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Adaptive Mesh Refinement Applications (AMR)

x|
@ Mesh is dynamically refined / coarsened as
required by numerical precision i
i
Memory requirements increase / decrease B
Amount of parallelism increases / decreases
@ Generally evolves non-predictably
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Executing AMR applications on HPC resources (1/2)

Use static allocations (rigid jobs)
o E.g., cluster, supercomputing batch schedulers

@ Evolution is not known in advance
— User is forced to over-allocate
— Inefficient resource usage

e Example: target efficiency 75% (+10%)
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Ideally, unused resources should be filled by other applications
Needs support from the Resource Management System (RMS)
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Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink
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Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink
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Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink

o Clouds
“The illusion of infinite computing resources available on demand”

Infinite? Actually up to 20
Even without this limit: “Out of capacity” errors

— Application may run out-of-memory
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Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink

o Clouds
“The illusion of infinite computing resources available on demand”

Infinite? Actually up to 20
Even without this limit: “Out of capacity” errors

— Application may run out-of-memory

—
o ldeally, RMS guarantees the availability of resources to an AMR
application?
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Problem

A Resource Management System (RMS) which allows non-predictably

evolving applications
@ To use resources efficiently

@ Guarantee the availability of resources
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© CooRMv2
@ Resource Requests
@ High-level Operations
o Views
@ Scheduling Algorithm
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Resource Requests

@ Cluster ID, number of nodes, duration

@ RMS chooses start time — node IDs are allocated to the application
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Resource Requests

@ Cluster ID, number of nodes, duration
@ RMS chooses start time — node IDs are allocated to the application
o Type

Non-preemptible (default in major RMSs)
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Resource Requests

@ Cluster ID, number of nodes, duration
@ RMS chooses start time — node IDs are allocated to the application
o Type

Non-preemptible (default in major RMSs)
Preemptible (think OAR best-effort jobs)
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Resource Requests

@ Cluster ID, number of nodes, duration

@ RMS chooses start time — node IDs are allocated to the application
o Type
Non-preemptible (default in major RMSs)
Preemptible (think OAR best-effort jobs)
Pre-allocation
“l do not currently need these resources, but make sure | can get them
immediately if | need them.”
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High-level Operations

Low-level Operations

o CoORMV2 defines simple, low-level operations on requests

High-level Operations

Spontaneous Update Announced Update
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@ An update is guaranteed to succeed only inside a pre-allocation
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Views

@ Apps need to adapt their requests to the availability of the resources

@ Each app is presented with two views: non-preemptible, preemptible

@ Preemptible view informs when resources need to be preempted

14 Preelmptiblle view m—
12 Non-preemptible view mm—

Number of nodes
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Scheduling Algorithm

@ Pre-allocations and non-preemptible requests
Conservative Back-Filling (CBF)

@ Preemptible requests
equi-partitioning
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9 Application Examples
@ Non-predictably Evolving: Adaptive Mesh Refinement
o Malleable: Parameter-Sweep Application
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Non-predictably Evolving: Adaptive Mesh Refinement

Application Model
@ Application knows its speed-up model
@ Cannot predict its data evolution

@ Aim: maintain a given target efficiency

Behaviour in CoOORMVv?2

@ Sends one pre-allocation
Simulation parameter: overcommitFactor

@ Sends non-preemptible requests inside the pre-allocation
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Malleable: Parameter-Sweep Application

Application Model
@ Infinite number of single-node tasks
@ All tasks have the same duration (known in advance)

@ Aim: maximize speed-up

Behaviour in COORMv2
@ Send preemptible requests
@ Spawn tasks if resources are available
o Kill tasks if RMS asks to (increases waste)

@ Stop tasks if will not be available (no waste)
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@ Results
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Scheduling with Spontaneous Updates

Experimental Setup

o Apps: 1xAMR (target eff. = 75%), 1xPSA (task duration = 600s)

@ Resources: number of nodes just enough to fit the AMR

@ AMR uses fixed / dynamic allocations
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Scheduling with Announced Updates

Experimental Setup
o Apps: 1xAMR (target eff. = 75%), 1xPSA (task duration = 600s)
@ Resources: number of nodes just enough to fit the AMR

@ AMR uses announced updates (announce interval)
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© Conclusions
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Conclusions

CooRMv2

@ A centralized RMS which supports
Evolving apps
Malleable apps

@ Can be used to manage federation of clusters

Perspectives

@ What economic model?

