
Parallel computation
of entries of A

-1

François-Henry Rouet
ENSEEIHT-IRIT, Université de Toulouse, France

Joint work with: P. Amestoy, I. Duff, J.-Y. L’Excellent & B. Uçar

4th “Scheduling in Aussois” Workshop,
Aussois, French Alps, May 29 - June 1, 2011

Computation of entries of A
-1

Problem

Given a large sparse matrix A, compute a set of entries of
A−1.
Many applications: linear least-squares, quantum-scale
device simulation, short-circuit currents, astrophysics. . .
Typical case: computation of the whole diagonal of A−1.

F.-H. Rouet, Scheduling in Aussois, May 2011 2/17

Framework

We rely on the pattern of A and its factors L and U such that
A = LU.

Pattern of A. Pattern of L + U.

1 2

3 64

5

Graph of L + U.

6

2

3

5

4

1

Elimination tree.

5
4
1

1 4 5

6
5
3
2

2 3 5 6

6
5

5 6

Assembly tree.
F.-H. Rouet, Scheduling in Aussois, May 2011 3/17

Computing an entry in A
-1

The (i , j) entry of A−1 is computed as a−1i ,j = (A−1ej)i .
Using the LU factors,{

y = L−1ej

⇒ sparse right-hand side.

a−1i ,j = (U−1y)i

⇒ only one component needed.

Sparsity of both the RHS and the solution is exploited to reduce
the traversal of the tree:

For each requested entry a−1
i,j ,

(1) visit the nodes of the elimination tree from
node j to the root: at each node access
necessary parts of L,

(2) visit the nodes from the root to node i ;
this time access necessary parts of U.

⇒ “pruned tree”

U y = x)3

= eL x 2

6

2

3

5

4

1

(

Computation of a−1
3,2.

F.-H. Rouet, Scheduling in Aussois, May 2011 4/17

Computing an entry in A
-1

The (i , j) entry of A−1 is computed as a−1i ,j = (A−1ej)i .
Using the LU factors,{

y = L−1ej ⇒ sparse right-hand side.
a−1i ,j = (U−1y)i ⇒ only one component needed.

Sparsity of both the RHS and the solution is exploited to reduce
the traversal of the tree:

For each requested entry a−1
i,j ,

(1) visit the nodes of the elimination tree from
node j to the root: at each node access
necessary parts of L,

(2) visit the nodes from the root to node i ;
this time access necessary parts of U.

⇒ “pruned tree”

U y = x)3

= eL x 2

6

2

3

5

4

1

(

Computation of a−1
3,2.

F.-H. Rouet, Scheduling in Aussois, May 2011 4/17

Computing an entry in A
-1

The (i , j) entry of A−1 is computed as a−1i ,j = (A−1ej)i .
Using the LU factors,{

y = L−1ej ⇒ sparse right-hand side.
a−1i ,j = (U−1y)i ⇒ only one component needed.

Sparsity of both the RHS and the solution is exploited to reduce
the traversal of the tree:

For each requested entry a−1
i,j ,

(1) visit the nodes of the elimination tree from
node j to the root: at each node access
necessary parts of L,

(2) visit the nodes from the root to node i ;
this time access necessary parts of U.

⇒ “pruned tree”

U y = x)3

= eL x 2

6

2

3

5

4

1

(

Computation of a−1
3,2.

F.-H. Rouet, Scheduling in Aussois, May 2011 4/17

Computing a set of entries

In reality

We wish to compute a set R of requested entries. Usually |R| is large
and one cannot hold all the solution vectors in memory, even with a
storage scheme that exploits sparsity. We assume that we process nb
solution vectors at a time.

The way the requested entries are partitioned has a strong
influence on the number of accesses to the nodes:

7
14

13

9

11108

126

1 2 54

3

[R = {3, 4, 13, 14}, nb = 3]

Partition Accesses

Π′
R1 = {3, 13, 14} R1 : 3, 7, 13, 14
R2 = {4} R2 : 4, 6, 7, 14

Π′′
R1 = {3, 4, 14} R1 : 3, 4, 6, 7, 14
R2 = {13} R2 : 13, 14

F.-H. Rouet, Scheduling in Aussois, May 2011 5/17

Tree-partitioning problem in out-of-core

Tree-Partitioning problem (OOC version)

Given a set R of nodes of a node-weighted tree and a blocksize nb,
find a partition Π(R) = {R1,R2, . . .} such that ∀Rk ∈ Π, |Rk | ≤ nb,
and has minimum cost

Cost(Π) =
∑

Rk∈Π

Cost(Rk) where Cost(Rk) =
∑

i∈P(Rk)

w(i)

We showed that it is NP-complete.
There is a non-trivial lower bound.
The case nb = 2 is special and can be solved in polynomial time.
A simple algorithm, postorder, gives an approximation guarantee.
We have a heuristic which gives extremely good results.

