Framework 00000

Pitt

Theoretical results

Heuristics 00000000000 Simulations 00000

Power-aware Manhattan routing on chip multiprocessors

Anne Benoit¹, Rami Melhem², Paul Renaud-Goud¹ and Yves Robert^{1,3}

 École Normale Supérieure de Lyon, France, {Anne.Benoit — Paul.Renaud-Goud — Yves.Robert}@ens-Iyon.fr
 University of Pittsburgh, PA, USA, melhem@cs.pitt.edu
 University of Tennessee Knoxville, TN, USA

Scheduling for Large Scale Systems Workshop June 29, 2012

Framework	Theoretical results	Heuristics	Simulations
Motivation and	introduction		

Framework	Theoretical results	Heuristics	Simulations
00000	0000	0000000000	00000
Motivation and	introduction		

• Chip MultiProcessor (CMP): present and future of the processor

Framework	Theoretical results	Heuristics	Simulations
Motivation and	introduction		

- Chip MultiProcessor (CMP): present and future of the processor
- Manhattan paths into a grid: good value for price

Framework	Theoretical results	Heuristics	Simulations
Motivation and	introduction		

- Chip MultiProcessor (CMP): present and future of the processor
- Manhattan paths into a grid: good value for price
- Power issue crucial for both economical and environmental reasons

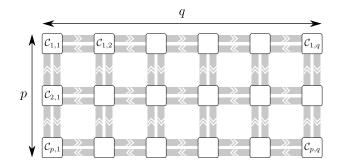
Framework	Theoretical results	Heuristics	Simulations
00000	0000	0000000000	00000
Motivation and	lintroduction		

- Chip MultiProcessor (CMP): present and future of the processor
- Manhattan paths into a grid: good value for price
- Power issue crucial for both economical and environmental reasons
- Scalable links

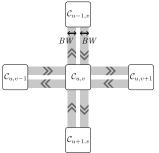
Framework	Theoretical results	Heuristics	Simulations
Outline of	the talk		

2 Theoretical results

Framework	Theoretical results	Heuristics	Simulations
Outline of t	he talk		



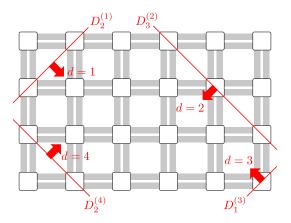
- 2 Theoretical results
- 3 Heuristics



• Cores arranged onto a 2D grid

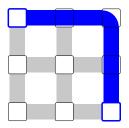
- Cores arranged onto a 2D grid
- Bi-directional links, but bandwidth not shared among two opposite directions

- Cores arranged onto a 2D grid
- Bi-directional links, but bandwidth not shared among two opposite directions
- $f_{(u,v)\to(u',v')}$: fraction of the bandwidth that is used

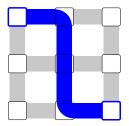


- Cores arranged onto a 2D grid
- Bi-directional links, but bandwidth not shared among two opposite directions
- $f_{(u,v)\to(u',v')}$: fraction of the bandwidth that is used
- $P_{dyn}((u, v) \rightarrow (u', v')) = P_0 \times (f_{(u,v) \rightarrow (u',v')}BW)^{\alpha}$, where P_0 is a constant and $2 < \alpha \le 3$

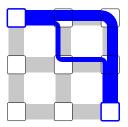
•
$$P_{(u,v)\to(u',v')} = P_{\text{leak}} + P_0 \times (f_{(u,v)\to(u',v')}BW)^{\alpha}$$
.
If $(u,v) \to (u',v')$ is inactive, then $P_{(u,v)\to(u',v')} = 0$.


Framework	Theoretical results	Heuristics	Simulations
00000			
Communication	model		

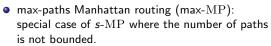
- Communication defined by $\gamma_i = (C_{usrc(i), vsrc(i)}, C_{usnk(i), vsnk(i)}, \delta_i)$
- Direction d_i of communication γ_i
- Diagonal of cores $D_k^{(d)}$


Framework	Theoretical results	Heuristics	Simulations
00000			
Routing def	finitions		

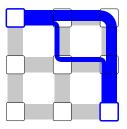
• XY routing (XY): horizontally first, then vertically.


Framework	Theoretical results	Heuristics	Simulations
00000			
Routing de	finitions		

- XY routing (XY): horizontally first, then vertically.
- Single-path Manhattan routing (1-MP): any shortest path


Framework	Theoretical results	Heuristics	Simulations
00000			
Routing de	efinitions		

- XY routing (XY): horizontally first, then vertically.
- Single-path Manhattan routing (1-MP): any shortest path
- s-paths Manhattan routing (s-MP): γ_i can be split into $s' \leq s$ distinct communications $\gamma_{i,1}, \gamma_{i,2}, \ldots, \gamma_{i,s'}$, of sizes $\delta_{i,1}, \delta_{i,2}, \ldots, \delta_{i,s'}$



Framework	Theoretical results	Heuristics	Simulations
00000			
Routing definit	tions		

- XY routing (XY): horizontally first, then vertically.
- Single-path Manhattan routing (1-MP): any shortest path
- s-paths Manhattan routing (s-MP): γ_i can be split into $s' \leq s$ distinct communications $\gamma_{i,1}, \gamma_{i,2}, \ldots, \gamma_{i,s'}$, of sizes $\delta_{i,1}, \delta_{i,2}, \ldots, \delta_{i,s'}$

(Remark: actually, there are $\binom{p+q-2}{p-1}$ Manhattan paths going from $C_{1,1}$ to $C_{p,q}$.)

 \circ

Framework	Theoretical results	Heuristics	Simulations
00000			
Problem definition			

We are given:

- a CMP
- a set of communications $\{\gamma_1, \ldots, \gamma_{n_c}\}$
- a routing rule (XY or *s*-MP), with a maximum number *s* of paths.

Framework	Theoretical results	Heuristics	Simulations	
00000				
Problem definition				

We are given:

- a CMP
- a set of communications $\{\gamma_1, \ldots, \gamma_{n_c}\}$
- a routing rule (XY or *s*-MP), with a maximum number *s* of paths.

