CooRMv2: An RMS with Support for
Non-predictably Evolving Applications

Cristian KLEIN, Christian PEREZ

Avalon / GRAAL, INRIA / LIP, ENS de Lyon

Scheduling Workshop, May 29-June 1, 2011, Aussois

RPN OL' ?
‘VALON {P\W;ﬁi" B INRIA

- ANR COOP

Cristian KLEIN (INRIA) CoOoRMv2 Scheduling in Aussois 1/19

Adaptive Mesh Refinement Applications (AMR)

x|
@ Mesh is dynamically refined / coarsened as
required by numerical precision i
i
Memory requirements increase / decrease B
Amount of parallelism increases / decreases
@ Generally evolves non-predictably
v
g 1000) "3n6cGiE — |
5 900 100 : i f—
Z 800 et g s Tean
= 700 i = = 8 GiB
= 600 o S J2GiB ——-
B 500 ° 10 * N
S 400 £ = z
S 300 - 2 z B
g %80 g e SN R o
Z 8 TS a 1
0100 200 300 400 500 600 700 800 900 1000 1 4 16 64 25 1k 4k lék
Step number Number of nodes
v
Goal: maintain a given target efficiency J

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 2 /19

Executing AMR applications on HPC resources (1/2)

Use static allocations (rigid jobs)
o E.g., cluster, supercomputing batch schedulers

@ Evolution is not known in advance
— User is forced to over-allocate
— Inefficient resource usage

e Example: target efficiency 75% (+10%)

Data Size (Relative)

0 1000 2000 3000 4000 5000
Number of nodes

Ideally, unused resources should be filled by other applications
Needs support from the Resource Management System (RMS)

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 3/19

Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink

Cristian KLEIN (INRIA) CoORMv2 Scheduling in Aussois 4/19

Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink

o Clouds
“The illusion of infinite computing resources available on demand”

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois

4/19

Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink

o Clouds
“The illusion of infinite computing resources available on demand”

Infinite? Actually up to 20

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois

4/19

Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink

o Clouds
“The illusion of infinite computing resources available on demand”

Infinite? Actually up to 20
Even without this limit: “Out of capacity” errors

— Application may run out-of-memory

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois

4/19

Executing AMR applications on HPC resources (2/2)

Use dynamic allocations
e Malleable jobs: RMS tells applications to grow/shrink

o Clouds
“The illusion of infinite computing resources available on demand”

Infinite? Actually up to 20
Even without this limit: “Out of capacity” errors

— Application may run out-of-memory

—
o ldeally, RMS guarantees the availability of resources to an AMR
application?

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois

4/19

Problem

A Resource Management System (RMS) which allows non-predictably

evolving applications
@ To use resources efficiently

@ Guarantee the availability of resources

Cristian KLEIN (INRIA) CooRMv2

Scheduling in Aussois

5/19

© Introduction

© CooRMv2
@ Resource Requests
@ High-level Operations
o Views
@ Scheduling Algorithm

e Application Examples

@ Non-predictably Evolving: Adaptive Mesh Refinement

o Malleable: Parameter-Sweep Application

@ Results

© Conclusions

Cristian KLEIN (INRIA)

CooRMv2

Scheduling in Aussois

6/19

© CooRMv2
@ Resource Requests
@ High-level Operations
o Views
@ Scheduling Algorithm

Cristian KLEIN (INRIA) CoORMv2 Scheduling in Aussois 7 /19

Resource Requests

@ Cluster ID, number of nodes, duration

@ RMS chooses start time — node IDs are allocated to the application

Cristian KLEIN (INRIA) CoORMv2 Scheduling in Aussois 8 /19

Resource Requests

@ Cluster ID, number of nodes, duration
@ RMS chooses start time — node IDs are allocated to the application
o Type

Non-preemptible (default in major RMSs)

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 8 /19

Resource Requests

@ Cluster ID, number of nodes, duration
@ RMS chooses start time — node IDs are allocated to the application
o Type

Non-preemptible (default in major RMSs)
Preemptible (think OAR best-effort jobs)

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 8 /19

Resource Requests

@ Cluster ID, number of nodes, duration

@ RMS chooses start time — node IDs are allocated to the application
o Type
Non-preemptible (default in major RMSs)
Preemptible (think OAR best-effort jobs)
Pre-allocation
“l do not currently need these resources, but make sure | can get them
immediately if | need them.”