Charge for unused pre-allocated resources?
Charge for frequency / size of updates?
Charge for quality / timeliness of updates?

@ Non-homogeneous networks (e.g., torus topology)?
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AMR Evolution
AMR Examples

Cells updated per time step 8000

1.4e + 08

1.2¢ + 08 Adaptive mesh refinement —
Uniform grid —--

le + 08

6000 [~ B

8e + 07 4000 - T

6e + 07

Number of grids

Number of cells

4e +07 2000 - 7

2e +07

o L L L
0] 50 100 150 200

time (Myr)

o 2 4 6 8 10

Solution time

Duration of a step (s)
5
oy

&~

0 100 200 300 400 500 600 700 800 900 1000 16 64 256 1k 4k 16k
Step number Number of nodes

v

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 21 /29



Principles — Request Relations

Request Relations
@ dynamic applications — multiple requests n NEXT COALLOC
@ + temporal constraints between requests FRE |7Z

relatedTo an existing request
relatedHow FREE, NEXT, COALLOC vy

@ request(), done()
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Principles — Request Relations

Request Relations

@ dynamic applications — multiple requests n NEXT COALLOC
@ + temporal constraints between requests FREE |7Z
relatedTo an existing request
relatedHow FREE, NEXT, COALLOC v
@ request(), done() .

High-level Operations

Spontaneous Update Announced Update
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Architecture

CooRM

<<interface>>

App

+changeNotify(cluster_ID,cap)
+startNotify(request_ID, resource_IDs)

<<interface>>

RMS

+subscribe(filter)
+listClusterInfo(cluster_IDs): CINFOs
+listInterClusterInfo(cluster_IDs): ICINFO
+request(cluster_ID1,nHl1,...,

duration): request_ID

+done()
V.
CooRMv2
<<interface>> <<interface>>
App RMS
+changeNotify(cluster_ID,cap,|t +subscribe(filter)
+startNotify(request_ID, resource_IDs) +listClustersInfo(cluster_IDs): CINFOs
+listInterClusterInfo(cluster_IDs): ICINFO
+request(cluster_ID,nH,duration,
[relatedTo, relatedHow, type) : request_ID
+done ([request_ID, resource_ID)
v
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Interaction

SAMRE SRIISE A
1. subscribe(filter)
2. changeNotify(...)
3. request(1000 x 5h,type=PA) : ro
4. request(100 x 5h,type=NP) : .
5. startNotify(r, ridsi)

4 ™~ 6. subscribe(filter) I
7. changeNotify(...)

8. request(900 x 5h,type=P) : rs
9. startNotify(rs, ridss)

» 10. request(200 x 4h, w ~
i relTo=r1,relHow=NEXT) : ra Q >~
11. done(r1)

12. changeNotify(...)

13. request(800 x 4h,
relTo=rs,relHow=NEXT) : rs

14. done(rs, ridss')

15. startNotify(rs, ridss')
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RMS Implementation

Main Responsibilities
o Compute views
o Compute start times for each requests

@ Start requests and allocate resources

Main Idea of the Scheduling Algorithm
@ Applications are ordered according to arrival time
@ Pre-allocated resources cannot be pre-allocated by next applications

@ Preemptible resources are shared equally
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AMR Pre-announcements

Experimental Setup
@ launched at t = 0: 1xAMR application, 1xPSA application
@ PSA: task duration = 600s

e AMR: “pre-announces” changes (pre-announce interval)

Done either to be nice to other apps
Basically, the AMR application makes an UPDATE every interval
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AMR Pre-announcements (cont.)
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AMR Pre-announcements (cont.)
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Nice Resource “Filling”

Experimental Setup
@ launched at t = 0: 1xAMR application, 2xPSA application
@ PSA;: task duration = 600s, PSAy: task duration = 60s
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