Bandwidth must not be exceeded: for all $(u, v) \in \{1, ..., p\} \times \{1, ..., q\}$ and $C_{u', v'} \in succ_{u, v}$,

$$\sum_{\substack{i \in \{1,\ldots,n_c\}, j \in \{1,\ldots,s\} \\ (u,v) \to (u',v') \in path_{i,j}}} \delta_{i,j} \leq f_{(u,v) \to (u',v')} \times BW.$$

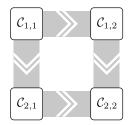
Framework	Theoretical results	Heuristics	Simulations
00000			
Problem defin	ition		

We are given:

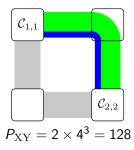
- a CMP
- a set of communications $\{\gamma_1, \ldots, \gamma_{n_c}\}$
- a routing rule (XY or *s*-MP), with a maximum number *s* of paths.

Bandwidth must not be exceeded: for all $(u, v) \in \{1, ..., p\} \times \{1, ..., q\}$ and $C_{u', v'} \in succ_{u, v}$,

$$\sum_{\substack{i \in \{1, \dots, n_c\}, j \in \{1, \dots, s\} \\ (u, v) \to (u', v') \in path_{i,j}}} \delta_{i,j} \leq f_{(u,v) \to (u', v')} \times BW.$$


$$\begin{array}{ll} \text{Minimize} & \sum_{\substack{(u,v) \in \{1,\ldots,p\} \times \{1,\ldots,q\} \\ (u',v') \in succ_{(u,v)}}} P_{(u,v) \to (u',v')} \end{array}$$

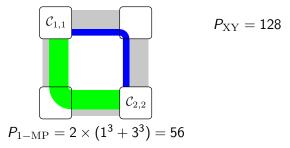
 Framework
 Theoretical results
 Heuristics
 Simulations


 0000
 0000
 0000000000
 0000000000

 Quick comparison of routing rules

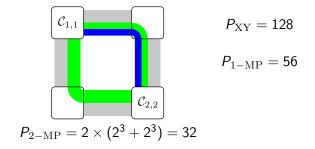
•
$$P_{\text{leak}} = 0, P_0 = 1, \alpha = 3, BW = 4$$

• $\gamma_1 = (C_{1,1}, C_{2,2}, 1) \text{ and } \gamma_2 = (C_{1,1}, C_{2,2}, 3).$


•
$$P_{\text{leak}} = 0$$
, $P_0 = 1$, $\alpha = 3$, $BW = 4$
• $\gamma_1 = (C_{1,1}, C_{2,2}, 1)$ and $\gamma_2 = (C_{1,1}, C_{2,2}, 3)$.

 Framework
 Theoretical results
 Heuristics
 Simulations

 Quick comparison of routing rules


•
$$P_{\text{leak}} = 0, P_0 = 1, \alpha = 3, BW = 4$$

• $\gamma_1 = (C_{1,1}, C_{2,2}, 1) \text{ and } \gamma_2 = (C_{1,1}, C_{2,2}, 3).$

 Framework
 Theoretical results
 Heuristics
 Simulations

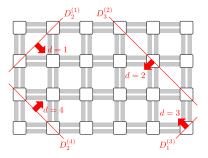
 Quick comparison of routing rules

•
$$P_{\text{leak}} = 0, P_0 = 1, \alpha = 3, BW = 4$$

• $\gamma_1 = (C_{1,1}, C_{2,2}, 1) \text{ and } \gamma_2 = (C_{1,1}, C_{2,2}, 3).$

Framework	Theoretical results	Heuristics	Simulations
Outline of	the talk		

2 Theoretical results



Frame 00000		Theoretical results ●000	Heuristics 0000000000	Simulations 00000
M	anhattan vs X	(Y; single so	urce and destination	
	Theorem			
	Given that $q = 0$	D(p), an upper l	bound of $P_{ m XY}/P_{ m max}$ is in $O(p)$	
				_

- K: sum of all communications
- $\mathcal{K}_k^{(1)}$: the sum of the γ_i that cross $D_k^{(1)}$

• In this case,
$$K_k^{(1)} = K$$
 for each k

 Framework
 Theoretical results
 Heuristics
 Simulations

 •ooo
 •ooo
 ooooo
 ooooo

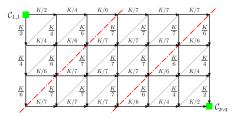
 Manhattan vs XY; single source and destination

 Theorem

Given that q = O(p), an upper bound of P_{XY}/P_{max} is in O(p).

- K: sum of all communications
- $\mathcal{K}_k^{(1)}$: the sum of the γ_i that cross $D_k^{(1)}$
- In this case, $K_k^{(1)} = K$ for each k

•
$$P_{\rm XY} = (p+q) \times K^c$$


 Framework
 Theoretical results
 Heuristics
 Simulations

 •000
 •000
 0000000000
 00000

 Manhattan vs XY; single source and destination
 Theorem

Given that q = O(p), an upper bound of P_{XY}/P_{max} is in O(p).

- K: sum of all communications
- $\mathcal{K}_k^{(1)}$: the sum of the γ_i that cross $D_k^{(1)}$
- In this case, $K_k^{(1)} = K$ for each k
- $P_{\mathrm{XY}} = (p+q) \times K^{\alpha}$
- Lower bound on P_{max}. Ideal sharing of one communication:

Theoretical results Framework Heuristics Simulations 000 Manhattan vs XY; single source and destination Theorem Given that q = O(p), an upper bound of P_{XY}/P_{max} is in O(p). $P_{\max} \ge \sum_{k=1}^{p-1} 2k \left(\frac{K_k^{(1)}}{2k}\right)^{\alpha} + \sum_{k=1}^{q-1} (2p-1) \left(\frac{K_k^{(1)}}{2p-1}\right)^{\alpha}$ $+\sum_{k=1}^{q+p-2}2(q+p-k-1)\left(rac{K_{k}^{(1)}}{2(q+p-k-1)}
ight)^{2},$

