
Efficient Computation of Program Equivalence for
Confluent Concurrent Constraint Programming∗

Luis F. Pino
INRIA/DGA and LIX
École Polytechnique

91128 Palaiseau, France
luis.pino@lix.polytechnique.fr

Filippo Bonchi
CNRS and ENS Lyon

Université de Lyon, LIP
69364 Lyon, France

filippo.bonchi@ens-lyon.fr

Frank D. Valencia
CNRS and LIX

École Polytechnique
91128 Palaiseau, France

frank.valencia@lix.polytechnique.fr

ABSTRACT
Concurrent Constraint Programming (ccp) is a well-established
declarative framework from concurrency theory. Its foundations
and principles e.g., semantics, proof systems, axiomatizations, have
been thoroughly studied for over the last two decades. In contrast,
the development of algorithms and automatic verification proce-
dures for ccp have hitherto been far too little considered. To the best
of our knowledge there is only one existing verification algorithm
for the standard notion of ccp program (observational) equivalence.
In this paper we first show that this verification algorithm has an
exponential-time complexity even for programs from a representa-
tive sub-language of ccp; the summation-free fragment (ccp-{+}).
We then significantly improve on the complexity of this algorithm
by providing two alternative polynomial-time decision procedures
for ccp-{+} program equivalence. Each of these two procedures
has an advantage over the other. One has a better time complex-
ity. The other can be easily adapted for the full language of ccp
to produce significant state space reductions. The relevance of both
procedures derives from the importance of ccp-{+}. This fragment,
which has been the subject of many theoretical studies, has strong
ties to first-order logic and an elegant denotational semantics, and
it can be used to model real-world situations. Its most distinctive
feature is that of confluence, a property we exploit to obtain our
polynomial procedures.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Constraint and logic languages.
Concurrent, distributed, and parallel languages; D.2.4 [Software
/ Program Verification]: Formal methods; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic—Logic and
constraint programming; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis

General Terms
Algorithms, Theory, Verification

∗This work has been partially supported by the project ANR
12IS02001 PACE, ANR-09-BLAN-0169-01 PANDA, and by the
French Defence procurement agency (DGA) with a PhD grant.

Keywords
Concurrent Constraint Programming, Bisimulation, Partition Re-
finement, Observational Equivalence

1. INTRODUCTION

Motivation. Concurrent constraint programming (ccp) [26] is a
well-established formalism from concurrency theory that combines
the traditional algebraic and operational view of process calculi
with a declarative one based upon logic. It was designed to give
programmers explicit access to the concept of partial information
and, as such, has close ties with logic and constraint programming.

The ccp framework models systems whose agents (processes or
programs) interact by concurrently posting (telling) and querying
(asking) partial information in a shared medium (the store). Ccp is
parametric in a constraint system indicating interdependencies (en-
tailment) between partial information and providing for the speci-
fication of data types and other rich structures. The above features
have attracted a renewed attention as witnessed by the works [23,
11, 7, 6, 17] on calculi exhibiting data-types, logic assertions as
well as tell and ask operations. A compelling example of the kind
of system ccp can model involves users interacting by posting and
querying information in a social network [17].

Nevertheless, despite the extensive research on the foundations and
principles of ccp, the development of tools and algorithms for the
automatic verification of ccp programs has hitherto been far too lit-
tle considered. As we shall argue below, the only existing algorithm
for deciding the standard notion of process equivalence was given
[5] and it has an exponential time (and space) complexity.

The main goal of this paper is to produce efficient decision proce-
dures for program equivalence for a meaningful fragment of ccp.
Namely, the summation-free fragment of ccp, henceforth ccp-{+}.
The ccp-{+} formalism is perhaps the most representative sublan-
guage of ccp. It has been the subject of many theoretical studies
because of its computational expressivity, strong ties to first-order
logic, and elegant denotational semantics based on closure opera-
tors [26]. Its most distinctive property is that of confluence in the
sense the final resulting store is the same regardless of the exe-
cution order of the parallel processes. We shall use this property
extensively in proving the correctness of our decision procedures.

Approach. To explain our approach we shall briefly recall some
ccp equivalences. The standard notion of observational (program)
equivalence [26], roughly speaking, decrees that two ccp programs
are observationally equivalent if each one can be replaced with the

other in any ccp context and produce the same final stores. Other
alternative notions of program equivalences for ccp such as sat-
urated barbed bisimilarity (∼̇sb) and its weak variant (≈̇sb) were
introduced in [3], where it is also shown that ≈̇sb coincides with
the standard ccp observational equivalence for ccp-{+} programs.

The above-mentioned alternative notions of ccp equivalences are
defined in terms of a labeled transitions system (LTS) describing
the interactive behavior of ccp programs. (Intuitively, a labeled
transition γ α−→ γ′ represents the evolution into the program con-
figuration γ′ if the information α is added to store of the program
configuration γ.) The advantage of using these alternative notions
of equivalence instead of using directly the standard notion of ob-
servational equivalence for ccp is that there is a substantial amount
of work supporting the automatic verification of bisimilarity-based
equivalence. In this paper we shall mainly deal with the verification
of ≈̇sb for arbitrary ccp-{+} programs since, as mentioned above,
≈̇sb coincides with observational program equivalence [3].

Unfortunately, the standard algorithms for checking bisimilarity
(such as [16, 14, 10, 13]) cannot be reused for ∼̇sb and ≈̇sb, since
in this particular case of the bisimulation game, when the attacker
proposes a transition, the defender not necessarily has to answer
with a transition with the same label. (This is analogous to what
happens in the asynchronous π-calculus [2] where an input transi-
tion can be matched also by an internal (tau) transition.)

Partition Refinement for ccp. By building upon [2], we introduced
in [4] a variation of the partition refinement algorithm that allows
us to decide ∼̇sb in ccp. The variation is based on the observation
that some of the transitions are redundant, in the sense that they
are logical consequences of other transitions. Unfortunately, such
notion of redundancy is not syntactical, but semantical, more pre-
cisely, it is based on ∼̇sb itself. Now, if we consider the transition
system having only non-redundant transitions, the ordinary notion
of bisimilarity coincides with ∼̇sb. Thus, in principle, we could re-
move all the redundant transitions and then check bisimilarity with
a standard algorithm. But how can we decide which transitions are
redundant, if redundancy itself depends on ∼̇sb ?

The solution in [4] consists in computing ∼̇sb and redundancy at
the same time. In the first step, the algorithm considers all the
states as equivalent and all the transitions (potentially redundant)
as redundant. At any iteration, states are discerned according to
(the current estimation of) non-redundant transitions and then non-
redundant transitions are updated according to the new computed
partition.

One peculiarity of the algorithm in [4] is that in the initial partition,
we insert not only the reachable states, but also extra ones which
are needed to check for redundancy. Unfortunately, the number
of these states might be exponentially bigger then the size of the
original LTS and therefore worst-case complexity is exponential,
even as we shall show this paper, for the restricted case of ccp-{+}.

