The Price of Forgetting in Parallel Routing

Jonatha Anselmi & Bruno Gaujal
INRIA

Aussois — June, 2011

12

Introduction

Goal of my talk : explore different types of routing policies (selfish/social,
with /without memory) in a task-resource system and compare their
performances.

This leads to the introduction of the concepts of price of anarchy and price
of forgetting, respectively.

T

Flow in parallel servers

server 1

task flow

router server 2

server 3

3/21

Three models of information structure

@ Complete information : Instance (packet sizes and arrival times) is
fully known by the router.

@ No information : The instance is completely unknown to the router
that only discovers the data as it comes.

@ Statistical information : The router does not know the actual instance
but has some knowledge about its statistics (arrival rate, average size
of packets, distribution,...)

4/21

Two models for the cost

The cost model can either be

@ the worse case : the worse possible response time over all tasks
(WCET),

@ or the average case : the mean response times over the set of tasks,
equipped with a distribution.

g

On-Line vs Off-line Scheduling

Here, the controller has statistical information on the instance x (arrrival
times and sizes) and minimizes the average response time E(rz(x)).
Off-Line case : the controller must take all its decisions beforehand.
On-Line case : the controller sees the current state (backlog) up to time n
and can adapt its decisions to it,

(they coincide in the deterministic case).

The expected cost of the optimal policy at time n is :

Off line :
alj.n.fan E(ralv"' »an(X))'
On Line :
h Infd E(rdl(xl)"" adn(Xn)(X))’
Theorem
There exists an optimal deterministic policy (in both cases). J

Y

Average response time in parallel queues

Assumptions on the arrival times and task sizes.

exponential queue

(w) @
Poisson’s arrivals @
— >
\ @ Q2

exponential queue

Service times in queues serve packets at rate 1 and uo resp.
The arrival sequence is Poisson with parameter A.

(INRIA) 7/21

On-Line : Optimal Control Problem

This problem can be solved numerically in the on-line case using optimal
control techniques.

The computation is NP-hard in general (with m servers).
Theorem

When the servers are identical, Join the Shortest Queue (Selfish policy)
(JSQ) is an optimal policy.

Theorem (Weber, R. and Weiss, G. (1990))

When the number of servers goes to infinity, index policies are optimal.

8/21

Off-line : Bernoulli Policy

As for off-line policies, the scheduler has to decide where to send each job
in advance.

One possibility : send jobs to queues with probabilities p1,- - , pm.

The optimal Bernoulli policy can be computed using the following
mathematical program.

p
Opt . i

R .= min —_—
Bernoulli Plse-Prm ; 1: T,)\Pi

under the constraints > _; pi = 1 and 0 < p; < pi/A.
This problem can be solved in closed form using a Lagrangian relaxation.

9/21

Off-line : Bernoulli Policy

The Js fastest servers are used, where

i — A
is:min{izlzu,-ﬂg(“f)—)}.

(Zj:l \/.Uj)2
Moreover, the optimal probability p; to chose server i < is is
1 Vi
P = (i =37
A B
where = def EJ 1‘#7] . Finally, the mean response time in the utilized server

His)—
I |S
ROPt .
Bernoulh B\/ wi, 1<1 <.

10/ 21

More advanced off-line policies

Here, we compare with Gamma and with a mixture of Erlangs (where the
optimal solution can also be computed).

0.5 T T
"reskM100.dat"
"resEM100.dat"
H "resG100.dat" S
0.45 -} "resCB100.dat" B
04l]
0.35 |-
03 [
0.25 |-
0.2 | 4
0.15 |- 4
0.1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e

Price of Forgetting

Price of Forgetting measures the benefit of having memory in the
scheduler.
poF & ROPE /ROPE. (1)

Bernoulli

Computing RP! in the off-line case is very difficult (open problem).
There exists non trivial lower bounds :

ROPE > inf ZP' D(N/p)/Gl/1

P1,---,PN >0
prttpy=1 i=1

Theorem
1

PoF(N) <1+ —¢————.
W= minfly yi?s?

The PoF is bounded by 2 in the exponential case (but can be unbounded
when the coefficient of variation goes to 0).