Framework Theoretical results Heuristics Simulations 000 Manhattan vs XY; single source and destination Theorem Given that q = O(p), an upper bound of P_{XY}/P_{max} is in O(p). $P_{\max} \ge \sum_{k=1}^{p-1} 2k \left(\frac{K_k^{(1)}}{2k} \right)^{\alpha} + \sum_{k=1}^{q-1} (2p-1) \left(\frac{K_k^{(1)}}{2p-1} \right)^{\alpha}$ $+\sum_{k=1}^{q+p-2}2(q+p-k-1)\left(rac{K_{k}^{(1)}}{2(q+p-k-1)}
ight)^{lpha},$ $K_{\mu}^{(1)} = K$ and $\sum_{k=1}^{p-1} k^{1-\alpha} \ge \int_{1}^{p} dx / x^{\alpha-1}$ p-1pPitt Benoit, Melhem, Renaud, Robert Power-aware Manhattan routing on CMPs 11 / 34 Framework Theoretical results Heuristics Simulations 0000 Manhattan vs XY; single source and destination Theorem Given that q = O(p), an upper bound of P_{XY}/P_{max} is in O(p). $P_{\max} \ge \sum^{p-1} 2k \left(\frac{K_k^{(1)}}{2k} \right)^{\alpha} + \sum^{q-1} (2p-1) \left(\frac{K_k^{(1)}}{2p-1} \right)^{\alpha}$ $+\sum_{k=1}^{q+p-2}2(q+p-k-1)\left(rac{K_{k}^{(1)}}{2(q+p-k-1)}
ight)^{2},$ $K_{\mu}^{(1)} = K$ and $\sum_{\mu=1}^{p-1} k^{1-\alpha} \ge \int_{1}^{p} dx / x^{\alpha-1}$, hence $P_{\max} \geq \mathcal{K}^{\alpha} \left(2 \times \frac{1}{2^{\alpha-1}} \frac{1}{2-\alpha} \left(1-p^{2-\alpha} \right) + \frac{q-p}{(2p-1)^{\alpha-1}} \right).$

Framework Theoretical results Heuristics Simulations 000 Manhattan vs XY; single source and destination Theorem Given that q = O(p), an upper bound of P_{XY}/P_{max} is in O(p). $P_{\max} \ge \sum^{p-1} 2k \left(\frac{K_k^{(1)}}{2k} \right)^{\alpha} + \sum^{q-1} (2p-1) \left(\frac{K_k^{(1)}}{2p-1} \right)^{\alpha}$ $+\sum_{k=1}^{q+p-2}2(q+p-k-1)\left(rac{K_{k}^{(1)}}{2(q+p-k-1)}
ight)^{2},$ $K_{k}^{(1)} = K$ and $\sum_{k=1}^{p-1} k^{1-\alpha} > \int_{1}^{p} dx / x^{\alpha-1}$, hence $P_{\max} \geq \mathcal{K}^{\alpha} \left(2 \times \frac{1}{2^{\alpha-1}} \frac{1}{2-\alpha} \left(1-p^{2-\alpha} \right) + \frac{q-p}{(2p-1)^{\alpha-1}} \right).$

Altogether, $P_{\max} = O(K^{lpha})$ and $P_{XY} = O(p imes K^{lpha})$, hence the result.

Framework
00000Theoretical results
00000Heuristics
000000000000Simulations
000000Manhattan vs XY; single source and destination

Theorem

The upper bound of $P_{\rm XY}/P_{\rm max}$ in O(p) is tight.

Theorem

Given that q = O(p), an upper bound of P_{XY}/P_{max} is in $O(p^{\alpha-1})$.

Theorem

The upper bound of P_{XY}/P_{max} in $O(p^{\alpha-1})$ can be achieved with a 1-MP routing on a square CMP.

Framework 00000 Theoretical results 0000 NP-completeness of Manhattan routing

Theorem

Finding a s-MP routing that minimizes the total power consumption while ensuring that link bandwidths are not exceeded is a NP-complete problem.

Framework	Theoretical results	Heuristics	Simulations
Outline of	the talk		

1 Framework

2 Theoretical results

Framework	Theoretical results	Heuristics	Simulations
00000	0000	•000000000	
Summary of th	e heuristics		

• Simple greedy (SG): greedily assigns communications, hop by hop, on the least loaded link.

Framework	Theoretical results	Heuristics	Simulations
		•000000000	
Summary	of the heuristics		

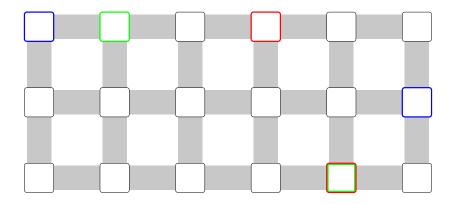
- Simple greedy (SG): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (**IG**): virtually pre-assigns communications onto links, then almost like **SG**.

Framework	Theoretical results	Heuristics	Simulations
		••••••	
Summary of	the heuristics		

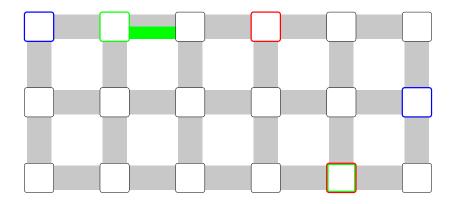
- Simple greedy (SG): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (IG): virtually pre-assigns communications onto links, then almost like SG.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.

Framework	Theoretical results	Heuristics	Simulations
		•000000000	
Summary c	of the heuristics		

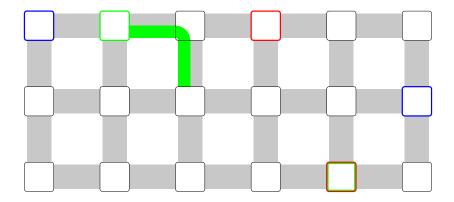
- Simple greedy (SG): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (IG): virtually pre-assigns communications onto links, then almost like SG.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.
- XY improver (XYI): starts from XY assignment, and moves communications from the highest loaded link.