This becomes even more problematic when considering the weak
semantics ≈̇sb. Usually weak bisimilarity is computed by first clos-
ing the transition relation with respect to internal transitions and
then by checking strong bisimilarity on the obtained LTS. This ap-
proach (which is referred in [1] as saturation) is unsound for ccp. In
[5], it is shown that in order to obtain a sound algorithm, one has to
close the transition relation, not only w.r.t. the internal transitions,
but w.r.t. all the transitions. This induces an explosion of the num-

ber of transitions which makes the computation of ≈̇sb even more
inefficient.

Confluent ccp. In this paper, we shall consider the “summation
free” fragment of ccp (ccp-{+}), i.e., the fragment of ccp with-
out non-deterministic choice. Differently from similar fragments
of other process calculi (such as the π-calculus or the mobile ambi-
ent), ccp-{+} is confluent because concurrent constraints programs
interact only via reading and telling permanent pieces of informa-
tion (roughly speaking, resources are not consumed). When con-
sidering the weak equivalence ≈̇sb, confluency makes possible to
characterize redundant transitions syntactically, i.e., without any
information about ≈̇sb. Therefore for checking ≈̇sb in ccp-{+},
we can first prune redundant transitions and then check the stan-
dard bisimilarity with one of the usual algorithms [16, 14, 10, 13].
Since redundancy can be determined statically, the additional states
needed by the algorithm in [4] are not necessary anymore: in this
way, the worst case complexity from exponential becomes polyno-
mial.

Unfortunately, this approach still suffers of the explosion of tran-
sitions caused by the “closure” of the transition relation. In order
to avoid this problem, we exploit a completely different approach
(based on the semantical notion of compact input-output sets) that
works directly on the original LTS. We shall conclude our paper by
also showing how the results obtained for ccp-{+}, can be exploited
to optimize the partition refinement for the full language of ccp.

Contributions. The main contribution of this paper is the introduc-
tion of two novel decision procedures that can be used to decide the
standard notion of program equivalence for ccp-{+} in polynomial
time. This represents a significant improvement over the previous
algorithm for program equivalence, which, as we show in this pa-
per, has an exponential time complexity even in the restricted case
of ccp-{+} programs. Each of these two new procedures has an
advantage over the other. One has a better time complexity. The
other can be easily adapted for the full language of ccp to produce
significant state space reductions.

A technical report with detailed proofs of this paper can be found
in [24].

We wish to conclude this introduction with a quote from [15] that
captures the goal of the present paper:

“The times have gone, where formal methods were primarily a
pen-and-pencil activity for mathematicians. Today, only languages
properly equipped with software tools will have a chance to be
adopted by industry. It is therefore essential for the next genera-
tion of languages based on process calculi to be supported by com-
pilers, simulators, verification tools, etc. The research agenda for
theoretical concurrency should therefore address the design of effi-
cient algorithms for translating and verifying formal specifications
of concurrent systems” [15].

Structure of the paper. The paper is organized as follows: In Sec-
tion 2 we recall the basic knowledge concerning the standard par-
tition refinement and the ccp formalism. In Section 3 we present
the partition refinement for ccp from [4] and how it can be used to
decide observational equivalence following [5]. Our contributions
begin in Section 4 where we prove that the partition refinement for
ccp from Section 3 is inefficient even for ccp-{+}, then we intro-
duce some particular features of ccp-{+} which are then used to

develop a polynomial procedure for checking observational equiv-
alence in ccp-{+}. In Section 5 we introduce our second, more ef-
ficient, method for deciding observational equivalence by using the
compact input-output sets. In Section 6 we show how the procedure
from Section 4 can be adapted to the full ccp language. Finally, in
Section 7 we present our conclusions and future work.

2. BACKGROUND
We start this section by recalling the notion of labeled transition
system (LTS), partition and the graph induced by an LTS. Then
we present the standard partition refinement algorithm, the con-
current constraint programming (ccp) and we show that partition
refinement cannot be used for checking equivalence of concurrent
constraint processes.

Labeled Transition System. A labeled transition system (LTS)
is a triple (S,L,) where S is a set of states, L a set of la-
bels and ⊆ S × L × S a transition relation. We shall use
s

a
 r to denote the transition (s, a, r) ∈ . Given a transition

t = (s, a, r) we define the source, the target and the label as fol-
lows src(t) = s, tar(t) = r and lab(t) = a. We assume the
reader to be familiar with the standard notion of bisimilarity [19].

Partition. Given a set S, a partition P of S is a set of non-empty
blocks, i.e., subsets of S, that are all disjoint and whose union is S.
We write {B1} . . . {Bn} to denote a partition consisting of (non-
empty) blocks B1, . . . , Bn. A partition represents an equivalence
relation where equivalent elements belong to the same block. We
write sPr to mean that s and r are equivalent in the partition P.

LTSs and Graphs. Given a LTS (S,L,), we write LTS for
the directed graph whose vertices are the states in S and edges are
the transitions in . Given a set of initial states IS ⊆ S, we write
LTS (IS) for the subgraph of LTS rechable from IS . Given a
graph G we write V(G) and E(G) for the set of vertices and edges
of G, respectively.

2.1 Partition Refinement
We report the partition refinement algorithm [16] for checking bisim-
ilarity over the states of an LTS (S,L,).

Given a set of initial states IS ⊆ S, the partition refinement al-
gorithm (see Algorithm 1) checks bisimilarity on IS as follows.
First, it computes IS? , that is the set of all states that are reachable
from IS using . Then it creates the partition P0 where all the
elements of IS? belong to the same block (i.e., they are all equiv-
alent). After the initialization, it iteratively refines the partitions by
employing the function on partitions F (−), defined as follows:
for a partition P , sF (P)r iff

if s a
 s′ then exists r′ s.t. r a

 r′ and s′Pr′. (1)

See Figure 1 for an example.

The algorithm terminates whenever two consecutive partitions are
equivalent. In such a partition two states (reachable from IS) be-
long to the same block iff they are bisimilar (using the standard
notion of bisimilarity [19]).

s s′ s′′
a a

s, s′, s′′ s, s′ s′′ s s′ s′′

P F (P) F (F (P))

Figure 1: An example of the use of F (P) from Equation 1

Algorithm 1 pr(IS ,)

Initialization

1. IS? is the set of all states reachable from IS using ,

2. P0 := IS? ,

Iteration Pn+1 := F (Pn) as in Equation 1
Termination If Pn = Pn+1 then return Pn.

2.2 Constraint Systems
The ccp model is parametric in a constraint system (cs) specify-
ing the structure and interdependencies of the information that pro-
cesses can ask or add to a central shared store. This information
is represented as assertions traditionally referred to as constraints.
Following [12, 18] we regard a cs as a complete algebraic lattice
in which the ordering v is the reverse of an entailment relation:
c v dmeans d entails c, i.e., d contains “more information” than c.
The top element false represents inconsistency, the bottom element
true is the empty constraint, and the least upper bound (lub) t is
the join of information.

Definition 1. (Constraint System) A constraint system (cs) is a
complete algebraic lattice C = (Con,Con0,v,t, true, false)
where Con, the set of constraints, is a partially ordered set w.r.t.
v, Con0 is the subset of compact elements of Con , t is the lub
operation defined on all subsets, and true , false are the least and
greatest elements of Con , respectively.

