Advances in Optimal Task Scheduling

Oliver Sinnen

PARALLEL AND RECONFIGURABLE COMPUTING GROUP

Department of Electrical and Computer Engineering
University of Auckland
New Zealand

www.ece.auckland.ac.nz/~parallel/
Introduction

Scheduling problem

task graph (DAG) with computation and communication costs on p processors, minimizing makespan \rightarrow NP-hard

Optimal solution with A*

Extensive search through all possible schedules \rightarrow guided by cost function (best-first-search)
Introduction

Optimal solution with A*

- Good for small graphs (<30 tasks), few processors (<8)

Paradox

- Difficult for “simple” scheduling problems! (i.e. task number limit is low)
 - Independent tasks (mostly)
 - Forks or joins
 - Fork-joins

Contribution

- Novel concepts and techniques to address this and more: reduce search space, accelerate search
Outline

- Define scheduling problem
- State space formulation and A*
- Pruning techniques
- Some observations
- Equivalent schedule
- Fix order ready list
- First evaluation results
- Conclusions
Scheduling problem: $P|\text{prec},c_{ij}|C_{\text{max}}$

Task graph and p (identical) processors

DAG: tasks (n) and edges (e) with weights (computation cost $w(n)$ and communication cost $c(e)$)

- start time: $t_s(n)$; finish time: $t_f(n)=t_s(n)+w(n)$
- processor assignment: $\text{proc}(n)$

Objective: minimise makespan

Constraints:

- Processor constraint:

 $\text{proc}(n_i)=\text{proc}(n_j) \Rightarrow t_s(n_i) \geq t_f(n_j) \text{ or } t_s(n_j) \geq t_f(n_i)$

- Precedence constraint:

 for all edges e_{ji} of E (from n_j to n_i)

 $t_s(n_i) \geq t_f(n_j) + c(e_{ji})$ if $\text{proc}(n_i) \neq \text{proc}(n_j)$

 $t_s(n_i) \geq t_f(n_i)$ if $\text{proc}(n_i) = \text{proc}(n_j)$
Solution space

Solution

processor allocation and task order

- Allocation problem *plus*
- Permutation problem
- Each problem is NP-hard

Finding optimal solution

- Trying all possible processor allocations with all possible permutations (*naïve*)

\[p^V \times V! \]

- Example: 10 tasks, 3 processors: 219 billion possibilities!
A* for task scheduling

A*: **best first** search, guided by cost function

- State (s) => partial schedule
- Cost function $f(s)$ => **underestimate** of schedule length
- State is expanded by scheduling one more task
A* for task scheduling

At each step, expand most promising state with best cost $f(s)$

- All free nodes, $\text{free}(s)$, scheduled on all p processors

$\Rightarrow \text{free}(s) \times p$ new states created, costs calculated

State tree
A* algorithm

- Priority queue OPEN for states to be expanded (ordered by $f(s)$)
- Recording already expanded states: duplication detection

=> very, very memory hungry

- Cost function $f(s)$: underestimate of minimum cost $f^*(s)$ of final solution – the tighter the better → less states
Pruning

- State space is tree
- Try to prune entire branches early to limit search space

So far

- Duplication detection
- Processor normalisation
- Identical tasks
Pruning – duplicated states

- Same schedule created in different ways
 => duplicates

- Duplicates are detected and discarded

Global ordering
→ local ordering
- Permutations per processor with less tasks
Pruning – processor normalisation

- Equivalent schedules for homogeneous processors
- Normalise schedule/state
 - e.g. processor of task a is always P_1
- Pruned as duplicates
- Processor allocation problem \rightarrow subset problem
New pruning

- Address task ordering

Observations in the next slides
- Independent tasks
- Fork, Joins
- Mixed graphs
Independent tasks

Two schedules:
- Same length
- Same processor allocation
- Different task order

=> Order does not matter
=> Only allocation problem!

(with processor normalisation: only subset problem)
- Number of states reduced by $V!$
Fork and joins

Fork/Join graphs
- Task order does matter

BUT
- Optimal processor allocation enough
- Ordering by non-decreasing in-edge weight (join: by non-increasing out-edge weight)

=> still only allocation problem (strong NP-hard)
Using observations in A*

- OK, for some graphs order does not matter/can be computed
 - Independent, fork, join
- But how does that help us with general graphs?

=> First, look at mixed graphs
Independent tasks

- Independent tasks F, G, H can be in any order on P_2 (between C and E)

Tasks must be
- Independent
- Consecutive
- On same processor
Forks (or sink tasks)

- Tasks F, G, H might be reordered on P\(_2\) (between C and E)
 - Depends on data arrival time

Rules
- Last task finishes at the same time/earlier as originally
- Consecutive tasks
- No out edges → no consequence for rest of schedule
Using observations in A*

OK, also meaningful for mixed graphs
- But how to use these observations in A*?

=> Scheduling horizon and equivalent schedules concept
Equivalent schedule pruning
Schedule horizon

Partial schedules of same tasks

Only relevant:
- Finish time of processors
- Potential start time of successors

=> Schedule Horizon

- Some partial schedules dominate others (better in every aspect) → discard
Using schedule horizon

• How to use this in A*?