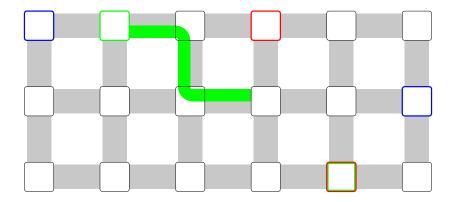

Framework	Theoretical results	Heuristics	Simulations
		•000000000	
Summary of t	he heuristics		

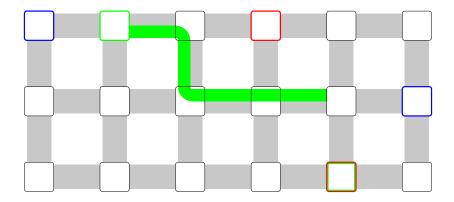
- Simple greedy (SG): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (IG): virtually pre-assigns communications onto links, then almost like SG.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.
- XY improver (XYI): starts from XY assignment, and moves communications from the highest loaded link.
- Path remover (**PR**): virtually pre-assigns communications onto links, and iteratively prevents communications from using highly loaded links.

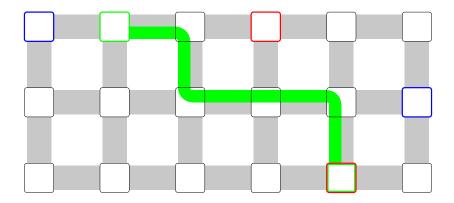

Framework 00000	Theoretical results	Heuristics 0●00000000	Simulations
Simple greedy	(SG)		

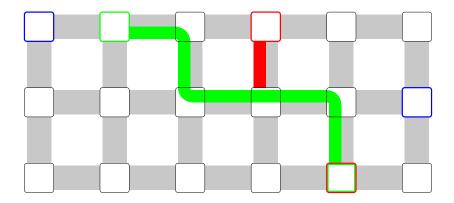
- Simple greedy (**SG**): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (IG): virtually pre-assigns communications onto links, then almost like **SG**.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.
- XY improver (XYI): starts from XY assignment, and moves communications from the highest loaded link.
- Path remover (**PR**): virtually pre-assigns communications onto links, and iteratively prevents communications from using highly loaded links.

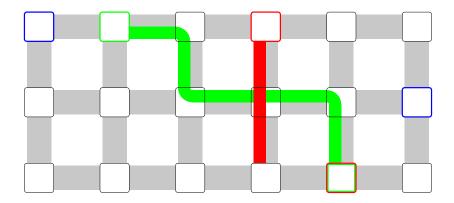

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

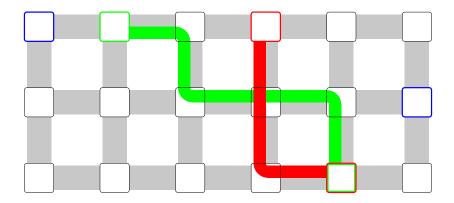

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

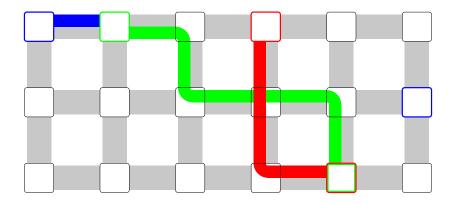

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

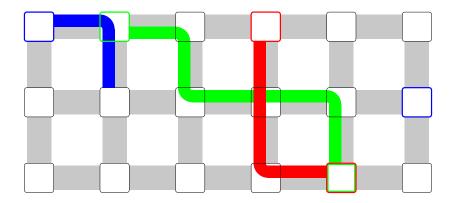

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

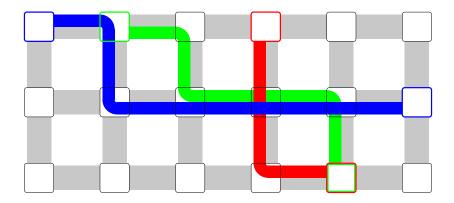

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		


Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

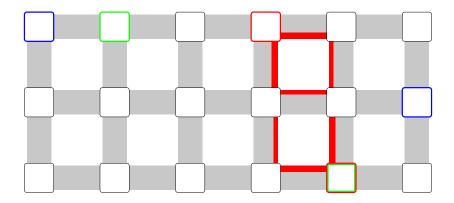

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

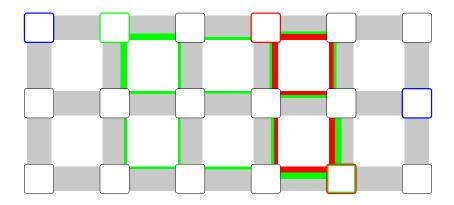

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		


Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

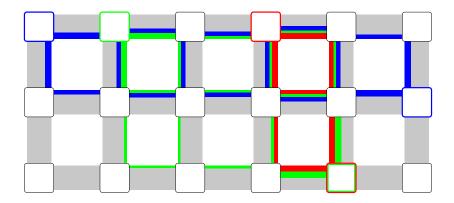

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Simple gre	edy (SG)		

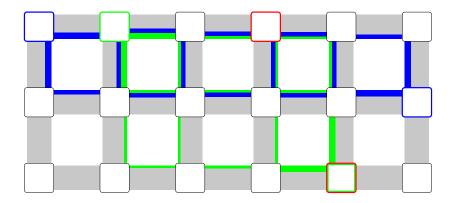
Framework	Theoretical results	Heuristics	Simulations
00000	0000	0000000000	00000
Simple g	reedy (SG)		

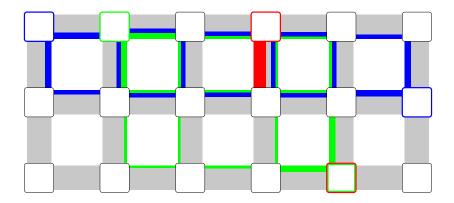

Framework	Theoretical results	Heuristics	Simulations
00000	0000	0000000000	00000
Simple g	reedy (SG)		

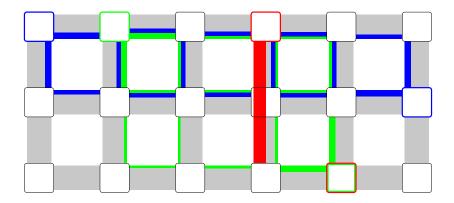

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved greed	y (IG)		

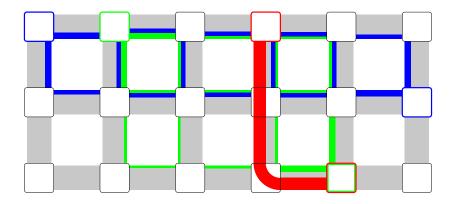
- Simple greedy (**SG**): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (IG): virtually pre-assigns communications onto links, then almost like SG.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.
- XY improver (XYI): starts from XY assignment, and moves communications from the highest loaded link.
- Path remover (**PR**): virtually pre-assigns communications onto links, and iteratively prevents communications from using highly loaded links.