Remark 1. We assume that the constraint system is well-founded
and that its ordering v is decidable.

We now define the constraint system we use in our examples.

Example 1. Let Var be a set of variables and ω be the set of
natural numbers. A variable assignment is a function µ : Var −→
ω. We use A to denote the set of all assignments, P(A) to denote
the powerset of A, ∅ the empty set and ∩ the intersection of sets.
Let us define the following constraint system: The set of constraints
is P(A). We define c v d iff c ⊇ d. The constraint false is
∅, while true is A. Given two constraints c and d, c t d is the
intersection c ∩ d. We will often use a formula like x < n to
denote the corresponding constraint, i.e., the set of all assignments
that map x to a number smaller than n.

2.3 Syntax
We now recall the basic ccp process constructions. We are con-
cerned with the verification of finite-state systems, thus we we shall
dispense with the recursion operator which is meant for describing

infinite behavior. We shall also omit the local/hiding operator for
the simplicity of the presentation (see [3] for further details).

Let C = (Con,Con0,v,t, true, false) a constraint system. The
ccp processes are given by the following syntax:

P,Q ::= stop | tell(c) | ask(c)→ P | P ‖ Q | P +Q

where c ∈ Con0. Intuitively, stop represents termination, tell(c)
adds the constraint (or partial information) c to the store. The ad-
dition is performed regardless the generation of inconsistent infor-
mation. The process ask(c) → P may execute P if c is entailed
from the information in the store. The processes P ‖ Q and P +Q
stand, respectively, for the parallel execution and non-deterministic
choice of P and Q.

Remark 2. (ccp-{+}). Henceforth, we use ccp-{+} to refer to
the fragment of ccp without nondeterministic choice.

2.4 Reduction Semantics
A configuration is a pair 〈P, d〉 representing a state of a system; d
is a constraint representing the global store, and P is a process, i.e.,
a term of the syntax. We use Conf with typical elements γ, γ′, . . .
to denote the set of all configurations. We will use Conf ccp−{+}
for the ccp-{+} configurations.

The operational semantics of ccp is given by an unlabeled transition
relation between configurations: a transition γ −→ γ′ intuitively
means that the configuration γ can reduce to γ′. We call these kind
of unlabeled transitions reductions and we use −→∗ to denote the
reflexive and transitive closure of −→.

Formally, the reduction semantics of ccp is given by the relation
−→ defined in Table 1. These rules are easily seen to realize the
intuitions described in the syntax (Section 2.3).

In [3], the authors introduced a barbed semantics for ccp. Barbed
equivalences have been introduced in [20] for CCS, and have be-
come a classical way to define the semantics of formalisms equipped
with unlabeled reduction semantics. Intuitively, barbs are basic ob-
servations (predicates) on the states of a system. In the case of ccp,
barbs are taken from the underlying set Con0 of the constraint sys-
tem.

Definition 2. (Barbs) A configuration γ = 〈P, d〉 is said to sat-
isfy the barb c, written γ ↓c, iff c v d. Similarly, γ satisfies a weak
barb c, written γ ⇓c, iff there exist γ′ s.t. γ −→∗ γ′ ↓c.

Example 2. Let γ = 〈ask (x > 10) → tell(y < 42), x >
10〉. We have γ ↓x>5 since (x > 5) v (x > 10) and γ ⇓y<42

since γ −→ 〈tell(y < 42), x > 10〉 −→ 〈stop, (x > 10) t (y <
42)〉 ↓y<42.

In this context, the equivalence proposed is the saturated bisimilar-
ity [9, 8]. Intuitively, in order for two states to be saturated bisim-
ilar, then (i) they should expose the same barbs, (ii) whenever one
of them moves then the other should reply and arrive at an equiv-
alent state (i.e. follow the bisimulation game), (iii) they should be
equivalent under all the possible contexts of the language. In the
case of ccp, it is enough to require that bisimulations are upward
closed as in condition (iii) below.

Definition 3. (Saturated Barbed Bisimilarity) A saturated barbed
bisimulation is a symmetric relationR on configurations s.t. when-
ever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and γ2 = 〈Q, d〉 implies that:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1 −→ γ′1 then there exists γ′2 s.t. γ2 −→ γ′2 and (γ′1, γ
′
2) ∈

R,

(iii) for every a ∈ Con0, (〈P, c t a〉, 〈Q, d t a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar (γ1 ∼̇sb γ2)
if there is a saturated barbed bisimulationR s.t. (γ1, γ2) ∈ R.

Weak saturated barbed bisimulations are defined as above by re-
placing ↓ by ⇓ and −→ by −→∗. We say that γ1 and γ2 are weak
saturated barbed bisimilar (γ1 ≈̇sb γ2) if there exists a weak satu-
rated barbed bisimulationR s.t. (γ1, γ2) ∈ R.

Remark 3. It should be noticed that standard notion of observa-
tional ccp program equivalence was shown to coincide with ≈̇sb in
the case of ccp-{+}[3]. For the sake of space we shall not introduce
the standard notion– see [3] for further details.

We now illustrate ∼̇sb and ≈̇sb with the following two examples.

Example 3. Take T = tell(true), P = ask (x < 7) → T
and Q = ask (x < 5) → T . Now, 〈P, true〉 6 ∼̇sb〈Q, true〉,
since 〈P, x < 7〉 −→, while 〈Q, x < 7〉 6−→. Then consider 〈P +
Q, true〉 and observe that 〈P+Q, true〉∼̇sb〈P, true〉. Indeed, for
all constraints e, s.t. x < 7 v e, both the configurations evolve into
〈T, e〉, while for all e s.t. x < 7 6v e, both configurations cannot
proceed. Since x < 7 v x < 5, the behavior of Q is somehow
absorbed by the behavior of P .

Example 4. Let γ1 = 〈tell(true), true〉 and γ2 = 〈ask (c) →
tell(d), true〉. We can show that γ1 ≈̇sb γ2 when d v c. Intu-
itively, this corresponds to the fact that the implication c ⇒ d is
equivalent to true when c entails d. The LTSs of γ1 and γ2 are
the following: γ1 −→ 〈stop, true〉 and γ2

c−→ 〈tell(d), c〉 −→
〈stop, c〉. It is now easy to see that the symmetric closure of the re-
lationR = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉),
(〈stop, c〉, 〈stop, c〉)} is a weak saturated barbed bisimulation as in
Definition 3.

2.5 Labeled Semantics
In [3] we have shown that ≈̇sb is fully abstract with respect to the
standard observational equivalence from [26]. Unfortunately, the
quantification over all constraints in condition (iii) of Definition
3 makes hard checking ∼̇sb and ≈̇sb, since one should check in-
finitely many constraints. In order to avoid this problem we have
introduced in [3] a labeled transition semantics where labels are
constraints.

