DAGuE

http://icl.utk.edu/dague

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Herault, Jack Dongarra
DAGuE

- DAGuE [dag] (like in Prague [prag])
 - Not DAGuE like ragout [rágoʊ]
 - Not DAGuE like vague [väg]
- Innovative Computing Laboratory, University of Tennessee, Knoxville

- Task / Data Flow Computation Framework
 - Dynamic Scheduling
 - Symbolic DAG representation
 - Distributed Memory
 - Many-core / Accelerators

[the Prague Astronomical Clock was first installed in 1410, making it the third-oldest astronomical clock in the world and the oldest one still working. – Wikipedia Notice]
Motivation

• Today software developers face systems with
 • ~1 TFLOP of compute power per node
 • 32+ of cores, 100+ hardware threads
 • Highly heterogeneous architectures (cores + specialized cores + accelerators/coprocessors)
 • Deep memory hierarchies
 • Today, we deal with thousands of them (plan to deal with millions)
 • systemic load imbalance / decreasing use of the resources
• How to harness these devices productively?
 • SPMD produces choke points, wasted wait times
 • We need to improve efficiency, power and reliability
How to Program

• Threads & synchronization | Processes & Messages
 • Hand written Pthreads, compiler-based OpenMP, Chapel, UPC, MPI, hybrid

• Very challenging to find parallelism, to debug, to maintain and to get good performance
 • Portably
 • With reasonable development efforts

When is it time to redesign a software?

• Increasing gaps between the capabilities of today’s programming environments, the requirements of emerging applications, and the challenges of future parallel architectures
Goals

Decouple “System issues” from Algorithm
• Keep the algorithm as simple as possible
 • Depict only the flow of data between tasks
 • Distributed Dataflow Environment based on Dynamic Scheduling of (Micro) Tasks
• Programmability: layered approach
 • Algorithm / Data Distribution
 • Parallel applications without parallel programming
• Portability / Efficiency
 • Use all available hardware; overlap data movements / computation
 • Find something to do when imbalance arise
Dataflow with Runtime scheduling

- Algorithms expect help to abstract
 - *Hardware specificities*: a runtime can provide portability, performance, scheduling heuristics, heterogeneity management, data movement, …

 - *Scalability*: maximize parallelism extraction, but avoid centralized scheduling or entire DAG representation: dynamic and independent discovery of the relevant portions during the execution

 - *Jitter resilience*: Do not support explicit communications, instead make them implicit and schedule to maximize overlap and load balance

- Express the algorithms differently

81 dual Intel Xeon L5420@2.5GHz
[2x4 cores/node] → 648 cores
MX 10Gbs, Intel MKL, Scalapack
References

81 dual Intel Xeon L5420@2.5GHz
(2x4 cores/node) \(\Rightarrow\) 648 cores
MX 10Gbs, Intel MKL, Scalapack
The DAGuE framework
Domain Specific Extensions

• DSEs ⇒ higher productivity for developers
 • High-level data types & ops tailored to domain
 • E.g., relations, matrices, triangles, …
 • Prototyping / Meta-Programming

• Portable and scalable specification of parallelism
 • Automatically adjust data structures, mapping, and scheduling as systems scale up
 • Toolkit of classical data distributions, etc
DAGuE toolchain

- Serial Code
- Dataflow representation
- Dataflow compiler
- Parallel tasks stubs
- Runtime
- Domain Specific Extensions
- Application code & Codelets
- Supercomputer
- System compiler
- Additional libraries
- MPI
- pthreads
- CUDA
- PLASMA
- MAGMA

DAGuE Toolchain

- Programmer
- Additional libraries
- Serial Code
- Data distribution
DAGuE Compiler

Serial Code to Dataflow Representation
Example: QR Factorization

FOR k = 0 .. SIZE - 1
 A[k][k], T[k][k] <- GEQRT(A[k][k])

FOR m = k+1 .. SIZE - 1
 A[k][k]|Up, A[m][k], T[m][k] <- TSQRT(A[k][k]|Up, A[m][k], T[m][k])