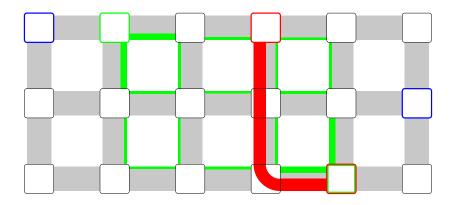

Framework	Theoretical results	Heuristics	Simulations
		000000000	
Improved g	greedy (IG)		

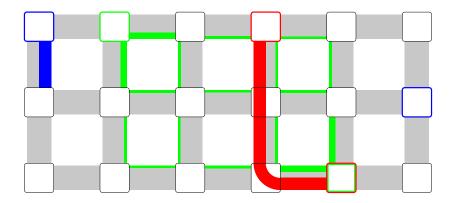

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved g	greedy (IG)		

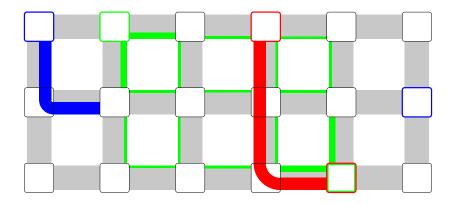

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved §	greedy (IG)		

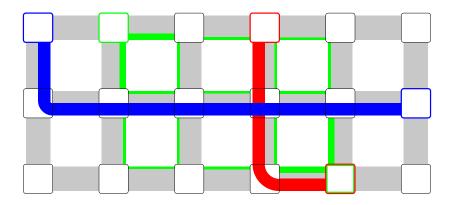

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved §	greedy (IG)		

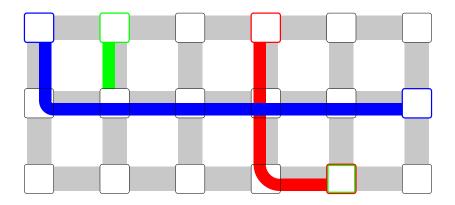

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved §	greedy (IG)		

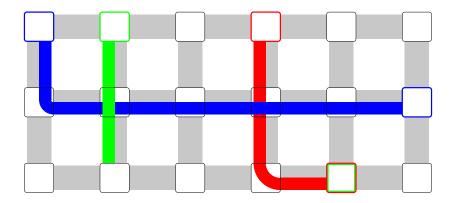

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved §	greedy (IG)		

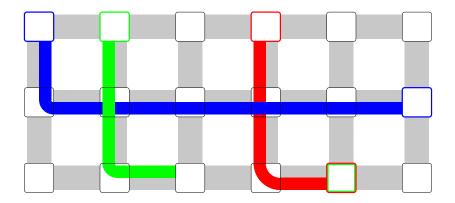

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved g	greedy (IG)		

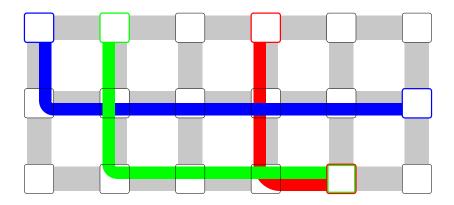

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved g	greedy (IG)		


Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved g	greedy (IG)		

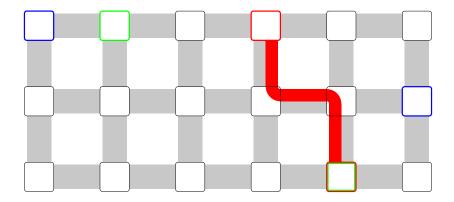

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved g	greedy (IG)		

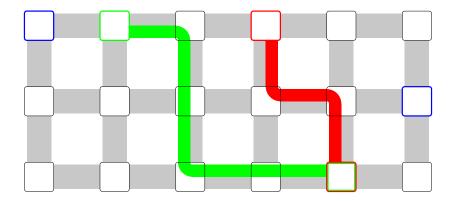

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Improved g	greedy (IG)		


Framework	Theoretical results	Heuristics	Simulations
		000000000	
Improved g	greedy (IG)		

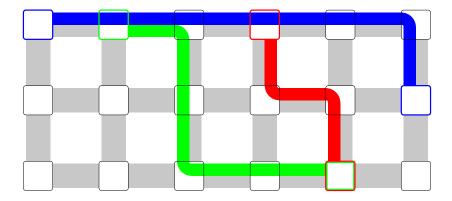

Framework	Theoretical results	Heuristics	Simulations
		000000000	
Improved g	greedy (IG)		

Framework	Theoretical results	Heuristics	Simulations
		000000000	
Improved g	greedy (IG)		

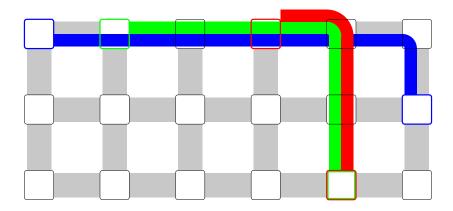

Framework	Theoretical results	Heuristics	Simulations
		000000000	
Improved g	greedy (IG)		

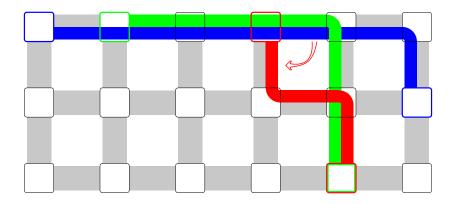

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Two-bend (T B	3)		

- Simple greedy (**SG**): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (**IG**): virtually pre-assigns communications onto links, then almost like **SG**.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.
- XY improver (XYI): starts from XY assignment, and moves communications from the highest loaded link.
- Path remover (**PR**): virtually pre-assigns communications onto links, and iteratively prevents communications from using highly loaded links.