In a transition of the form 〈P, d〉 α−→ 〈P ′, d′〉 the label α ∈ Con0

represents a minimal information (from the environment) that needs
to be added to the store d to reduce from 〈P, d〉 into 〈P ′, d′〉, i.e.,
〈P, d t α〉 −→ 〈P ′, d′〉. As a consequence, the transitions labeled
with the constraint true are in one to one correspondence with the

R1 〈tell(c), d〉 −→ 〈stop, d t c〉 R2 c v d
〈ask (c) → P, d〉 −→ 〈P, d〉 R3 〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉 R4 〈P, d〉 −→ 〈P ′, d′〉
〈P + Q, d〉 −→ 〈P ′, d′〉

Table 1: Reduction semantics for ccp (the symmetric rules for R3 and R4 are omitted).

reductions defined in the previous section. For this reason, here-
after we will sometimes write −→ to mean true−→. Before formally
introducing the labeled semantics, we fix some notation.

Notation 1. We will use to denote a generic transition rela-
tion on the state space Conf and labels Con0. Also in this case
mean true

 . Given a set of initial configuration IS , Config (IS)

denote the sets {γ′ | ∃γ ∈ IS s.t. γ
α1 . . .

αn γ′ for some n ≥ 0}.

The LTS (Conf ,Con0,−→) is defined by the rules in Table 2. The
rule LR2 , for example, says that 〈ask (c) → P, d〉 can evolve
to 〈P, d t α〉 if the environment provides a minimal constraint α
that added to the store d entails c, i.e., α ∈ min{a ∈ Con0 | c v
dt a}. The other rules are easily seen to realize the intuition given
in Section 2.3. Figure 2 illustrates the LTS of our running example.

Given the LTS (Conf ,Con0,−→), one would like to exploit it for
“efficiently characterizing” ∼̇sb and ≈̇sb. One first naive attempt
would be to consider the standard notion of (weak) bisimilarity over
−→, but this would distinguish configurations which are in ∼̇sb
(and ≈̇sb), as illustrated by the following two examples.

Example 5. In Example 3 we saw that 〈P+Q, true〉∼̇sb〈P, true〉.
However, 〈P +Q, true〉 x<5−→ 〈T, x < 5〉, while 〈P, true〉 6x<5−→.

Example 6. In Example 4, we showed that γ1 ≈̇sb γ2. However,
γ2

c−→, while γ1 6
c−→

The examples above show that the ordinary notion of bisimilarity
do not coincide with the intended semantics (∼̇sb and ≈̇sb). As a
consequence, the standard partition refinement algorithm (Section
2.1) cannot be used for checking ∼̇sb and ≈̇sb. However, one can
consider a variation of the bisimulation game, namely irredundant
bisimilarity [4], which coincide with ∼̇sb and, in the weak case [5],
with ≈̇sb. This fact allowed us in [4] to define a variation of the
partition refinement algorithm which we show in the next section.

First, we recall some results from [4] and [5], which are fundamen-
tal for the development of the paper.

Lemma 1. ([3], [5]) (Soundness) If 〈P, c〉 α−→ 〈P ′, c′〉 then
〈P, ctα〉 −→ 〈P ′, c′〉. (Completeness) If 〈P, ct a〉 −→ 〈P ′, c′〉
then there exists α and b s.t. 〈P, c〉 α−→ 〈P ′, c′′〉 where α t b = a
and c′′ t b = c′.

The weak labeled transition system (Conf ,Con0,=⇒) is defined
by the rules in Table 3. This LTS is sound and complete, as −→,
and it can be used to decide ≈̇sb as shown in [5].

R-Tau
γ =⇒ γ

R-Label γ
α−→ γ′

γ
α

=⇒ γ′
R-Add γ

α
=⇒ γ′

β
=⇒ γ′′

γ
αtβ
=⇒ γ′′

Table 3: Weak semantics for ccp

Lemma 2. ([5]) (Soundness) If 〈P, c〉 α
=⇒ 〈P ′, c′〉 then 〈P, c t

α〉 =⇒ 〈P ′, c′〉. (Completeness) If 〈P, c t a〉 =⇒ 〈P ′, c′〉 then
there exists α and b s.t. 〈P, c〉 α

=⇒ 〈P ′, c′′〉 where α t b = a and
c′′ t b = c′.

Note that we close−→, not only w.r.t true transitions (as similarly
done in CCS, where τ intutively corresponds to true), but w.r.t. all
the transitions. This is needed to check ≈̇sb, because otherwise the
above lemma would not hold.

3. PARTITION REFINEMENT FOR ccp
In this section we recall the partition refinement algorithm for ccp
and how it can be used to decide observational equivalence.

3.1 Strong equivalence
In [4] we adapted the standard partition refinement procedure to
decide strong bisimilarity for ccp (∼̇sb). As we did for the standard
partition refinement, we also start with Config−→(IS), that is the
set of all states that are reachable from the set of initial state IS
using −→. However, in the case of ccp some other states must be
added to IS? in order to verify ∼̇sb as we will explain later on.

Now, since configurations satisfying different barbs are surely dif-
ferent, it can be safely started with a partition that equates all and
only those states satisfying the same barbs. Hence, as initial parti-
tion of IS? , we take P0 = {B1} . . . {Bm}, where γ and γ′ are in
Bi iff they satisfy the same barbs.

When splitting the above-mentioned partitions, unlike for the stan-
dard partition refinement, we need to consider a particular kind of
transitions, so-called irredundant transitions. These are those tran-
sitions that are not dominated by others, in a given partition, in the
sense defined below.

Definition 4. (Transition Domination) Let t and t′ be two transi-
tions of the form t = (γ, α, 〈P ′, c′〉) and t′ = (γ, β, 〈P ′, c′′〉). We
say that t dominates t′, written t �D t′, iff α < β and c′′ = c′tβ.

The intuition is that the transition t dominates t′ iff t requires less
information from the environment than t′ does (hence α < β), and
they end up in configurations which differ only by the additional
information in β not present in α (hence c′′ = c′ t β). To better
explain this notion let us give an example.

LR1 〈tell(c), d〉 true−→ 〈stop, d t c〉 LR2
α ∈ min{a ∈ Con0 | c v d t a }
〈ask (c) → P, d〉 α−→ 〈P, d t α〉

LR3
〈P, d〉 α−→ 〈P ′, d′〉

〈P ‖ Q, d〉 α−→ 〈P ′ ‖ Q, d′〉
LR4

〈P, d〉 α−→ 〈P ′, d′〉
〈P +Q, d〉 α−→ 〈P ′, d′〉

Table 2: Labeled semantics for ccp (the symmetric rules for LR3 and LR4 are omitted).

T = tell(true)

T ′ = tell(y = 1)

P = ask (x < 7) → T

S = ask (z < 7) → P

Q = ask (x < 5) → T

Q′ = ask (x < 5) → T ′

R = ask (z < 5) → (P + Q)

R′ = ask (z < 5) → (P + Q′)

〈R+ S, true〉

〈S, true〉

〈R′ + S, true〉 〈P +Q′, z < 5〉

〈P, z < 7〉

〈P +Q, z < 5〉

〈P, z < 5〉

〈T ′, z < 5 t x < 5〉

〈T, z < 7 t x < 7〉

〈T, z < 5 t x < 5〉

〈T, z < 5 t x < 7〉

〈stop, z < 5 t x < 5 t y = 1〉

〈stop, z < 7 t x < 7〉

〈stop, z < 5 t x < 5〉

〈stop, z < 5 t x < 7〉
x < 7

z < 5

z < 7

z < 7

z < 5

z < 7

x < 5

x < 7

x < 5

x < 7

x < 7

true

true

true

true

Figure 2: LTS−→(IS) where (IS = {〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉}).

