### The Price of Forgetting in Parallel Routing

Jonatha Anselmi & Bruno Gaujal

INRIA

Aussois - June, 2011



Goal of my talk : explore different types of routing policies (selfish/social, with/without memory) in a task-resource system and compare their performances.

This leads to the introduction of the concepts of price of anarchy and price of forgetting, respectively.

### Flow in parallel servers



### Three models of information structure

- Complete information : Instance (packet sizes and arrival times) is fully known by the router.
- No information : The instance is completely unknown to the router that only discovers the data as it comes.
- Statistical information : The router does not know the actual instance but has some knowledge about its statistics (arrival rate, average size of packets, distribution,...)

The cost model can either be

- the worse case : the worse possible response time over all tasks (WCET),
- or the average case : the mean response times over the set of tasks, equipped with a distribution.

### **On-Line vs Off-line Scheduling**

Here, the controller has statistical information on the instance x (arrrival times and sizes) and minimizes the average response time  $\mathbb{E}(r_{\pi}(x))$ . Off-Line case : the controller must take all its decisions beforehand. On-Line case : the controller sees the current state (backlog) up to time n and can adapt its decisions to it, (they coincide in the deterministic case). The expected cost of the optimal policy at time n is : Off line :

$$\inf_{a_1,\cdots,a_n}\mathbb{E}(r_{a_1,\cdots,a_n}(x)).$$

On Line :

$$\inf_{d_1,\cdots,d_n} \mathbb{E}(r_{d_1(x_1),\cdots,d_n(x_n)}(x)).$$

#### Theorem

There exists an optimal deterministic policy (in both cases).

#### (INRIA)

### Average response time in parallel queues

Assumptions on the arrival times and task sizes.



Service times in queues serve packets at rate  $\mu_1$  and  $\mu_2$  resp. The arrival sequence is Poisson with parameter  $\lambda$ . This problem can be solved numerically in the on-line case using optimal control techniques.

The computation is NP-hard in general (with *m* servers).

#### Theorem

When the servers are identical, Join the Shortest Queue (Selfish policy) (JSQ) is an optimal policy.

### Theorem (Weber, R. and Weiss, G. (1990))

When the number of servers goes to infinity, index policies are optimal.

As for off-line policies, the scheduler has to decide where to send each job in advance.

One possibility : send jobs to queues with probabilities  $p_1, \dots, p_m$ . The optimal Bernoulli policy can be computed using the following mathematical program.

$$\mathcal{R}_{Bernoulli}^{Opt} = \min_{p_1,\dots p_m} \sum_{i=1}^m rac{p_i}{\mu_i - \lambda p_i}$$

under the constraints  $\sum_i p_i = 1$  and  $0 \le p_i < \mu_i / \lambda$ . This problem can be solved in closed form using a Lagrangian relaxation.

### **Off-line : Bernoulli Policy**

The  $i_s$  fastest servers are used, where

$$i_s = \min\left\{i \ge 1: \mu_{i+1} \le \frac{(\mu_{(i)} - \lambda)^2}{(\sum_{j=1}^i \sqrt{\mu_j})^2}\right\}.$$

Moreover, the optimal probability  $p_i^*$  to chose server  $i \leq i_s$  is

$$p_i^* = rac{1}{\lambda}(\mu_i - rac{\sqrt{\mu_i}}{eta})$$

where  $\beta \stackrel{\text{def}}{=} \frac{\sum_{j=1}^{i_s} \sqrt{\mu_j}}{\mu_{(i_s)} - \lambda}$ . Finally, the mean response time in the utilized server i is  $R_{Bernoulli}^{Opt} = \beta \sqrt{\mu_i}, \quad i \leq i \leq i_s.$ 

### More advanced off-line policies

Here, we compare with Gamma and with a mixture of Erlangs (where the optimal solution can also be computed).



## **Price of Forgetting**

Price of Forgetting measures the benefit of having memory in the scheduler.

$$PoF \stackrel{\text{def}}{=} R^{Opt}_{Bernoulli} / R^{Opt}.$$
 (1)

Computing  $R^{Opt}$  in the off-line case is very difficult (open problem). There exists non trivial lower bounds :

$$R^{Opt} \geq \inf_{\substack{p_1,\ldots,p_N\geq 0:\\p_1+\cdots+p_N=1}} \sum_{i=1}^N p_i R_i^{D(\lambda/p_i)/GI/1}.$$

#### Theorem

$$\mathsf{PoF}(\mathsf{N}) \leq 1 + rac{1}{\min_{i=1}^{\mathsf{N}} \mu_i^2 s_i^2}.$$

The PoF is bounded by 2 in the exponential case (but can be unbounded when the coefficient of variation goes to 0).

(INRIA)

# Price of Forgetting (II)



# Price of Forgetting (III)



The Price of Anarchy (PoA) [Papadimitriou, 99] is an index measuring the inefficiency of a decentralized system with respect to its centralized counterpart in presence of selfish users.

Here, it is the response-time ratio between the worst-case situation where each task is selfish (maximizes its own response time) and the contrasting situation where jobs are routed optimally by a scheduler, yielding the *social optimum*.

$$\mathsf{PoA}(\mathsf{N}) \stackrel{\mathrm{def}}{=} rac{\mathsf{R}^{\mathsf{We}}(\mathsf{N})}{\mathsf{R}^{\mathsf{Opt}}(\mathsf{N})} \geq 1.$$

### Selfish routing

Tasks wish to minimize their mean waiting time and select a server accordingly. They are allowed to randomize regarding their choice of servers.

The solution is a symmetric Nash equilibrium under steady-state conditions :

The waiting times in all used servers are equal.

The *k* fastest servers are used :  $k = \min\left\{1 \le i \le N : \mu_{i+1} \le \frac{\mu_{(i)} - \lambda}{i}\right\}$ .

The probability to join server *i* is

$$\overline{p}_i = \frac{1}{\lambda} \left( \mu_i - \frac{k}{\mu_{(k)} - \lambda} \right)$$

and the corresponding response time is

$$R^{We}(N) = rac{k}{\mu_{(k)} - \lambda}.$$

The performance ratio between the selfing routing using probabilities  $(\overline{p}_1, \ldots, \overline{p}_N)$  and the best routing probabilities  $(p_1^*, \ldots, p_N^*)$  is

Theorem (Haviv and Roughgarden, 2007)

$$R^{We}(N)/R^{opt}_{Bernoulli}(N) \le N$$
 (tight)

The performance ratio between the selfing routing using probabilities  $(\overline{p}_1, \ldots, \overline{p}_N)$  and the best routing probabilities  $(p_1^*, \ldots, p_N^*)$  is

Theorem (Haviv and Roughgarden, 2007)

$$R^{We}(N)/R^{opt}_{Bernoulli}(N) \le N$$
 (tight)

$$PoA(N) = PoA_{Bernoulli}(N)PoF(N).$$

In the exponential case, since  $PoF(N) \leq 2$ ,  $PoA(N) \leq 2N$ .

### Theorem



### Theorem



### Theorem



### Theorem

Billiard sequences are optimal routing policies in two queues (or N deterministic fully loaded queues). They perform within 1% of optimal in most cases.



(INRIA)

### Theorem



### Theorem



### Theorem



### The hard part : Rate computation



### **Real life test**

Billiard sequences have been tested in a Boinc application (from D. Kondo and B. Javadi).



# Thank you