We have hypergraph models that address the most general cases.

P. Amestoy, I. Duff, J.-Y. L’Excellent, Y. Robert, F.-H. R. and B. Uçar. On
computing inverse entries of a sparse matrix in an out-of-core environment.
Submitted to SIAM journal on Scientific Computing.

F.-H. Rouet, Scheduling in Aussois, May 2011 6/17

Parallel issues

Computing blocks in parallel ?

Computing (many) blocks is embarassingly parallel: one would
like to compute all the blocks in parallel, but:

In a distributed memory environment, this is not feasible
without replicating the factors.
In a shared-memory environment, this is feasible but might
lead to poor performance (memory demanding).

Computational setting

Blocks are processed one by one:
Sparsity is exploited between the blocks, i.e. the tree is
pruned for each block.
Sparsity is not exploited within the blocks, to benefit from
dense kernels (BLAS).

F.-H. Rouet, Scheduling in Aussois, May 2011 7/17

Parallel issues - cont

Problem: any permutation aimed at reducing flops provides poor
speed-ups.
Archetypal example: whole diagonal of A−1, with nb = N/3.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses nodes 1 and 3, only P0
active at the bottom of the tree.

2nd block: traverses nodes 2 and 3, only P1
active at the bottom of the tree.

3rd block: traverses node 3.

F.-H. Rouet, Scheduling in Aussois, May 2011 8/17

Parallel issues - cont

Problem: any permutation aimed at reducing flops provides poor
speed-ups.
Archetypal example: whole diagonal of A−1, with nb = N/3.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses nodes 1 and 3, only P0
active at the bottom of the tree.

2nd block: traverses nodes 2 and 3, only P1
active at the bottom of the tree.

3rd block: traverses node 3.

F.-H. Rouet, Scheduling in Aussois, May 2011 8/17

Parallel issues - cont

Problem: any permutation aimed at reducing flops provides poor
speed-ups.
Archetypal example: whole diagonal of A−1, with nb = N/3.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses nodes 1 and 3, only P0
active at the bottom of the tree.

2nd block: traverses nodes 2 and 3, only P1
active at the bottom of the tree.

3rd block: traverses node 3.

F.-H. Rouet, Scheduling in Aussois, May 2011 8/17

Parallel issues - cont

Problem: any permutation aimed at reducing flops provides poor
speed-ups.
Archetypal example: whole diagonal of A−1, with nb = N/3.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses nodes 1 and 3, only P0
active at the bottom of the tree.

2nd block: traverses nodes 2 and 3, only P1
active at the bottom of the tree.

3rd block: traverses node 3.
F.-H. Rouet, Scheduling in Aussois, May 2011 8/17

Parallel issues - cont

Problem: any permutation aimed at reducing flops provides poor
speed-ups.
Archetypal example: whole diagonal of A−1, with nb = N/3.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses nodes 1 and 3, only P0
active at the bottom of the tree.

2nd block: traverses nodes 2 and 3, only P1
active at the bottom of the tree.

3rd block: traverses node 3.

Few active procs at
the bottom of the
tree

⇒ poor speed-up.

F.-H. Rouet, Scheduling in Aussois, May 2011 8/17

Parallel issues - cont

An attempt (Slavova): interleave the requested entries over the
processors.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

2nd block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

3rd block: traverses node 3.

F.-H. Rouet, Scheduling in Aussois, May 2011 9/17

Parallel issues - cont

An attempt (Slavova): interleave the requested entries over the
processors.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

2nd block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

3rd block: traverses node 3.

F.-H. Rouet, Scheduling in Aussois, May 2011 9/17

Parallel issues - cont

An attempt (Slavova): interleave the requested entries over the
processors.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

2nd block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

3rd block: traverses node 3.

F.-H. Rouet, Scheduling in Aussois, May 2011 9/17

Parallel issues - cont

An attempt (Slavova): interleave the requested entries over the
processors.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

2nd block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

3rd block: traverses node 3.