Example 7. Let P = (ask (x < 15) → tell(y > 42)) +
(ask (x < 10) → tell(y > 42)) and let γ = 〈P, true〉. Con-
sider t1 = γ

x<15−→ 〈tell(y > 42), x < 15〉 and t2 = γ
x<10−→

〈tell(y > 42), x < 10〉, then one can check that t1 �D t2 since
(x < 15) < (x < 10) and (x < 10) = ((x < 15) t (x < 10)).

Notice that in the definition above t and t′ end up in configurations
whose processes are syntactically identical (i.e., P ′). The follow-
ing notion parameterizes the notion of dominance w.r.t. a relation
on configurations R (rather than fixing it to the identity on config-
urations).

Definition 5. (Transition Domination w.r.t. R and Irredundant
Transition w.r.t. R) We say that the transition t dominates a tran-
sition t′ w.r.t a relation on configurations R, written t �R t′,
iff there exists t′′ such that t �D t′′, lab(t′′) = lab(t′) and
tar(t′′)R tar(t′). A transition is said to be redundant w.r.t. to
R when it is dominated by another w.r.t. R, otherwise it is said to
be irredundant w.r.t. toR.

To understand this definition better consider the following example.

Example 8. Let Q1 = (ask (b) → (ask (c) → tell(d))),
Q2 = (ask (a) → stop) and P = Q1 + Q2, where d v c and
a < b. Now let γ = 〈P, true〉, then consider t = γ

a−→ 〈stop, a〉
and t′ = γ

b−→ 〈ask (c) → tell(d), b〉. Let R = ≈̇sb and take
t′′ = (γ, b, 〈stop, b〉), one can check that t �R t′ as in Definition
5. We have that t �D t′′ follows from a < b. And we know
tar(t′′)R tar(t′) from Example 4, i.e. 〈stop, b〉≈̇sb〈ask (c) →
tell(d), b〉.

We now explain briefly how to compute IS? using the Rules in
Table 4. Rules (ISIS

) and (RSIS
) say that all the states generated

from the labeled semantics (Table 2) from the set of initial states
should be included, i.e., Config (IS) ⊆ IS? .

The rule (RDIS
) adds the additional states needed to check redun-

dancy. Consider the transitions t1 = γ
α
 〈P1, c1〉 and t2 = γ

β

〈P2, c2〉with α < β and c2 = c1tβ in Rule (RDIS
). Suppose that

at some iteration of the partition refinement algorithm the current
partition is P and that 〈P2, c2〉P〈P1, c2〉. Then, according to Def-
inition 5 the transitions t1 would dominate t2 w.r.t P . This makes
t2 redundant w.r.t P . Since 〈P1, c2〉 may allow us to witness a po-
tential redundancy of t2, we include it in IS? (and thus, from the
definition of the initial partition P0, also in the block of P0 where
〈P2, c2〉 is). See [4] for further details about the computation of
IS? .

Finally, we shall describe how the refinement is done in the case
ccp. Instead of using the function F (P) of Algorithm 1, the par-
titions are refined by employing the function IR (P) defined as:

Definition 6. (Refinement function for ccp) Given a partition P
we define IR (P) as follows: γ1 IR (P) γ2 iff

if γ1
α
 γ′1 is irredundant w.r.t. P

then there exists γ′2 s.t. γ2
α
 γ′2 and γ′1 Pγ′2

See Figure 3 for an example of the use of IR (−).

The Algorithm 2 can be used to decide strong saturated bisimilarity
∼̇sb with exponential time. (Recall that Config−→(IS) represents
the set of states that are reachable from the initial states IS using
−→.) More precisely:

(ISIS
)

γ ∈ IS
γ ∈ IS?

(RSIS
)

γ ∈ IS? γ
α
 γ′

γ′ ∈ IS?
(RDIS

) γ ∈ IS? t1 = γ
α
 〈P1, c1〉 t2 = γ

β
 〈P2, c2〉 α < β c2 = c1 t β

〈P1, c2〉 ∈ IS?

Table 4: Rules for generating the states used in the partition refinement for ccp

〈(ask (a) → stop) + (ask (b) → stop), true〉

〈stop, a〉 〈stop, b〉

〈(ask (a) → stop), true〉

〈stop, a〉

a b a

γ1

γa1 γb1

γ2

γa2

γ1, γa1 , γ
b
1, γ2, γ

a
2

γ1, γ2 γa1 , γ
b
1, γ

a
2

P

IR−→(P)

Figure 3: An example of the use of IR−→(P) as in Definition 6. Notice that γ1 and γ2 end up in the same block after the refinement
since γ1

b−→ γb1 is a redundant transition w.r.t P hence it is not required that γ2 matches it.

Algorithm 2 pr-ccp(IS ,)

Initialization

1. Compute IS? with the rules (ISIS
), (RSIS

), (RDIS
) defined

in Table 4,

2. P0 = {B1} . . . {Bm} is a partition of IS? where γ and γ′

are in Bi iff they satisfy the same barbs (↓c),

Iteration Pn+1 := IR (Pn) as in Definition 6
Termination If Pn = Pn+1 then return Pn.

Theorem 1. ([4]) Let γ and γ′ be two ccp configurations. Let
IS = {γ, γ′} and let P be the output of pr-ccp(IS ,−→) in
Algorithm 2. Then

• γ P γ′ iff γ ∼̇sb γ′.

• pr-ccp(IS ,−→) may take exponential time in the size of
Config−→(IS).

The exponential time is due to construction of the set IS?−→ (Algo-
rithm 2, step 1) whose size is exponential in |Config−→(IS)|.

3.2 Weak equivalence
We can also use the above-mentioned algorithm to verify the weak
version of saturated bisimilarity (≈̇sb). Recall that in [3] it was
shown that in ccp-{+}, ≈̇sb coincides with the standard notion of
ccp program (observational) equivalence.

Following [1] the reduction of the problem of deciding ≈̇sb to the
problem of deciding ∼̇sb is obtained by adding some additional
transitions, so called weak transitions, to the LTS. Given two con-
figurations γ and γ′, the first step is to build G = LTS−→(IS)
where IS = {γ, γ′}. Using G we then proceed to compute G′ =
LTS=⇒(IS), and finally we run Algorithm 2 adapted to G′. The
adaptation consists in using weak barbs (⇓c) instead of barbs (↓c)
for the initial partition P0 and using =⇒ as a parameter of Algo-
rithm 2.

Definition 7. (Weak Partition Refinement for ccp) We define the
procedure weak-pr-ccp(IS ,) by replacing the barbs (↓c) in
step 2 of Algorithm 2 with weak barbs (⇓c).