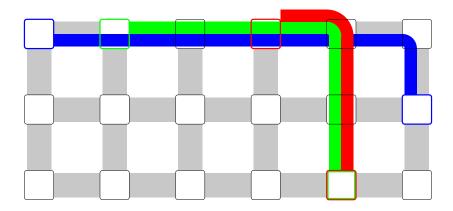

Framework	Theoretical results	Heuristics	Simulations
00000		000000●0000	00000
Two-bend (T	B)		

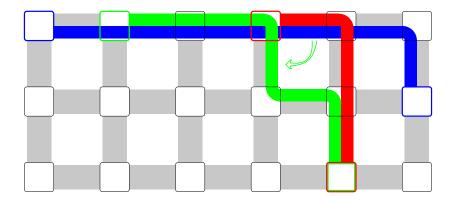
Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
Two-bend (TB)		

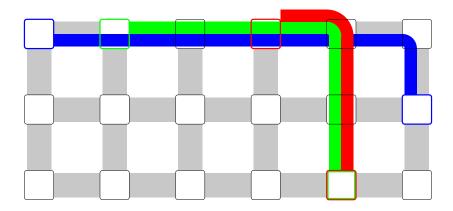

Framework	Theoretical results	Heuristics	Simulations
		00000000000	
Two-bend	(TB)		

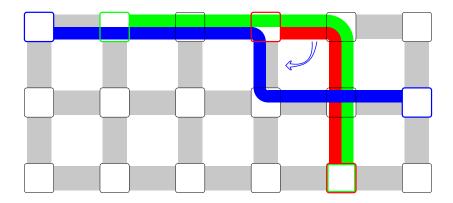

Framework	Theoretical results	Heuristics	Simulations
		000000000000	
XY improver	(XYI)		

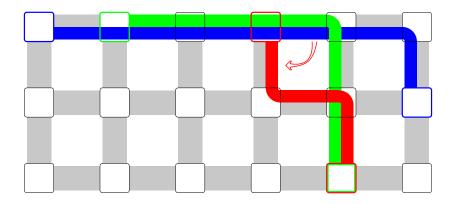
- Simple greedy (**SG**): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (**IG**): virtually pre-assigns communications onto links, then almost like **SG**.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.
- XY improver (XYI): starts from XY assignment, and moves communications from the highest loaded link.
- Path remover (**PR**): virtually pre-assigns communications onto links, and iteratively prevents communications from using highly loaded links.

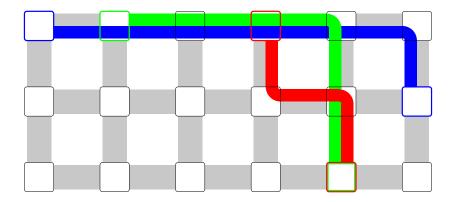

Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
XY improv	ver (XYI)		

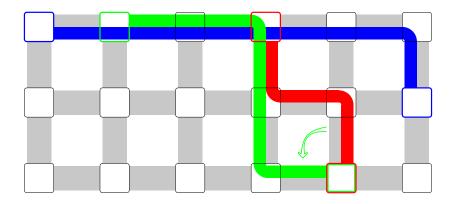

F	ramework	Theoretical results	Heuristics	Simulations
	00000	0000	00000000000	00000
	XY improver ()	KYI)		

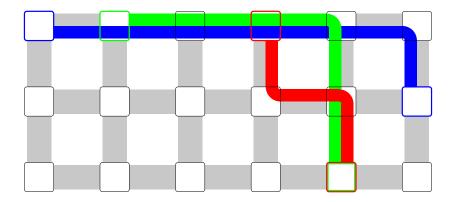

Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
XY improv	ver (XYI)		

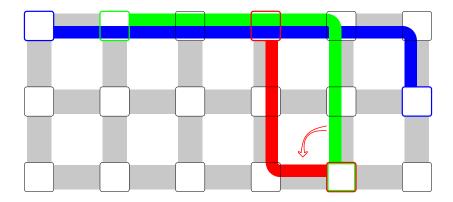

F	ramework	Theoretical results	Heuristics	Simulations
	00000	0000	00000000000	00000
	XY improver ()	KYI)		

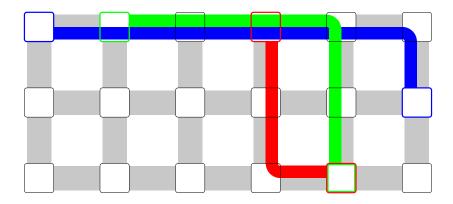

Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
XY improv	ver (XYI)		

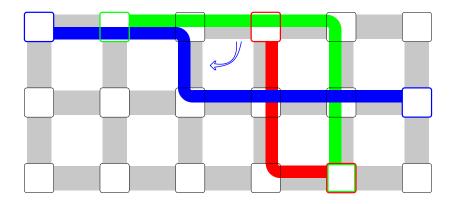

Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
XY improve	er (XYI)		

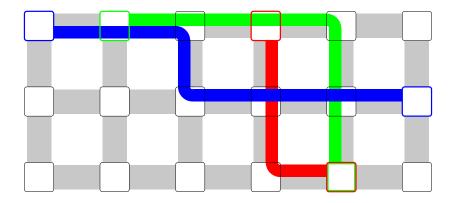

F	ramework	Theoretical results	Heuristics	Simulations
	00000	0000	00000000000	00000
	XY improver ()	KYI)		

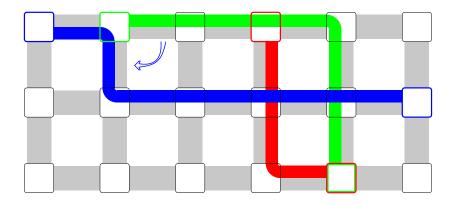

Framework	Theoretical results	Heuristics	Simulations
		00000000000	
XY improver (X	(YI)		