FOR n = k+1 .. SIZE - 1
 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

FOR m = k+1 .. SIZE - 1
 A[k][n], A[m][n] <- TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])
for (k = 0; k < A.mt; k++) {
 Insert_Task(zgeqrt, A[k][k], INOUT, T[k][k], OUTPUT);
 for (m = k+1; m < A.mt; m++) {
 Insert_Task(ztsqrt, A[k][k], INOUT | REGION_D | REGION_U, A[m][k], INOUT | LOCALITY, T[m][k], OUTPUT);
 }
 for (n = k+1; n < A.nt; n++) {
 Insert_Task(zunmqr, A[k][k], INPUT | REGION_L, T[k][k], INPUT, A[k][m], INOUT);
 for (m = k+1; m < A.mt; m++) {
 Insert_Task(ztsmqr, A[k][n], INOUT, A[m][n], INOUT | LOCALITY, A[m][k], INPUT, T[m][k], INPUT);
 }
 }
}
Dataflow Analysis

- **Dataflow Analysis**
 - Example on task DGEQRT of QR
 - Polyhedral Analysis through Omega Test
 - Compute algebraic expressions for:
 - Source and destination tasks
 - Necessary conditions for that data flow to exist

```
FOR k = 0 .. SIZE - 1
    A[k][k], T[k][k]  <- GEQRT(A[k][k])

FOR m = k+1 .. SIZE - 1
    A[k][k]|Up, A[m][k], T[m][k]  <- TSQRT(A[k][k]|Up, A[m][k], T[m][k])

FOR n = k+1 .. SIZE - 1
    A[k][n]  <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

FOR m = k+1 .. SIZE - 1
    A[k][n], A[m][n]  <- TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])
```
Intermediate Representation: Job Data Flow

GEQRT(k)
/* Execution space */
k = 0..(MT < NT) ? MT-1 : NT-1
/* Locality */
: A(k, k)
RW A <- (k == 0) ? A(k, k)
: A1 TSMQR(k-1, k, k)
-> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
-> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
-> (k == MT-1) ? A(k, k) [type = UPPER]
WRITE T <- T(k, k)
-> T(k, k)
-> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)
/* Priority */
;(NT-k)*(NT-k)*(NT-k)

BODY
zgeqrt(A, T)
END

Control flow is eliminated, therefore maximum parallelism is possible
Dataflow Representation
Example: Reduction Operation

• Reduction: apply a user defined operator on each data and store the result in a single location.
 (Suppose the operator is associative and commutative)
Example: Reduction Operation

- Reduction: apply a user defined operator on each data and store the result in a single location.
 (Suppose the operator is associative and commutative)

```plaintext
for(s = 1; s < N/2; s = 2*s)  
for(i = 0; i < N-s; i += s)  
operator(V[i], V[i+s])
```

Issue: Non-affine loops lead to non-polyhedral array accessing
Example: Reduction Operation

reduce(l, p)
l = 1 .. depth
p = 0 .. (MT / (1<<l))

V(p * (1<<l))

RW A <- (1 == l) ? V(2*p)
 : A reduce(l-1, 2*p)
 -> (depth == l) ? V(0)
 -> (0 == (p%2)) ? A reduce(l+1, p/2)
 : B reduce(l+1, p/2)

READ B <- (1 == l) ? V(2*p+1)
 : A reduce(l-1, p*2+1)

Solution: Hand-writing of the data dependency using the intermediate Data Flow representation

BODY
operator(A, B);
END
Integration
Data Flow Compiler

• Produces functions to instantiate the DAG object

 • At runtime a DAG object is still problem-size independent, it is just a set of functions to obtain successors or predecessors of tasks, compute the set of initial tasks.

```c
dague_object_t *reduce_create(
    dague_ddesc_t *V,
    int MT,
    int depth);

void reduce_destroy(dague_object_t *o);
```

```c
declare int l = 1 .. depth
    p = 0 .. (MT / (1<<l))

: V(p * (1<<l))
```
Data Distribution

• Flexible data distribution
 • Decoupled from the algorithm
 • But can be exposed
 • Expressed as a user-defined function
 • Only limitation: must evaluate uniformly across all nodes