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 8 /19

High-level Operations

Low-level Operations

o CoORMV2 defines simple, low-level operations on requests

High-level Operations

Spontaneous Update Announced Update

nAp n nAN nAN

[[|

-~V

@ An update is guaranteed to succeed only inside a pre-allocation

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 9 /19

Views

@ Apps need to adapt their requests to the availability of the resources

@ Each app is presented with two views: non-preemptible, preemptible

@ Preemptible view informs when resources need to be preempted

14 Preelmptiblle view m—
12 Non-preemptible view mm—

Number of nodes

0 20 40 60 80 100 120 140
Time (minutes)

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois

10 / 19

Scheduling Algorithm

@ Pre-allocations and non-preemptible requests
Conservative Back-Filling (CBF)

@ Preemptible requests
equi-partitioning

Cristian KLEIN (INRIA) CoORMv2 Scheduling in Aussois 1 /19

9 Application Examples
@ Non-predictably Evolving: Adaptive Mesh Refinement
o Malleable: Parameter-Sweep Application

Cristian KLEIN (INRIA) CoORMv2 Scheduling in Aussois 12 /19

Non-predictably Evolving: Adaptive Mesh Refinement

Application Model
@ Application knows its speed-up model
@ Cannot predict its data evolution

@ Aim: maintain a given target efficiency

Behaviour in CoOORMVv?2

@ Sends one pre-allocation
Simulation parameter: overcommitFactor

@ Sends non-preemptible requests inside the pre-allocation

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 13 /19

Malleable: Parameter-Sweep Application

Application Model
@ Infinite number of single-node tasks
@ All tasks have the same duration (known in advance)

@ Aim: maximize speed-up

Behaviour in COORMv2
@ Send preemptible requests
@ Spawn tasks if resources are available
o Kill tasks if RMS asks to (increases waste)

@ Stop tasks if will not be available (no waste)

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 14 /19

@ Results

Cristian KLEIN (INRIA)

DA™

Scheduling with Spontaneous Updates

Experimental Setup

o Apps: 1xAMR (target eff. = 75%), 1xPSA (task duration = 600s)

@ Resources: number of nodes just enough to fit the AMR

@ AMR uses fixed / dynamic allocations

70.0M T 2 600k T
> Fixed —J = Dynamic]
e 60.0M - """ Dynamic |7 g 500k
5] o
§ 50.0M Z 400k |
* 40.0M é /$/
5} S 300k
= 30.0M g ‘
& & 200k
Tl e S8 S A
10.0M H : } } 100k
Z == z v
0.0 1 -9 0 !
0.1 1 10 0.1 1 10
AMR overcommit factor AMR overcommit factor
v
Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 16 / 19

Scheduling with Announced Updates

Experimental Setup
o Apps: 1xAMR (target eff. = 75%), 1xPSA (task duration = 600s)
@ Resources: number of nodes just enough to fit the AMR

@ AMR uses announced updates (announce interval)

30 T T T T T T T T 30 T T T T T T T
§25 AZS
220 R 20
g Q
-3 15 2
2 L g1
& | 8 o 10
= 5 * [A~ ﬁ
< . 5 Lo
0)
_5 1 1 1 1 1 1 1 1 O 1 1 1 * * = 5 = B
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600
AMR announce interval (s) AMR announce interval (s)

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 17 /19

© Conclusions

Cristian KLEIN (INRIA)

DA™

Conclusions

CooRMv2

@ A centralized RMS which supports
Evolving apps
Malleable apps

@ Can be used to manage federation of clusters

Perspectives

@ What economic model?

Charge for unused pre-allocated resources?
Charge for frequency / size of updates?
Charge for quality / timeliness of updates?

@ Non-homogeneous networks (e.g., torus topology)?

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois

19 /19

Cristian KLEIN (INRIA)

Backup Slides

CooRMv2

AMR Evolution
AMR Examples

Cells updated per time step 8000

1.4e + 08

1.2¢ + 08 Adaptive mesh refinement —
Uniform grid —--

le + 08

6000 [~ B

8e + 07 4000 - T

6e + 07

Number of grids

Number of cells

4e +07 2000 - 7

2e +07

o L L L
0] 50 100 150 200

time (Myr)

o 2 4 6 8 10

Solution time

Duration of a step (s)
5
oy

&~

0 100 200 300 400 500 600 700 800 900 1000 16 64 256 1k 4k 16k
Step number Number of nodes

v

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 21 /29

Principles — Request Relations

Request Relations
@ dynamic applications — multiple requests n NEXT COALLOC
@ + temporal constraints between requests FRE |7Z

relatedTo an existing request
relatedHow FREE, NEXT, COALLOC vy

@ request(), done()

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 22 /29

Principles — Request Relations

Request Relations

@ dynamic applications — multiple requests n NEXT COALLOC
@ + temporal constraints between requests FREE |7Z
relatedTo an existing request
relatedHow FREE, NEXT, COALLOC v
@ request(), done() .