Framework	Theoretical results	Heuristics	Simulations
		00000000000	
XY improver (X	(YI)		

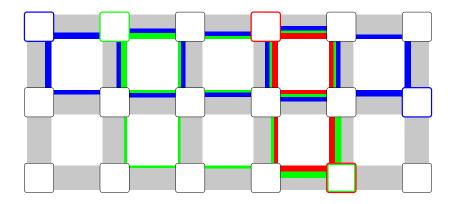

Framework	Theoretical results	Heuristics	Simulations
		00000000000	
XY improver (X	(YI)		

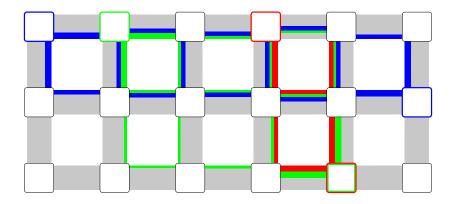

Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
XY improver ()	(YI)		


Framework	Theoretical results	Heuristics	Simulations
		00000000000	
XY improver (X	(YI)		

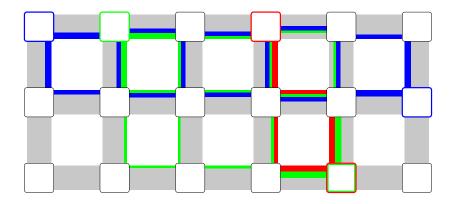

Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
XY improve	er (XYI)		

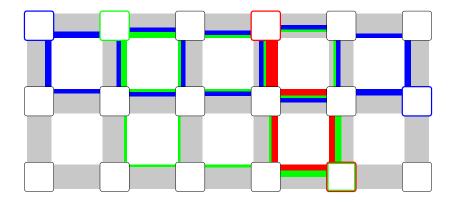
Framework	Theoretical results	Heuristics	Simulations
		00000000000	
XY improve	er (XYI)		

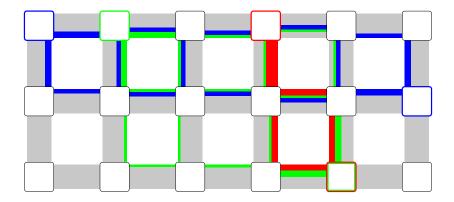

Framework	Theoretical results	Heuristics	Simulations
00000	0000	00000000000	00000
XY improve	er (XYI)		

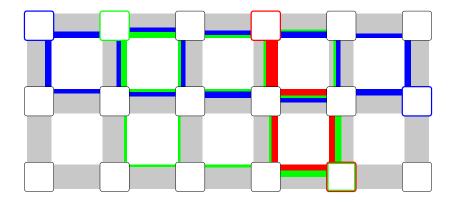

Framework	Theoretical results	Heuristics	Simulations
		0000000000	
Path remover	(PR)		

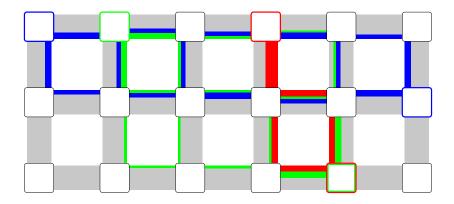
- Simple greedy (**SG**): greedily assigns communications, hop by hop, on the least loaded link.
- Improved greedy (IG): virtually pre-assigns communications onto links, then almost like **SG**.
- Two-bend (**TB**): for each communication, chooses the best path with two bends.
- XY improver (XYI): starts from XY assignment, and moves communications from the highest loaded link.
- Path remover (**PR**): virtually pre-assigns communications onto links, and iteratively prevents communications from using highly loaded links.

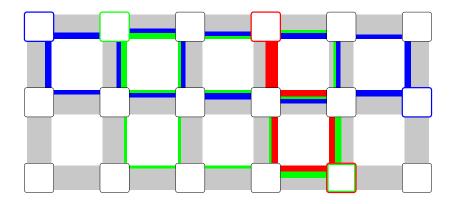

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

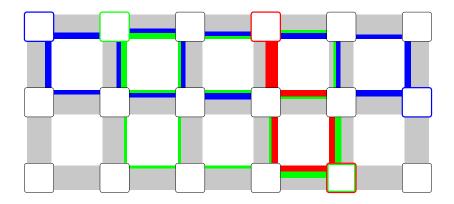

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

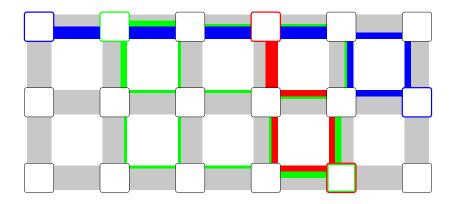

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

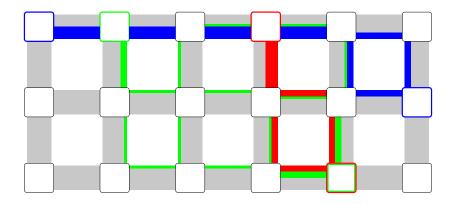

Framework	Theoretical results	Heuristics	Simulations
00000	0000	0000000000	00000
Path remov	ver (PR)		


Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

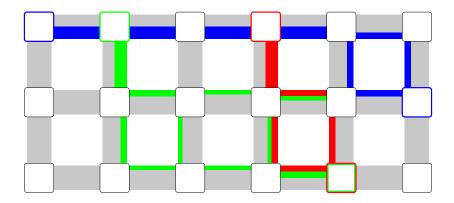

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

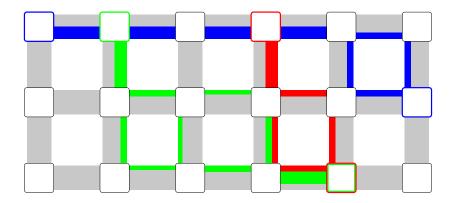

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

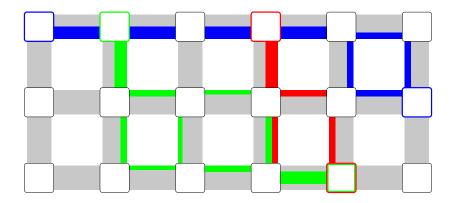

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

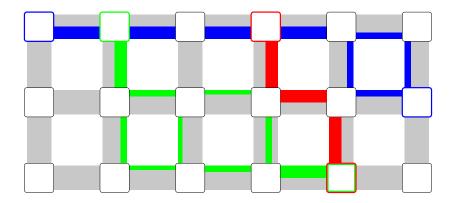

Framework	Theoretical results	Heuristics	Simulations
Path remov	ver (PR)		