Using this algorithm we can decide ≈̇sb also with exponential time.
This follows from Theorem 1.

Theorem 2. ([5]) Let γ and γ′ be two ccp configurations. Let
IS = {γ, γ′} and let P be the output of weak-pr-ccp(IS ,=⇒)
in Definition 7. Then

• γ P γ′ iff γ ≈̇sb γ′.

• weak-pr-ccp(IS ,=⇒) may take exponential time in the
size of Config−→(IS).

As for the strong case, the exponential time is due to construction
of the set IS?=⇒ by weak-pr-ccp(IS ,=⇒), whose size is expo-
nential in |Config−→(IS)|. In the next section we shall address
the issue of avoiding this exponential construction in the context of
confluent ccp.

4. USING PARTITION REFINEMENT FOR
CHECKING OBSERVATIONAL EQUIV-
ALENCE IN ccp-{+}

In the previous section, we presented a procedure to verify ≈̇sb for
ccp and we saw how this method takes exponential time (in the
size of the LTS) to check whether two configurations are weakly
bisimilar. In this section, we will explore what happens with such
procedure when we restrict ourselves to ccp-{+}. We shall see that
pr-ccp(IS ,−→) may also be exponential time for inputs from
the ccp-{+} fragment.

Let us consider the following ccp-{+} construction.

Example 9. Let n > 0. We define Pn = Pn0 with Pni , for
i ∈ {0, . . . , n− 1}, given by:

Pni = (ask (ai) → (ask (bi) → Pni+1)) ‖ (ask (bi) → stop)

and Pnn = tell(bn). Furthermore, we assume that for all i ∈
{0, . . . , n − 1} we have ai v bi and for all j ∈ {0, . . . , n − 1}
if i 6= j then ai 6v aj and bi 6v bj . The LTS for 〈Pn, true〉 is
illustrated in Figure 4.

One can verify that by taking IS = {〈Pn, true〉} as in the example
above, then the size of IS?−→ in Algorithm 2 grows exponentially
with n, essentially because of the rule (RDIS

−→).

〈Pn, true〉

〈LPn0 , a0〉 〈RPn0 , b0〉

〈LLPn0 , b0〉 〈LRPn0 , b0〉

a0 b0

b0 b0

〈Pn1 , b0〉

Pn = (ask (a0) → (ask (b0) → Pn1)) ‖ (ask (b0) → stop)

LPn0 = (ask (b0) → Pn1) ‖ (ask (b0) → stop)

RPn0 = (ask (ai) → (ask (bi) → Pni+1)) ‖ stop)

LLPn0 = Pn1 ‖ (ask (b0) → stop)

LRPn0 = (ask (b0) → Pn1) ‖ stop

New nodes after Rule (RDIS
−→)

〈LPn0 , b0〉

〈LPn1 , b0 t b1〉

〈LPn1 , b0 t b1〉

Figure 4: LTS−→(IS) where IS = {〈Pn, true〉} as in Example 9. The configurations in the right part are generated by (RDIS
−→)

applied to the source nodes of the dotted arrows. Some transitions and stop processes were omitted for clarity.

Proposition 1. Let γ = 〈Pn, true〉 and IS = {γ}, let P be the
output pr-ccp(IS ,−→) in Algorithm 2, then pr-ccp(IS ,−→)
takes at least exponential time in n.

The main problem is that the procedure does not distinguish be-
tween summation-free processes and the normal ccp processes. There-
fore, it is unable to exploit the underlying properties of ccp-{+} and
the algorithm will perform (in the worst-case) inherently the same
as for the full ccp, as evidenced in the example above.

4.1 Properties of ccp-{+}
In this section we will state some features that (unlike the full ccp)
this fragment possess. The first one we want to introduce is con-
fluence. Intuitively, in ccp-{+}, if from a given configuration we
have two possible reductions (−→), then we are guaranteed that
they will coincide at some point of the computation. Recall that
Conf ccp−{+} is the set of all ccp-{+} configurations, i.e. configu-
rations whose process is summation-free.

Proposition 2. Let γ ∈ Conf ccp−{+}. If γ −→∗ γ1 and γ −→∗

γ2 then there exists γ′ such that γ1 −→∗ γ′ and γ2 −→∗ γ′.

Before discussing the second property, we need to introduce some
notation. We shall call derivatives (of γ) the successors reached via
(zero or more) reductions (−→∗) starting from a given configura-
tion γ.

Definition 8. (Derivatives) The derivatives of a configuration γ,
written Deriv(γ), are defined as Deriv(γ) = {γ′ | γ −→∗ γ′}.

Using this notation, we can now state another property of ccp-{+}:
A configuration is weakly bisimilar to all its derivatives.

Lemma 3. Let γ ∈ Conf ccp−{+}. For all γ′ ∈ Deriv(γ) we
have γ ≈̇sb γ′.

PROOF. Let R = {(γ1, γ2) | ∃γ3 s.t. γ1 −→∗ γ3 and γ2 −→∗
γ3}, we prove that R is a weak saturated barbed bisimulation. Let
(γ1, γ2) be any pair of configurations inR.
(i) If γ1 ⇓e then by definition γ1 −→∗ γ′1 ↓e. By confluence
(Proposition 2) γ′1 −→∗ γ3 and thus γ3 ↓e (since constraints can
only be added). Since γ2 −→∗ γ3 ↓e we conclude that γ2 ⇓e.
(ii) If γ1 −→∗ γ′1, then by confluence γ′1 −→∗ γ3 and therefore
(γ′1, γ2) ∈ R.

(iii) Finally, let γ1 = 〈P1, c1〉 and γ2 = 〈P2, c2〉. If 〈P1, c1〉 −→∗
〈P3, c3〉 and 〈P2, c2〉 −→∗ 〈P3, c3〉, then 〈P1, c1te〉 −→∗ 〈P3, c3t
e〉 and 〈P2, c2te〉 −→∗ 〈P3, c3te〉 and thus (〈P1, c1te〉, 〈P2, c2t
e〉) ∈ R.

In the next section we shall take advantage of these properties to
check ≈̇sb for ccp-{+} configurations.

4.2 Optimizations to partition refinement for
ccp-{+}

We presented how the partition refinement for ccp performs for
ccp-{+} as well as some characteristics of the configurations of
this fragment. In this section, using such features, we shall show
that the complexity of weak-pr-ccp(IS ,=⇒) can be improved,
thus we can check ≈̇sb in a more efficient manner.

Due to the nature of ccp-{+}, determining which are the redundant
transitions w.r.t. ≈̇sb (Definition 5) becomes an easier task. As we
explained in Section 3.1, the purpose of rule (RDIS

) from Table
4 is to add some configurations to IS? that will be used to check
redundancy at each iteration of Algorithm 2. In ccp-{+} these ad-
ditional configurations are not necessary. But before we arrive to
this let us introduce some definitions first.

Definition 9. We say that γ goes with α to γ′ with a maximal
weak transition, written γ α

=⇒max γ
′, iff γ α

=⇒ γ′ 6−→.

