
ENS Lyon Camp. Day 2. Basic group.
Cartesian Tree.

26 October

Contents
1 Cartesian Tree. Definition. 1

2 Cartesian Tree. Construction 1

3 Cartesian Tree. Operations. 2
3.1 Split. 2
3.2 Merge. 3
3.3 Insert. 4
3.4 Delete. 4

4 Treap with implicit key 4
4.1 Problem statement. 4
4.2 Definition and Construction . 4
4.3 Split and Merge. 5
4.4 Application . 6

1 Cartesian Tree. Definition.
Max Heap is a binary tree that satisfies the heap property: if 𝑣 is a parent node of, 𝑢 then the key
of node 𝑣 is greater than key of 𝑢. From definition follows that the root has the maximal key. The
similar definition is for Min heap. The Binary Search Tree (BST) property states that the key
in node must be greater than all keys stored in the left subtree, and smaller than all keys in right
subtree.

Cartesian Tree is a binary tree such that every node stores two values 𝑥 and 𝑦. Value 𝑥 is
named key and satisfies BST property; value 𝑦 is named priority and satisfies heap property.

2 Cartesian Tree. Construction
How to construct cartesian tree given the pairs (𝑥𝑖, 𝑦𝑖)? Firstly, the algorithm sorts all pairs by
their keys: 𝑥1 < 𝑥2 < · · · < 𝑥𝑛. Then it goes from left to right, if the pair (𝑥𝑘, 𝑦𝑘) was added on
the last step than node stores this pair in the rightest node in the tree. (Because all keys 𝑥 satisfy
the BST property). Algorithm tries to add a new pair (𝑥𝑘+1, 𝑦𝑘+1) as a right child of (𝑥𝑘, 𝑦𝑘) (it
is possible that 𝑦𝑘 > 𝑦𝑘+1). Otherwise, algorithm goes up to the parents in the tree until priority

1

Figure 1: Cartesian Tree.

𝑦𝑘+1 is less than priority in current vertex. When the algorithm finds suitable vertex 𝑣, the right
child of 𝑣 becomes the left child of new node (𝑥𝑘+1, 𝑦𝑘+1), and the new node becomes the new
right child of 𝑣.

The time complexity of this algorithm is 𝑂(𝑛) (without time for sort).
The cartesian tree is stored in this way:

1 s t r u c t Node {
2 Node* l e f t , r i g h t ; // l e f t and r i gh t subt r e e s
3 i n t x , y ; // key and p r i o r i t y
4

5 s t a t i c Node* nu l l ; // empty t r e e
6 }
7

8 typede f Node* pNode ;

3 Cartesian Tree. Operations.

3.1 Split.

This operation allows splitting cartesian tree 𝑇 by key 𝑘 into two cartesian trees 𝑇1 and 𝑇2. 𝑇1

contains all keys less than or equal to 𝑘 and 𝑇2 contains all keys greater than 𝑘.
For the sake of brevity 𝑇.𝐿 and 𝑇.𝑅 will be the left and the right subtrees of 𝑇 , orrespondingly.
Imagine the case when the key 𝑘 is greater than or equal to the key stored in the root:

∙ Left subtree of 𝑇1 is equal to 𝑇.𝐿. To find the right subtree of 𝑇1, algorithm splits 𝑇.𝑅
recursively into 𝑇 ′

1 and 𝑇 ′
2; so 𝑇 ′

1 is the desired subtree.

2

∙ 𝑇2 is equal to 𝑇 ′
2.

The opposite case is processed similarly.
1 void s p l i t (pNode T, pNode &T1 , pNode &T2 , i n t x) {
2 // empty t r e e
3 i f (T == Node : : nu l l) {
4 l = Node : : nu l l ;
5 r = Node : : nu l l
6 }
7 e l s e i f (T. x <= k) {
8 s p l i t (T. r i ght , T. r i ght , T2 , x) ;
9 T1 = T;

10 }
11 e l s e {
12 s p l i t (T. l e f t , T1 , T. l e f t , x) ;
13 T2 = T;
14 }
15 }

The time complexity of this operation is 𝒪(ℎ) where ℎ is the height of 𝑇 .

3.2 Merge.

This operation allows to merge two cartesian trees 𝑇1 and 𝑇2 into the one, with the condition that
the biggest key in 𝑇1 is less than or equal to the smallest key in 𝑇2. The resulting tree 𝑇 contains
all keys from 𝑇1 and 𝑇2 trees.