High-level Operations

Spontaneous Update Announced Update
n A n n AN n A\
> > > >
'T‘ t 'T‘ t 'T‘ t M t

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 22 /29

Architecture

CooRM

<<interface>>

App

+changeNotify(cluster_ID,cap)
+startNotify(request_ID, resource_IDs)

<<interface>>

RMS

+subscribe(filter)
+listClusterInfo(cluster_IDs): CINFOs
+listInterClusterInfo(cluster_IDs): ICINFO
+request(cluster_ID1,nHl1,...,

duration): request_ID

+done()
V.
CooRMv2
<<interface>> <<interface>>
App RMS
+changeNotify(cluster_ID,cap,|t +subscribe(filter)
+startNotify(request_ID, resource_IDs) +listClustersInfo(cluster_IDs): CINFOs
+listInterClusterInfo(cluster_IDs): ICINFO
+request(cluster_ID,nH,duration,
[relatedTo, relatedHow, type) : request_ID
+done ([request_ID, resource_ID)
v

istian KLEIN (INRIA)

Scheduling in Aussois

23 /29

Interaction

SAMRE SRIISE A
1. subscribe(filter)
2. changeNotify(...)
3. request(1000 x 5h,type=PA) : ro
4. request(100 x 5h,type=NP) : .
5. startNotify(r, ridsi)

4 ™~ 6. subscribe(filter) I
7. changeNotify(...)

8. request(900 x 5h,type=P) : rs
9. startNotify(rs, ridss)

» 10. request(200 x 4h, w ~
i relTo=r1,relHow=NEXT) : ra Q >~
11. done(r1)

12. changeNotify(...)

13. request(800 x 4h,
relTo=rs,relHow=NEXT) : rs

14. done(rs, ridss')

15. startNotify(rs, ridss')

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 24 /29

RMS Implementation

Main Responsibilities
o Compute views
o Compute start times for each requests

@ Start requests and allocate resources

Main Idea of the Scheduling Algorithm
@ Applications are ordered according to arrival time
@ Pre-allocated resources cannot be pre-allocated by next applications

@ Preemptible resources are shared equally

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 25 /29

AMR Pre-announcements

Experimental Setup
@ launched at t = 0: 1xAMR application, 1xPSA application
@ PSA: task duration = 600s

e AMR: “pre-announces” changes (pre-announce interval)

Done either to be nice to other apps
Basically, the AMR application makes an UPDATE every interval

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois

26 / 29

AMR Pre-announcements (cont.)

)
=
O
(7}

NN W
S W O

PSA waste (%)
S &

S W

1 1 T ? * * * A m g g &
0 100 200 300 400 500 600

AMR announce interval (s)

300
250
200
150
100

W
(=}

Number of Reschedules

N
¥a)
=]
* bodoy
L)
I I I I I I I
0 100 200 300 400 500 600

AMR Preannounce Interval (s)

Cristian KLEIN (INRIA)

CooRMv2

Scheduling in Aussois 27 /29

AMR Pre-announcements (cont.)

!

$
?

¢

#

|
f

T

L]

v

0 100 200 300 400 500 600 700

AMR announce interval (s)

100
~ 995

Ned
=)

98.5

97.5

Used Resources (%
©
o0

o
~

96.5

0

100 200 300 400 500 600 700
AMR Preannounce Interval (s)

Cristian KLEIN (INRIA)

CooRMv2

Scheduling in Aussois

28 /29

Nice Resource “Filling”

Experimental Setup
@ launched at t = 0: 1xAMR application, 2xPSA application
@ PSA;: task duration = 600s, PSAy: task duration = 60s

100 —————

S 99.5 S

% 5 Pl ﬂ\w

PV A e

E 98 Y/H{W&’/W&/ b 2xPSA (strict equi-partitioning)
97.5 T S S

0 100 200 300 400 500 600 700
AMR pre-announce interval

Cristian KLEIN (INRIA) CooRMv2 Scheduling in Aussois 29 /29

	Introduction
	CooRMv2
	Resource Requests
	High-level Operations
	Views
	Scheduling Algorithm

	Application Examples
	Non-predictably Evolving: Adaptive Mesh Refinement
	Malleable: Parameter-Sweep Application

	Results
	Conclusions
	Appendix