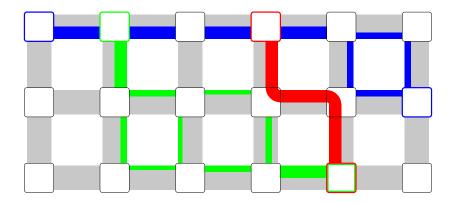
Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

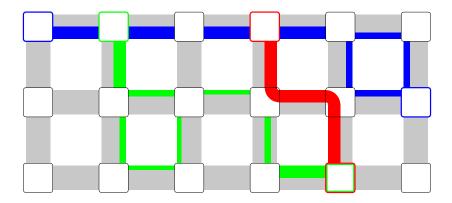

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

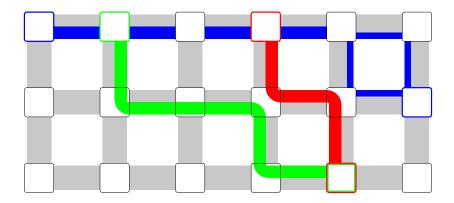

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

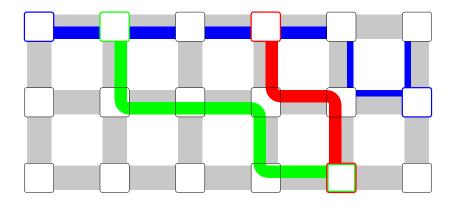

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		

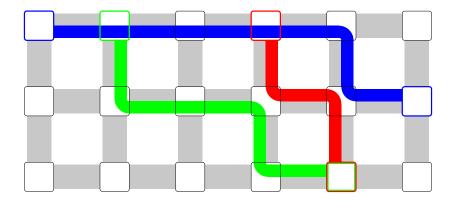

Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		


Framework	Theoretical results	Heuristics	Simulations
Path remov	ver (PR)		


Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remo	ver (PR)		


Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remover (PR)			


Framework	Theoretical results	Heuristics	Simulations
Path remov	ver (PR)		


Framework	Theoretical results	Heuristics	Simulations
00000	0000	000000000	00000
Path remover (PR)			

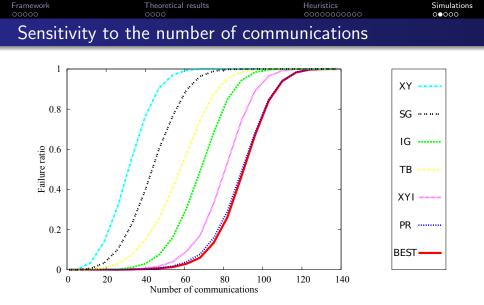
Framework	Theoretical results	Heuristics	Simulations
Path remov	ver (PR)		

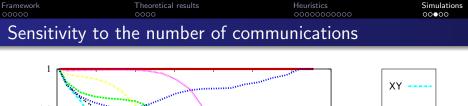
Framework	Theoretical results	Heuristics	Simulations
Path remov	ver (PR)		

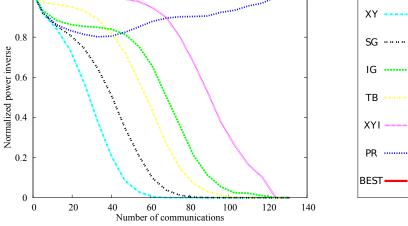
Framework	Theoretical results	Heuristics	Simulations
Outline of	the talk		

1 Framework

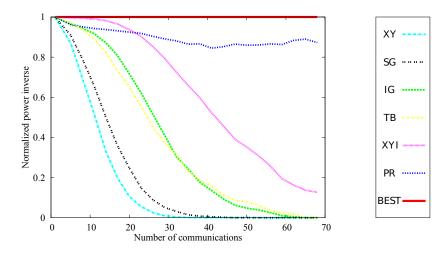
2 Theoretical results

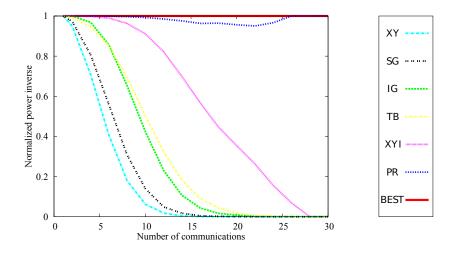

3 Heuristics


Framework	Theoretical results	Heuristics	Simulations
			00000
Simulation	settings		


- 8 × 8 CMP
- \bullet Discrete frequencies: 1 ${\rm Gb/s},$ 2.5 ${\rm Gb/s}$ and 3.5 ${\rm Gb/s}$
- ${\it P}_{
 m leak}=16.9\,{
 m mW}$, ${\it P}_{
 m 0}=5.41$ and lpha=2.95
- Random source and sink nodes for the communications

- **BEST** heuristic: best heuristic among all five ones on the given problem instance
- Each point of the graph: average on 50000 sets of communications


 $100 \,\mathrm{Mb/s} \le \delta_i \le 1500 \,\mathrm{Mb/s}$


 $100 \,\mathrm{Mb/s} \le \delta_i \le 1500 \,\mathrm{Mb/s}$

 $100\,\mathrm{Mb/s} \le \delta_i \le 2500\,\mathrm{Mb/s}$

 $2500 \, \mathrm{Mb/s} \le \delta_i \le 3500 \, \mathrm{Mb/s}$

- NP-completeness of the problem
- Minimum upper bound of the ratio of the power consumed by an XY routing over the power consumed by a Manhattan routing
- Several single-path heuristics: more solutions and less power consumption
- Future work:
 - Worst case for single-path Manhattan routing when single source and destination
 - Approximation algorithms
 - Optimal solution for single-path Manhattan routings
 - Multi-path heuristics