The root of the resulting tree 𝑇 should have maximal priority 𝑦 among all other vertices. Of
course, it is either root of 𝑇1 or root of 𝑇2 with maximal 𝑦. To be specific, we consider the case
when root of 𝑇1 has the greater priority than root of 𝑇2. The left subtree of 𝑇 is left subtree of
𝑇1, and the right subtree is equal to the merge of right subtree of 𝑇1 and 𝑇2.

1 merge (pNode T1 , pNode T2 , pNode &T) {
2 // emtpy T1
3 i f (T1 == Node : : nu l l) {
4 T = T2 ;
5 re turn ;
6 }
7 // empty T2
8 i f (T2 == Node : : nu l l) {
9 T = T1 ;

10 re turn ;
11 }
12

13 i f (T1−>y > T2−>y) {
14 merge (T1−>right , T2 , T1−>r i gh t) ;
15 T = T1 ;
16 }
17 e l s e {
18 merge (T2−>l e f t , T1 , T2−>l e f t) ;
19 T = T2 ;

3

20 }
21 }

The time complexity of this operation is 𝒪(ℎ) where ℎ is the maximal height of 𝑇1 and 𝑇2.

3.3 Insert.

This operation insert element 𝑛𝑒𝑤𝑁𝑜𝑑𝑒 into the tree 𝑇 . The new element is the tree, which
consists of only one node and tree 𝑇 with inserting element is the merge of 𝑇 and new element.
But 𝑇 might contain keys less and greater than key of the new element 𝑛𝑒𝑤𝑁𝑜𝑑𝑒.𝑥. Therefore
algorithm should split the tree 𝑇 by 𝑛𝑒𝑤𝑁𝑜𝑑𝑒.𝑥 before merge.

1 void i n s e r t (pNode &T, pNode newNode) {
2 pNode T1 , T2 ;
3 s p l i t (T, newNode−>x , T1 , T2) ;
4 merge (T1 , newNode , T1) ;
5 merge (T1 , T2 , T) ;
6 }

3.4 Delete.

This operation remove element 𝑛𝑜𝑑𝑒 from the tree 𝑇 . Algorithm splits the tree 𝑇 two times to
pick out the required element and merges remaining trees.

1 void d e l e t e (pNode &T, pNode node) {
2 pNode T1 , T2 , t ra sh ;
3 s p l i t (T, node−>x , T1 , T2) ;
4 s p l i t (T1 , node−>x − eps , T1 , t ra sh) ;
5 merge (T1 , T2 , T) ;
6 }

4 Treap with implicit key

4.1 Problem statement.

Consider an array with 𝑛 elements. The queries might be very different. For example, insert
element in arbitrary position, remove element in arbitary position or even remove the range of
elements. Other queries are reverse or rearrange a range in the array. Of course, this queries
should be procedeed effectively. The data structure, which solves this kinds of problems, is named
Treap with implicit key.

4.2 Definition and Construction

The treap with implicit key is cartesian tree, but each node of it stores the order number of node
instead of 𝑥. It means, if someone arrange nodes in order of BST, 𝑥 — is the order number of node
in this arrangment. Of course this modification maintain the invariant of binary search tree. But

4

there is one problem: insert and delete could change order, so it needs 𝑂(𝑛) time to recalculate
all keys in the worst case.

Actually the key 𝑥 is not stored in the tree. Instead of this, each node stores auxiliary value
𝑠𝑖𝑧𝑒, This value equals to the size of tree in the node, i.e. the total number of vertices in subtree
of node including the node. The important observation is that the sum of sizes of all not-visited
left subtrees on the path from the root to the node 𝑣 plus the number of nodes in the left subtree
of 𝑣 equals to the key 𝑥 of node.

1 s t r u c t Node {
2 Node* l e f t , r i g h t ; // l e f t and r i gh t subt r e e s
3 i n t y ;
4 i n t s i z e ; // s i z e o f the t r e e
5

6 s t a t i c Node* nu l l ; // empty t r e e
7

8 void r e c a l c () {
9 s i z e = 1 + l−>s i z e + r−>s i z e ;

10 }
11 }
12

13 typede f Node* pNode ;

Array is implemented with a treap with implicit key, index of element is a key in treap and the
value of element is a priority. Like in array algorithm does not store index, but the order of
elements is known.