• Common distributions provided in DSEs
 • 1D cyclic, 2D cyclic, etc.
 • Symbol Matrix for sparse direct solvers

```c
dague_ddesc_t *V;
V = dague_onedim_bc(
PTR,
DAGUE_FLOAT,
worldsize,
M);
```
Main Program

- Traditional MPI program
- Initialize / Finalize DAGuE runtime
- Create DAGuE data descriptors
- Instantiate DAGuE DAG objects with parameters and descriptors
- Enqueue them
- Wait for completion
 - During this time, no MPI call can be issued

```c
int main(...) {
    MPI_Init(...);
    dague_init(cores, worldsize, ...);
    dague_ddesc_t * V = ...;
    dague_object_t * r = reduce_create(V, ...);
    dague_enqueue(r);
    dague_wait(r);
    reduce_destroy(r);
    dague_fini();
    MPI_Finalize();
}
```
Algorithm is now expressed as a Parameterized DAG

Parallel Runtime
• DAG too large to be generated ahead of time
 • Generate it dynamically
• HPC is about distributed heterogeneous resources
 • Have to get involved in message passing
 • Distributed management of the scheduling
 • Dynamically deal with heterogeneity
Runtime DAG scheduling

- Every process has the symbolic DAG representation
 - Only the (node local) frontier of the DAG is considered
 - Distributed Scheduling based on remote completion notifications
- Background remote data transfer automatic with overlap
- NUMA / Cache aware Scheduling
 - Work Stealing and sharing based on memory hierarchies
Dynamic / Static

Task Affinity to nodes
(based on Data Distribution)

Example Data Distribution:
2D Block Cyclic (3x2)

User defined
data distribution
function
Scheduling Heuristics in DAGuE

- Manages parallelism & locality
 - Achieve efficient execution (performance, power, …)
 - Handles specifics of HW system (hyper-threading, NUMA, …)
- Per-object capabilities
 - Read-only or write-only, output data, private, relaxed coherence
 - DAGuE engine tracks data usage, and targets to improve data reuse
 - NUMA aware hierarchical bounded buffers to implement work stealing
- Users hints: expressions for distance to critical path
 - Selection from local waiting queue abides to priority, but work stealing can alter this ordering due to locality
- Communications heuristics
 - Communications inherits priority of destination task
- Algorithm defined scheduling
PTG vs DAG Unrolling

DAG Unrolling
- Discover the DAG while unrolling a sequential code
- StarPU, SMP*, PLASMA, … popular approach
- Window-Based (the DAG is huge)

Parameterized Task Graph
- DAGuE, PTG approach
- Problem-size independent object represents the whole DAG
- Given a task (the parameters of a terminated task), can compute the successors in $O(d)$ ($O(1)$)
- From these successors, can keep only the local & ready ones
PTG vs DAG Unrolling (2)

- **DAG Unrolling**
 - Memory $O(w)$
 - Expressivity

- **PTG**
 - Memory $O(N)$
 - Communication Patterns Detection
 - No window

Expressivity: No window
Performance; Ongoing Work
Scalability in Distributed Memory

- Parameterized Task Graph representation
- Independent distributed scheduling
- Scales well
Heterogeneity Support

• A BODY is a task on a specific device (codelet)
• Currently the system supports CUDA and cores
• A CUDA device is considered as one additional memory level
• Data locality and data versioning define the transfers to and from the GPU/Co-processors

/* POTRF Lower case */
GEMM(k, m, n)

// Execution space
k = 0 .. MT-3
m = k+2 .. MT-1
n = k+1 .. m-1

// Parallel partitioning
: A(m, n)

// Parameters
READ A <- C TRSM(m, k)
READ B <- C TRSM(n, k)
RW C <- (k == 0) ? A(m, n) : C GEMM(k-1, m, n)
 -> (n == k+1) ? C TRSM(m, n) : C GEMM(k+1, m, n)

BODY [CPU, CUDA, MIC, *]
- **Multi GPU – single node**
 - Single node
 - 4xTesla (C1060)
 - 16 cores (AMD opteron)

- **Multi GPU - distributed**
 - 12 nodes
 - 12xFermi (C2070)
 - 8 cores/node (Intel core2)
Auto-tuning