Remember: To create a new state, one more task is scheduled at the end on one processor

Approach
• Try to “bubble up” the task to bring into certain order (index order/alphabetical order)
 - Accept if horizon does not get worse

=> normalisation
=> duplicate detection
Example using schedule horizon

Top:
partial schedule

Bottom:
- Schedule I on P_3 at the end (after L)

 => new horizon

 (here new finish time for P_3)
Example using schedule horizon

Try to bubble up I

- Swap of I and L can be made → alphabetical order
- Finish time of P_3 the same
- Communication from L now later, but communication from E dominates

=> Horizon is the same

- Task I could go higher, but already in alphabetical order (Also communication from D might arrive too late on P_4)
Equivalent scheduling pruning

Procedure

- Create new state by scheduling free task n on processor P
- Try to “bubble up” task n until
 - In index order of tasks or
 - Schedule horizon gets worse

\Rightarrow schedules are normalised \Rightarrow duplicates are detected

Index order necessary, otherwise different schedules still possible
Equivalent scheduling pruning

Testing for outgoing edges of moved tasks not trivial:

- For each moved task, check that child tasks have the same earliest start time on every processor as before
- Some parents of these tasks might not have been scheduled yet (use best case for unknowns)
Discard instead of normalise

- Normalisation and duplication detection problematic for f-value
 - Idle time might be reduced → better estimate
 - Estimate change not allowed (at least problematic) in A*
 - Better discard state immediately
Discard instead of normalise

- Normalisation and duplication detection problematic for f-value
 - Idle time might be reduced → better estimate
 - Estimate change not allowed (at least problematic) in A*
 - Better discard state immediately

- Remember, all processor allocations and all task orders are created

- Can discard state as soon as we can “bubble up” by at least one position (because this state will be created anyway)

=> much better than normalisation (less computing)
Fixed order free list
Fixed order free list

- Discarding equivalent schedules is great
- Even better would be not to create them!

We know:
- Certain tasks can be scheduled in certain orders
 - Independent: any order
 - Fork: by non-decreasing in-edge weight

Using this in A*
- When free task list only contains such tasks, fix order
 → effectively reduce list to one element in each step
 → reduces branching factor in tree
 - Safe: without out-edges there will be no new task coming to free list
Fixed order free list

When free task list only contains such tasks, fix order

Can be extended to

- **Join**: order tasks by non-increasing out-edge weight
 - Safe, for a single join, as out-edge of all tasks goes to the same task
- **Fork-join**: order by non-decreasing in-edge weight
 - If this can also be an order by non-increasing out-edge weight → fix order
 - Safe, all out-edges go to same task
- **Mixtures of independent, fork, join, fork-join** also work
 - Generalised by treating missing edges as zero weight
Combining pruning

• Equivalent schedule pruning
• Fixed free list order

Problem
• Using combination of techniques can destroy assumptions
 – e.g. that all permutations are created

Solution
• When fixing the list order, equivalent schedule pruning is disable (not necessary anyway)
First experimental results

<table>
<thead>
<tr>
<th>Graph type</th>
<th>#tasks</th>
<th>processors</th>
<th>States before</th>
<th>States with new pruning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>30</td>
<td>8</td>
<td>>370m</td>
<td>37m</td>
</tr>
<tr>
<td>Fork</td>
<td>21</td>
<td>2</td>
<td>>19m</td>
<td>74</td>
</tr>
<tr>
<td>Fork</td>
<td>12</td>
<td>2</td>
<td>3.5m</td>
<td>36</td>
</tr>
<tr>
<td>Join</td>
<td>16</td>
<td>2</td>
<td>>200m</td>
<td>18358</td>
</tr>
<tr>
<td>Join</td>
<td>16</td>
<td>4</td>
<td>>>200m</td>
<td>9.3m</td>
</tr>
<tr>
<td>Out-tree</td>
<td>18</td>
<td>2</td>
<td>>17m</td>
<td>488224</td>
</tr>
<tr>
<td>In-tree</td>
<td>21</td>
<td>2</td>
<td>-</td>
<td>>180m</td>
</tr>
<tr>
<td>In-tree</td>
<td>14</td>
<td>2</td>
<td>>200m</td>
<td>115m</td>
</tr>
<tr>
<td>Random (density 2)</td>
<td>30</td>
<td>2</td>
<td>106</td>
<td>28m</td>
</tr>
<tr>
<td>Stencil</td>
<td>24</td>
<td>2</td>
<td>15.9m</td>
<td>2.3m</td>
</tr>
<tr>
<td>Stencil</td>
<td>24</td>
<td>3</td>
<td>163m</td>
<td>29m</td>
</tr>
</tbody>
</table>

- All random weights, CCR 1.0

=> no node equivalence pruning
Conclusions

New pruning techniques, motivated by A*'s promise, but bad results with simple graphs

- Equivalent schedule pruning
- Fixed order free list

Dramatically improves results for
 - Independent, fork, join
 - Also in/out trees, others

- Goal: do not generate duplicates → get rid of duplication detection
- At the moment: implement memory bounded A*, e.g. SAM*