12/ 21

Price of Forgetting (l1)

2.1 ; ; ; ;
L=0.97 L=0.99
A A
1.9F =085
1.
L=0.70
g 1.7F 4
5
g o[L=055 7
=
®»
= 15
2 15 040
=
o 14 028
1.3F E
1.2+ -
110 -
1
50 100 500 1000 5000 10000
N

13/ 21

Price of Forgetting (l11)

[N
- N

+ Prlce of forgettmg with Formula (14) (homogeneous case)
— # — Price of forgetting as in Table 1 (heterogeneous case)

.
w AN 00 N ® © N

-
NA

-
-
e

L L L L L L
0.25 0.40 0.55 0.70 0.85 0.95 0.99

o=
o

Ty

Price of Anarchy

The Price of Anarchy (PoA) [Papadimitriou, 99] is an index measuring the
inefficiency of a decentralized system with respect to its centralized
counterpart in presence of selfish users.

Here, it is the response-time ratio between the worst-case situation where
each task is selfish (maximizes its own response time) and the contrasting
situation where jobs are routed optimally by a scheduler, yielding the social
optimum.

def RVE(N)

PoA(N) & Row () > &

15 / 21

Selfish routing

Tasks wish to minimize their mean waiting time and select a server

accordingly. They are allowed to randomize regarding their choice of
servers.

The solution is a symmetric Nash equilibrium under steady-state con-
ditions :

The waiting times in all used servers are equal.

N — A
The k fastest servers are used : kK = min {1 <P <N:pip < M(')}
I

The probability to join server i is

Y
AN gy A

and the corresponding response time is

RWe(N) = —— .
(N) o — A

16 / 21

The Price of Anarchy with a twist

The performance ratio between the selfing routing using probabilities
(P1;---,Py) and the best routing probabilities (p7, ..., py) is

Theorem (Haviv and Roughgarden, 2007)

RW&(N)/REZ:nouIIi(N) <N (tight) J

17/21

The Price of Anarchy with a twist

The performance ratio between the selfing routing using probabilities

(P1;---,Py) and the best routing probabilities (p7, ..., py) is
Theorem (Haviv and Roughgarden, 2007)
Rwe(N)/REZ:nouIli(N) < N (tlght) J

POA(N) = POABemou//,'(N)POF(N).
In the exponential case, since PoF (N) < 2, PoA(N) < 2N.

17/ 21

Optimal Policy : Billiard sequences

Theorem

Billiard sequences are optimal routing policies in two queues (or N

deterministic fully loaded queues). They perform within 1% of optimal in
most cases.

m=

18/ 21

Optimal Policy : Billiard sequences

Theorem

Billiard sequences are optimal routing policies in two queues (or N

deterministic fully loaded queues). They perform within 1% of optimal in
most cases.

m=

18/ 21

Optimal Policy : Billiard sequences

Theorem

Billiard sequences are optimal routing policies in two queues (or N

deterministic fully loaded queues). They perform within 1% of optimal in
most cases.

18/ 21

Optimal Policy : Billiard sequences

Theorem

Billiard sequences are optimal routing policies in two queues (or N

deterministic fully loaded queues). They perform within 1% of optimal in
most cases.

m=0

18/ 21

Optimal Policy : Billiard sequences

Theorem

Billiard sequences are optimal routing policies in two queues (or N

deterministic fully loaded queues). They perform within 1% of optimal in
most cases.

m=00

18/ 21

Optimal Policy : Billiard sequences

Theorem

Billiard sequences are optimal routing policies in two queues (or N

deterministic fully loaded queues). They perform within 1% of optimal in
most cases.

m=001

18/ 21

Optimal Policy : Billiard sequences

Theorem

Billiard sequences are optimal routing policies in two queues (or N

deterministic fully loaded queues). They perform within 1% of optimal in
most cases.

1
m=0010

18/ 21

The hard part : Rate computation

vs*

a =1
o

/i
Instability domain /// //

19/ 21

Real life test

Billiard sequences have been tested in a Boinc application (from D. Kondo

and B. Javadi).

Mean job completion time(hrs)

5
10

-
o
IS

T
””” Trace (Bil)
— Model (Bil)
Trace (Ber)
Model (Ber)
””” Trace (Rnd) P i
Model (Rnd)| .~ &

i
25 26 2.7

2.8 29 3

Arrival rate (1/hrs)

20/ 21

Thank you

	Goal and Motivation
	On-line vs Off-line Scheduling
	Price of forgetting
	Billiard sequences