F.-H. Rouet, Scheduling in Aussois, May 2011 9/17

Parallel issues - cont

An attempt (Slavova): interleave the requested entries over the
processors.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

2nd block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

3rd block: traverses node 3.
F.-H. Rouet, Scheduling in Aussois, May 2011 9/17

Parallel issues - cont

An attempt (Slavova): interleave the requested entries over the
processors.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

2nd block: traverses all the nodes, P0 and P1
active at the bottom of the tree.

3rd block: traverses node 3.

More active
procs but more
flops !

⇒ no speed-up.

F.-H. Rouet, Scheduling in Aussois, May 2011 9/17

Exploiting sparsity within the blocks

Core idea

Interleaving tends to cancel the benefits of a good
permutation, since it groups together entries that are distant
in the tree.

To prevent this, one can choose to exploit sparsity within a
block.
Key: at each node, operations will be performed on the
necessary columns only (instead of the whole block)

• Right-hand sides are still processed by blocks of nb
• Dense computations are performed on subblocks of size

called nbsparse

Each node of the tree is provided with the subscripts of the
columns to process. We do not want to manage a list; to
ensure efficiency, we rely on the interval that bounds the list
of necessary columns.

F.-H. Rouet, Scheduling in Aussois, May 2011 10/17

Exploiting sparsity within the blocks

Core idea

Interleaving tends to cancel the benefits of a good
permutation, since it groups together entries that are distant
in the tree.
To prevent this, one can choose to exploit sparsity within a
block.
Key: at each node, operations will be performed on the
necessary columns only (instead of the whole block)

• Right-hand sides are still processed by blocks of nb
• Dense computations are performed on subblocks of size

called nbsparse

Each node of the tree is provided with the subscripts of the
columns to process. We do not want to manage a list; to
ensure efficiency, we rely on the interval that bounds the list
of necessary columns.

F.-H. Rouet, Scheduling in Aussois, May 2011 10/17

Exploiting sparsity within the blocks

Core idea

Interleaving tends to cancel the benefits of a good
permutation, since it groups together entries that are distant
in the tree.
To prevent this, one can choose to exploit sparsity within a
block.
Key: at each node, operations will be performed on the
necessary columns only (instead of the whole block)

• Right-hand sides are still processed by blocks of nb
• Dense computations are performed on subblocks of size

called nbsparse

Each node of the tree is provided with the subscripts of the
columns to process. We do not want to manage a list; to
ensure efficiency, we rely on the interval that bounds the list
of necessary columns.

F.-H. Rouet, Scheduling in Aussois, May 2011 10/17

Exploiting sparsity within the blocks - cont

Core idea - cont

Intervals are computed in a two-step traversal of the tree:

1. Initialization: at each node, initialize with the target entries
(columns) appearing at the node.

2. Propagation: at each node, add the union of the intervals of
its children.

By postordering each block, this interval is reduced.

Example: the block of right-hand sides is equal to [e2, e4, e5, e6].

6

2

3

5

4

1

F.-H. Rouet, Scheduling in Aussois, May 2011 11/17

Exploiting sparsity within the blocks - cont

Core idea - cont

Intervals are computed in a two-step traversal of the tree:
1. Initialization: at each node, initialize with the target entries

(columns) appearing at the node.

2. Propagation: at each node, add the union of the intervals of
its children.

By postordering each block, this interval is reduced.

Example: the block of right-hand sides is equal to [e2, e4, e5, e6].

6

2

3

5

4

1

6

2

3

5

4

1

[3,3]

[1,1]

[2,2]

[4,4]

F.-H. Rouet, Scheduling in Aussois, May 2011 11/17

Exploiting sparsity within the blocks - cont

Core idea - cont

Intervals are computed in a two-step traversal of the tree:
1. Initialization: at each node, initialize with the target entries

(columns) appearing at the node.
2. Propagation: at each node, add the union of the intervals of

its children.

By postordering each block, this interval is reduced.

Example: the block of right-hand sides is equal to [e2, e4, e5, e6].

6

2

3

5

4

1

6

2

3

5

4

1

[3,3]

[1,1]

[2,2]

[4,4] 6

2

3

5

4

1

[1,3]

[1,1]

[2,2]

[1,4]

[1,1]

F.-H. Rouet, Scheduling in Aussois, May 2011 11/17

Exploiting sparsity within the blocks - cont

Core idea - cont

Intervals are computed in a two-step traversal of the tree:
1. Initialization: at each node, initialize with the target entries

(columns) appearing at the node.
2. Propagation: at each node, add the union of the intervals of

its children.