- Multi-level tuning
 - Tune the kernels based on local architecture
 - Then tune the algorithm
- Depends on the network, type and number of cores
- For a fixed size matrix increasing the task duration (or the tile size) decrease parallelism
- For best performance: auto-tune per system
Analysis Tools

Hermitian Band Diagonal; 16x16 tiles
Energy efficiency

Total energy consumption

<table>
<thead>
<tr>
<th># Cores</th>
<th>Library</th>
<th>Cholesky</th>
<th>QR</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>ScaLAPACK</td>
<td>192000</td>
<td>672000</td>
</tr>
<tr>
<td></td>
<td>DPLASMA</td>
<td>128000</td>
<td>540000</td>
</tr>
<tr>
<td>256</td>
<td>ScaLAPACK</td>
<td>240000</td>
<td>816000</td>
</tr>
<tr>
<td></td>
<td>DPLASMA</td>
<td>96000</td>
<td>540000</td>
</tr>
<tr>
<td>512</td>
<td>ScaLAPACK</td>
<td>325000</td>
<td>1000000</td>
</tr>
<tr>
<td></td>
<td>DPLASMA</td>
<td>125000</td>
<td>576000</td>
</tr>
</tbody>
</table>

Work in progress with Hatem Ltaief

- Energy used depending on the number of cores
- Up to 62% more energy efficient while using a high performance tuned scheduling
 - Power efficient scheduling

SystemG: Virginia Tech Energy Monitored cluster (ib40g, intel, 8cores/node)
(Runtime) Choice

- Take one of the two branches
- “cancel” the branch that was not taken
 - Remember the choices in the dague_object
 - Broadcast the choices for distributed runs
Resilience

- The fault propagate in the system based on the data dependencies
- However, if the original data can be recovered, the execution complete without user interaction
- Automatic recovery made simple
Composition

• An algorithm is a series of operations with data dependencies

• A sequential composition limit the parallelism due to strict synchronizations
 • Following the flow of data we can loosen the synchronizations and transform them in data dependencies
Composition

- An algorithm is a series of operations with data dependencies.
- A sequential composition limits the parallelism due to strict synchronizations.
 - Following the flow of data we can loosen the synchronizations and transform them into data dependencies.
Composition

- An algorithm is a series of operations with data dependencies
- A sequential composition limits the parallelism due to strict synchronizations
 - Following the flow of data, we can loosen the synchronizations and transform them into data dependencies
Related Work

Related Work
Other Systems

<table>
<thead>
<tr>
<th></th>
<th>D AğuE</th>
<th>SMPs</th>
<th>StarPU</th>
<th>Charm++</th>
<th>FLAME</th>
<th>QUARK</th>
<th>Tblas</th>
<th>PTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Internal or Seq. w/ Affine Loops</td>
<td>Seq. w/ add_task</td>
<td>Seq. w/ add_task</td>
<td>Msg-Driven Objects</td>
<td>Internal (LA DSL)</td>
<td>Seq. w/ add_task</td>
<td>Seq. w/ add_task</td>
<td>Internal</td>
</tr>
<tr>
<td>Accelerator</td>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
</tr>
<tr>
<td>Availability</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Not Avail.</td>
</tr>
</tbody>
</table>

Early stage: ParalleX
Non-academic: Swarm, MadLINQ, CnC

All projects support Distributed and Shared Memory (QUARK with QUARKd; FLAME with Elemental)
History: Beginnings of Data Flow

 - Coroutines, flow of data between process
- J.B. Dennis, 60’s
 - Data Flow representation of programs
 - Reasoning about parallelism, equivalence of programs, …
- “The semantics of a simple language for parallel programming”, G. Kahn
 - Kahn Networks
Conclusion

• Programming made easy(ier)
 • Portability: inherently take advantage of all hardware capabilities
 • Efficiency: deliver the best performance on several families of algorithms
 • Higher-level programming:
 New languages should not strive to transform the easy into trivial, but to transform the impracticable into achievable.

• Computer scientists were spoiled by MPI
 • Now let’s think about our users

• Let different people focus on different problems
 • Application developers on their algorithms
 • System developers on system issues
Dague /däɡ/ (French): a short and sharp knife used for a wide variety of purposes