Y \times Z$
- Find the positioning of parentheses such that the total number of operations is minimal

Problem G. Matrix multiplication

Solution

- $D(i, j)$ - the minimum number of operations to multiply matrices from i-th to j-th
- $D(i, i)=0$
- $D(i, j)=\min _{i \leq k<j}$
$\left(D(i, k) \cdot D(k+1, j)+A_{i} \cdot A_{k+1} \cdot A_{j+1}\right)$
- Restoring the answer: $B(i, j)$ is the optimum k from above
- Time complexity: $O\left(N^{3}\right)$
- Space complexity: $O\left(N^{2}\right)$

Problem H. Longest subpalindrome

Statement

- Given a string S, find its longest subsequence which is a palindrome

Problem H. Longest subpalindrome

Statement

- Given a string S, find its longest subsequence which is a palindrome

Solution

- $D(i, j)$ - the answer for $S_{[i ;]}$
- $D(i, i)=1$
- Recomputation:
- $D(i, j) \leftarrow \max (D(i+1, j), D(i, j-1))$
- If $S_{i}=S_{j}$, then $D(i, j) \leftarrow 2+D(i+1, j-1)$
- Time and space complexity: $O\left(|S|^{2}\right)$

Maxim Buzdalov

Problem I. Traveling salesman problem

Statement

- N cities, M roads
- $d_{i j}$ - the length of a road between cities i and j (may be ∞)
- Find a shortest path which visits every city exactly once

Maxim Buzdalov

Problem A Dioblem B

Problem I. Solution

- $D(S, i)$ - the shortest path from vertex 1 to vertex i which visits every city from a set S exactly once
- $D(S, i)=\min _{j \in S \backslash\{i\}} D(S \backslash\{i\}, j)+d_{i j}$

Problem I. Solution

- $D(S, i)$ - the shortest path from vertex 1 to vertex i which visits every city from a set S exactly once
- $D(S, i)=\min _{j \in S \backslash\{i\}} D(S \backslash\{i\}, j)+d_{i j}$
- To find the answer:
- test all endpoints i and j
- test all vertex sets S which include 1 and i
- update the answer with $D(S, i)+D(\{1\} \cup \bar{S}, j)$

Problem I. Solution

- $D(S, i)$ - the shortest path from vertex 1 to vertex i which visits every city from a set S exactly once
- $D(S, i)=\min _{j \in S \backslash\{i\}} D(S \backslash\{i\}, j)+d_{i j}$
- To find the answer:
- test all endpoints i and j
- test all vertex sets S which include 1 and i
- update the answer with

$$
D(S, i)+D(\{1\} \cup \bar{S}, j)
$$

- Implementation detail: use integers for vertex sets (bit masks)
- Time complexity: $O\left(2^{N} \cdot N^{2}\right)$ Day 04. Problem

Analysis
Maxim Buzdalov

Problem J. Bracket subsequences

Statement

- Given a bracket sequence
- How many different subsequences are regular bracket sequences?

Insights

- First, big integers:
the answer can have 60 digits
- Different subsequences:
need count each one exactly once

Problem J. Solution (1/2)

- A non-ambiguous context-free grammar for regular bracket sequences:
- $S \leftarrow \varepsilon \mid(S) S$
- either an empty sequence, or the first opening bracket, its closing bracket and the remaining parts
- This enables a dynamic programming idea: counting the answer for sequence segments

Problem J. Solution (2/2)

Dynamic programming

- $A(i, j)$: answer for sequence segment $S_{[i ; j]}$
- $A(i+1, i)=1$: an empty sequence
- $\left.S_{i}={ }^{\prime}\right)^{\prime}: A(i, j)=A(i+1, j)$
- Otherwise:
- check all closing bracket indices $k \in[i+1 ; j]$
- $A(i, j) \leftarrow A(i, j)+A(i+1, k-1) \cdot A(k+1, j)$

Problem J. Solution (2/2)

Dynamic programming

- $A(i, j)$: answer for sequence segment $S_{[i ; j]}$
- $A(i+1, i)=1$: an empty sequence
- $\left.S_{i}={ }^{\prime}\right)^{\prime}: A(i, j)=A(i+1, j)$
- Otherwise:
- check all closing bracket indices $k \in[i+1 ; j]$
- $A(i, j) \leftarrow A(i, j)+A(i+1, k-1) \cdot A(k+1, j)$
- Not really, as you may count some subsequences twice (example: '(())()')
- ())()(()()())
- ())()(())())

Problem J. Solution (2/2)

Dynamic programming

- $A(i, j)$: answer for sequence segment $S_{[i ; j]}$
- $A(i+1, i)=1$: an empty sequence
- $\left.S_{i}={ }^{\prime}\right)^{\prime}: A(i, j)=A(i+1, j)$
- Otherwise:
- check all closing bracket indices $k \in[i+1 ; j]$
- $A(i, j) \leftarrow$
$A(i, j)+\left(A(i+1, k-1)-A\left(i+1, k^{\prime}-1\right)\right)$.
$A(k+1, j)$ where k^{\prime} is the previous closing bracket index

Problem K. String decomposition

Statement

- Represent the given string $S=S_{1}^{d_{1}} \ldots S_{k}^{d_{k}}$, where $A^{b}=A A \ldots A b$ times, such that $\sum_{i} d_{i}$ is minimum possible

Solution

- $D_{1}(i, j)$ - the maximum d in $S_{[i ; j]}=T^{d}$
- using prefix function or z-function for each i separately, running time: $O\left(|S|^{2}\right)$
- $D_{2}(i)$ - the answer for $S_{[1 ; i]}$
- minimum of $D_{2}(j)+D_{1}(j+1, i)$ for all $0 \leq j<i$

Maxim Buzdalov Problem B Problem C