By postordering each block, this interval is reduced.

Example: with a non-postordered block [e2, e4, e6, e5]

6

2

3

5

4

1

6

2

3

5

4

1 [1,1]

[2,2]

[3,3]

[4,4]

6

2

3

5

4

1

[1,3]

[1,1]

[2,2]

[1,4]

[1,1]

[1,4]

F.-H. Rouet, Scheduling in Aussois, May 2011 11/17

Illustration

Back to the first example: nb = N/3, we use interleaving and
blocks are postordered; when computing a block, compute for each
node the interval to process.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

2nd block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

F.-H. Rouet, Scheduling in Aussois, May 2011 12/17

Illustration

Back to the first example: nb = N/3, we use interleaving and
blocks are postordered; when computing a block, compute for each
node the interval to process.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P
. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

2nd block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

F.-H. Rouet, Scheduling in Aussois, May 2011 12/17

Illustration

Back to the first example: nb = N/3, we use interleaving and
blocks are postordered; when computing a block, compute for each
node the interval to process.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P

[1,6]
[1,3] [4,6]

. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

2nd block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

F.-H. Rouet, Scheduling in Aussois, May 2011 12/17

Illustration

Back to the first example: nb = N/3, we use interleaving and
blocks are postordered; when computing a block, compute for each
node the interval to process.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P

[1,6]
[1,3] [4,6]

. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

2nd block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

F.-H. Rouet, Scheduling in Aussois, May 2011 12/17

Illustration

Back to the first example: nb = N/3, we use interleaving and
blocks are postordered; when computing a block, compute for each
node the interval to process.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P

[1,6]

. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

2nd block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

F.-H. Rouet, Scheduling in Aussois, May 2011 12/17

Illustration

Back to the first example: nb = N/3, we use interleaving and
blocks are postordered; when computing a block, compute for each
node the interval to process.

2

3

1

[Simple matrix. . .

2

3

1

1P0 P

P0 1P

[1,6]

. . . and its tree.] [Right-hand sides]

1st block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

2nd block: traverses all the nodes, P0 and P1 active at the
bottom of the tree.
At node 1, flops are performed on N/6 vectors
only. Same at node 2.

All procs are active,
and flops have not
increased !

⇒ good speed-up.

F.-H. Rouet, Scheduling in Aussois, May 2011 12/17

Experiments

The different strategies are compared. The average number of
active processors at leaf nodes of the pruned tree is used as a
measure of tree parallelism.

Computation of 10% diagonal entries, 11-point discretization of a
200× 200× 20 grid, blocks of size 512:

Procs Strategy Time Operation Active
(seconds) (TFlops) procs

1 - 1667 16.2 1

4
IL off nbsparse off 1366 16.2 1.10

IL on nbsparse off 2028 45.4 3.92nbsparse on 659 15.2

8
IL off nbsparse off 1241 13.3 1

IL on nbsparse off 1508 61.0 7.76nbsparse on 418 12.4

F.-H. Rouet, Scheduling in Aussois, May 2011 13/17

Experiments - cont

Influence of the block size on the same problem:

Procs Strategy Block size
64 128 512 1024

1 proc - 1518 1432 1667 2002
8 procs IL on nbsparse on 555 466 418 379

F.-H. Rouet, Scheduling in Aussois, May 2011 14/17

Conclusion

Exploiting sparsity within a block. . .

. . . can be done without sacrificing efficiency (BLAS kernels
optimally used).
. . . increases parallelism when combined with interleaving.
. . . is interesting even in the sequential case (it reduces flops).
. . . gives some leeway for the backward phase (off-diagonal case):
each block can be reordered following a permutation that will
have a good effect for backward targets.

F.-H. Rouet, Scheduling in Aussois, May 2011 15/17

Conclusion - cont

Further work

Still some effort to make to reach the scalability of the dense
solve.
Several improvements upon interleaving: management of
type 2 nodes, management of sequential subtrees. . .
Minimize nbsparse-sized intervals in the general case, i.e. find
a good permutation within each block (postorder works fine
for diagonal entries. . .).

Next release of MUMPS

Compressed solution space when exploiting sparse right-hand
sides.
Use of sparsity within blocks of sparse right-hand sides.

F.-H. Rouet, Scheduling in Aussois, May 2011 16/17

End

Thank you for your attention!

Any questions?

F.-H. Rouet, Scheduling in Aussois, May 2011 17/17