4.3 Split and Merge.

Now merge operation allows to merge two arbitrary trees, it corresponds to concatenation of arrays.
Implementations of merge for cartesian tree does not use the 𝑥 key. So the implementation in this
case is exactly the same, except for recalculation of the sizes.

Split operation divides tree 𝑇 by key 𝑘 into two trees 𝑇1 and 𝑇2 in the way that 𝑇1 contains
exactly 𝑘 nodes. It corresponds to dividing array into two parts such that fist part contains exactly
𝑘 elements.

1 void s p l i t (pNode T, pNode &T1 , pNode &T2 , i n t k) {
2 // empty t r e e case
3 i f (T == Node : : nu l l) {
4 T1 = Node : : nu l l ;
5 T2 = Node : : nu l l ;
6 }
7

8 // l e f t subt ree corresponds to p r e f i x o f the array with
9 // l ength equa l s to s i z e o f t h i s subt ree

10 i n t l e f t S i z e = T−>l e f t −>s i z e ;
11

12 // r equ i r ed p r e f i x i s s ho r t e r or equal
13 i f (l e f t S i z e >= k) {
14 s p l i t (T−>l e f t , k , T1 , T−>l e f t) ;
15 T−>r e c a l c () ;

5

16 T2 = T;
17 } e l s e { // r equ i r ed p r e f i x i s l onge r
18 // a lgor i thm al ready cuts l e f t subt ree and root , so
19 // the remaining number o f e lements to cut i s k − l e f t S i z e − 1
20 s p l i t (T−>right , k − l e f t S i z e − 1 , T−>right , T2) ;
21 T−>r e c a l c () ;
22 T1 = T;
23 }
24 }

To add element into the position 𝑖 of array, algorithm splits the correspondig tree by the key 𝑖
into 𝑇1, 𝑇2 and merge three trees: 𝑇1, new element and 𝑇2. To remove element on the position 𝑖
algorithm finds the corresponding vertex 𝑣, and replace 𝑣 with merge of its children.

4.4 Application

. It is possible to use treap with implicit key to solve RMQ/RSQ problem with the range update.
The algorithm keeps two additional fields in node: one for the result of operation and one for
inconsistency.

Operation is calculated over all nodes in subtree of vertex, including vertex. It keeps up-to-
date in the similar way as 𝑠𝑖𝑧𝑒, it updates this field using the 𝑠𝑖𝑧𝑒 fields of children. To get result
of operation in some range, algorithm cuts the subtree corresponding given range with two splits,
return the value from the root and merge all trees back.

For the range update algorithm uses the same invariant as segment tree. Algorithm push
inconsistency to children for each visit of the vertex and keeps up-to-date value for vertex that
have inconsistensy.

For example, this is the algorithm for reverse problem. The main query is to reverse elements
in the given range. We will keep boolean field for inconsistency. The value 1 shows that the
corresponding segment should be reversed. And push swaps the left and right subtree and flip
boolean flag (xor flag with true).

1 // c a l l t h i s f unc t i on at the beg inning o f s p l i t and merge c a l l s
2 void push (pNode v) {
3 i f (! i sRever sed)
4 re turn ;
5

6 swap (v−>l e f t , v−>r i gh t) ;
7 i f (v−>l e f t != Node : : nu l l) // i f the re e x i s t l e f t subt ree
8 v−>l e f t −>isRever sed ^= true ; // f l i p i n c on s i s t e n cy
9 i f (v−>r i gh t != Node : : nu l l) // i f the r e e x i s t l e f t subt ree

10 v−>right−>isRever sed ^= true ; // f l i p i n c on s i s t e n cy
11

12 i sRever sed = f a l s e ;
13 }
14

15 void r e v e r s e (pNode &T, i n t l , i n t r) {
16 pNode T1 , T2 , R; // R i s the range from l to r
17

18 s p l i t (T, T1 , T2 , l − 1) ;

6

19 s p l i t (T2 , R, T2 , r) ;
20

21 R−>isRever sed = true ;
22

23 merge (T1 , R, T1) ;
24 merge (T1 , T2 , T) ;
25 }

7

	Cartesian Tree. Definition.
	Cartesian Tree. Construction
	Cartesian Tree. Operations.
	Split.
	Merge.
	Insert.
	Delete.

	Treap with implicit key
	Problem statement.
	Definition and Construction
	Split and Merge.
	Application