The definition above reflects the fact that when γ α
=⇒max γ

′ then
γ′ has no more information to deduce without the aid of the envi-
ronment, namely no further reduction (−→) is possible. As =⇒,
the maximal weak transition relation =⇒max is sound and com-
plete.

Lemma 4. (Soundness) If 〈P, c〉 α
=⇒max 〈P ′, c′〉 then 〈P, c t

α〉 =⇒max 〈P ′, c′〉. (Completeness) If 〈P, cta〉 =⇒max 〈P ′, c′〉
then there exists α and b s.t. 〈P, c〉 α

=⇒max 〈P ′, c′′〉where αtb =
a and c′′ t b = c′.

PROOF. Follows from the correctness of =⇒ (Lemma 2) and
from the fact that LTS−→({〈P, c〉}) is finite.

As one would expect, =⇒max can also be used to compute ≈̇sb
and the complexity of the procedure is equivalent to the case of
=⇒ (Theorem 2).

Theorem 3. [5] Let γ and γ′ be two ccp configurations. Let
IS = {γ, γ′}, let P be the output weak-pr-ccp(IS ,=⇒max)
in Definition 7. Then

• γ P γ′ iff γ ≈̇sb γ′.

• weak-pr-ccp(IS ,=⇒max) may take exponential time in
the size of Config−→(IS).

PROOF. Follows from the correctness of =⇒max (Lemma 4),
the results in [5] and Theorem 2.

Nevertheless, in ccp-{+}, the maximal weak transitions =⇒max

satisfy a particular property that allow us to erase the redundant
transitions w.r.t. ≈̇sb before computing ≈̇sb itself.

Proposition 3. Let γ = 〈P, c〉 ∈ Conf ccp−{+}. Let t1 =

γ
α

=⇒max 〈P1, c1〉 and t2 = γ
β

=⇒max 〈P2, c2〉. We have that
α < β and 〈P1, c1 t β〉 −→∗ 〈P ′, c2〉 6−→ iff t1 �≈̇sb t2.

PROOF. (⇒) By soundness on t1 we have 〈P, c t α〉 =⇒max

〈P1, c1〉 then by definition 〈P, c t α〉 =⇒ 〈P1, c1〉 now by mono-
tonicity 〈P, c t β〉 =⇒ 〈P1, c1 t β〉 and then 〈P, c t β〉 −→∗
〈P1, c1 t β〉 then by Lemma 3 〈P, ct β〉≈̇sb〈P1, c1 t β〉. Using a
similar reasoning on t2 we can conclude that 〈P, ctβ〉≈̇sb〈P2, c2〉
and by transitivity 〈P1, c1 t β〉≈̇sb〈P2, c2〉. Finally take t′ =
(γ, β, 〈P1, c1 t β〉), hence we can conclude that t1 �≈̇sb t2 since
t1 �D t′ and 〈P1, c1 t β〉≈̇sb〈P2, c2〉.

(⇐) Assume that t1 �≈̇sb t2 then there exists t′ = (γ, β, 〈P1, c
′〉)

such that t1 �D t′ and 〈P1, c
′〉≈̇sb〈P2, c2〉. By t1 �D t′ we know

that α < β and c′ = c1 t β. Now since 〈P2, c2〉 6−→ by definition
of =⇒max, therefore by condition (i) of ≈̇sb we have c′ v c2.
Moreover, 〈P1, c

′〉 −→∗ 〈P ′, c3〉where c2 v c3. By contradiction
let c2 6= c3 then c2 < c3, thus there is e s.t. 〈P1, c

′〉 ⇓e but since
〈P2, c2〉 6−→ then 〈P2, c2〉 6⇓e and so 〈P1, c

′〉 6 ≈̇sb〈P2, c2〉, an
absurd. Thus c3 = c2 hence 〈P1, c

′〉 −→∗ 〈P ′, c2〉 6−→ .

Using this property we can define a new procedure for deciding ≈̇sb
that does not use Rule (RDIS

) since redundancy can be checked
and erased using Proposition 3 (Algorithm 3, Step 2).

Algorithm 3 weak-pr-dccp(IS)
Initialization

1. Compute G = LTS=⇒max(IS) using the rules (ISIS
=⇒max

)

and (RSIS
=⇒max

),

2. G′ = remRed(G) where the graph remRed(G) results from
removing from G the redundant transitions w.r.t. ≈̇sb,

3. P0 = {B1} . . . {Bm} is a partition of V(G′) where γ and γ′

are in Bi iff they satisfy the same weak barbs (⇓e),

Iteration Pn+1 := F=⇒max(Pn) as defined in Equation 1
Termination If Pn = Pn+1 then return Pn.

The key idea is that in order to compute ≈̇sb, with the redundancy
removed, it suffices to refine the partitions using F=⇒max(P) (de-
fined by Equation 1) instead of IR=⇒max(P). The Algorithm 3
can be used to decide ≈̇sb for configurations in Conf ccp−{+} with
polynomial time.

Theorem 4. Let γ and γ′ be two ccp-{+} configurations. Let
IS = {γ, γ′}, let P be the output of weak-pr-dccp(IS) in
Algorithm 3 and let N = |Config−→(IS)|. Then

• γ P γ′ iff γ ≈̇sb γ′.

• weak-pr-dccp(IS) takes O(N3) time and uses O(N2)
space.

PROOF. The first item follows from the Theorem 2 and Propo-
sition 3. As for the second item:
(Step 1) G = LTS=⇒max(IS) takes O(N2) time and space since
=⇒max will add, at most, a transition from each element in V(G) to
every other configuration in V(G) and |V(G)| = |Config−→(IS)| =
N .
(Step 2) Each node in V(G) has at mostN−1 outgoing transitions,
thenG′ = remRed(G) takesO((N −1)∗ (N −1)) = O(N2) per
node, thus this step takes O(N2 ∗N) = O(N3) time.
(Step 3) P0 can be created in O(N2) by definition of =⇒max.
(Iteration) Using the procedure from Tarjan et al. [22], this step
takesO(|E| log |V |) time and usesO(|E|) space. Therefore, since
|V(G)| = N and |E(G)| = N2, hence we have O(N2 logN) and
O(N2) space.
We can conclude that weak-pr-dccp(IS) takes O(N3) time
and uses O(N2) space.

Thanks to Proposition 3, by removing redundant transitions, we
can solve the problem of checking bisimilarity for ccp-{+} with
the standard solutions for checking bisimilarity. In Algorithm 3, we
have used the “classical” partition refinement, but different, more
effective solutions, are possible. For instance, executing the algo-
rithm in [13] (after having removed all the redundant transitions)
would require at most O(|E|+ |V |) steps. Note however that, due
to the closure needed for weak transitions (Table 3), |E| is usually
quadratic w.r.t. the number of states |V |. In the following section,
we introduce a novel procedure which avoids such expensive clo-
sure.

5. USING THE COMPACT INPUT-OUTPUT
SETS FOR VERIFYING OBSERVATIONAL
EQUIVALENCE IN ccp-{+}

In the previous section we improved the ccp exponential-time deci-
sion procedure for ≈̇sb to obtain a polynomial-time procedure for
the special case of the summation-free fragment ccp-{+}. (Recall
that in ≈̇sb, the relation ≈̇sb coincides with the standard notion of
observational equivalence.)

In this section, we will present an alternative approach for verifying
observational equivalence for ccp-{+}that improves on the time and
space complexity of Algorithm 3.

Roughly speaking our approach consists in reducing the problem
of whether two given ccp-{+}-configurations γ, γ′ are in ≈̇sb to
the problem of whether γ and γ′ have the same minimal finite rep-
resentation of the set of weak barbs they satisfy in every possible
context.

5.1 Weak bisimilarity and barb equivalence
First we will show that, in ccp-{+}, we can give characterization
of ≈̇sb in terms of the simpler notion of weak-barb equivalence
defined below. Intuitively, two configurations are saturated weakly

bisimilar if and only if for every possible augmentation of their
stores, the resulting configurations satisfy the same weak barbs.
More precisely,

Definition 10. (Barb equivalence) 〈P, c〉 and 〈Q, d〉 are (weak)
barbed equivalent, written 〈P, c〉 ∼wb 〈Q, d〉, iff

∀e, α ∈ Con0. 〈P, c t e〉 ⇓α⇔ 〈Q, d t e〉 ⇓α

The full characterization of ≈̇sb in terms of weak-barbed equiv-
alence is given next. The proof relies on the intrinsic confluent
nature of ccp-{+} (Proposition 2).

Theorem 5. 〈P, c〉≈̇sb〈Q, d〉 iff 〈P, c〉 ∼wb 〈Q, d〉
PROOF. (⇒) Assume that 〈P, c〉≈̇sb〈Q, d〉 then by condition (i)

of ≈̇sb (Definition 3) we have ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α,
hence in combination with condition (iii) we can conclude 〈P, c t
e〉 ⇓α⇔ 〈Q, d t e〉 ⇓α.

(⇐) Let R = {(〈P, c〉, 〈Q, d〉) | ∀e, α ∈ Con0. 〈P, c t e〉 ⇓α⇔
〈Q, dt e〉 ⇓α}, we prove thatR is a weak saturated barbed bisim-
ulation:
(i) Take e = true then ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α.
(ii) Assume that 〈P, c〉 −→∗ 〈P ′, c′〉, by Lemma 3 〈P, c〉≈̇sb〈P ′, c′〉
hence by (⇒) we can conclude that 〈P ′, c′〉R〈Q, d〉.
(iii) Assume 〈P, c〉R〈Q, d〉 then for all e′ we have 〈P, cte′〉R〈Q, dt
e′〉 just by taking e = e′.

We shall show a compact representation of the set of weak barbs
of a configuration under any possible context. First we introduce
some convenient notation for this purpose. The set J〈P, c〉K will
contain pairs of the form (α, e).

Definition 11. (Input-Output set) The input-output set of a given
configuration 〈P, c〉 is defined as follows:

J〈P, c〉K def
= {(α, e) | 〈P, c t α〉 ⇓e}

Intuitively, each pair (α, e) ∈ J〈P, c〉K denotes a stimulus-response,
or input-output, interaction of γ = 〈P, c〉: If the environment adds
α to the store of γ, the resulting configuration 〈P, c t α〉 may
evolve, without any further interaction with the environment, into a
configuration whose store entails e. In other words 〈P, c t α〉 ⇓ e.
We can think of e as piece of information that 〈P, c t α〉 may pro-
duce.

The following corollary is an immediate consequence of the defini-
tions.

Corollary 1. J〈P, c〉K = J〈Q, d〉K iff 〈P, c〉 ∼wb 〈Q, d〉

We now introduce the notion of relevant input-output pair.

Definition 12. (Relevant Pair) Let (α, e) and (β, e′) be elements
from Con0 × Con0. We say that (α, e) is more relevant than
(β, e′), written (α, e) � (β, e′), iff α v β and e′ v (e t β).
Similarly, given p = (β, e′) s.t. p ∈ S, we say that the pair p is
irrelevant in S if there is a pair (α, e) ∈ S more relevant than p,
else p is said to be relevant in S.

Recall the stimulus-response intuition given above. In other words,
the pair (β, e′) is irrelevant in a given input-output set if there ex-
ists another pair (α, e) in the set that represents the need of less
stimulus from the environment, hence the condition α v β, to pro-
duce at least as much information, with the possible exception of
information that β may entail but α does not. Hence e′ v e t β.

We now list two important properties of � that will be useful later
on. The set J〈P, c〉K is closed w.r.t. �.

Proposition 4. Let (α, e) ∈ J〈P, c〉K. If (α, e) � (β, e′) then
(β, e′) ∈ J〈P, c〉K.

Moreover, the relation � is well-founded. More precisely,

Proposition 5. There is no infinite strictly descending chain p1 �
p2 �

5.2 A canonical representation of ccp-{+} con-
figurations

Clearly J〈P, c〉K may be infinite due potential existence of infinitely
many arbitrary stimuli (inputs). By using the labeled transition se-
mantics (Table 2) we shall show that we do not need consider arbi-
trary inputs but only the minimal ones. Recall that in γ α−→ γ′ the
label α represents the minimal information needed to evolve from
γ to γ′.

Definition 13. The labeled-based input-output set of a configu-
ration 〈P, c〉, denoted asM(〈P, c〉), is inductively defined as fol-
lows:

{(true, c)} ∪
⋃
〈P,c〉 α−→〈P ′,c′〉 ({(α, c

′)} ∪ (α⊗M(〈P ′, c′〉)))

where ⊗ : Con0 × 2Con0×Con0 −→ 2Con0×Con0 is defined as
α⊗ S def

= {(α t β, e) | (β, e) ∈ S)}.

Nevertheless, labeled-based input-output sets do not give us a fully-
abstract representation of the input-output sets because of the ex-
istence of irrelevant pairs. By excluding these pairs we obtain a
compact and fully-abstract representation of input-output sets.

Definition 14. (Compact input-output set) The compact input-
output set of a configuration 〈P, c〉 is defined as follows:

MC(〈P, c〉) def
= {(α, e) | (α, e) ∈M(〈P, c〉) and

(α, e) is relevant inM(〈P, c〉)}

We shall now show the full-abstraction of the compact input-output
sets. We need the following lemmata. First, compact sets are closed
under weak transitions (=⇒). More precisely:

Proposition 6. If 〈P, c〉 α
=⇒ 〈P ′, c′〉 then (α, c′) ∈M(〈P, c〉).

The following proposition states that whenever a pair (α, e) be-
longs toM(〈P, c〉), it means that e can be reached from 〈P, ctα〉
without aid of the environment.

Proposition 7. If (α, e) ∈ M(〈P, c〉) then 〈P, c t α〉 −→∗
〈P ′, e〉

We can now prove our main result, given two configurations 〈P, c〉
and 〈Q, d〉, they are observationally equivalent if and only if their
compact input-output sets are identical. We split the proof in the
following two lemmata.

Lemma 5. IfMC(〈P, c〉) =MC(〈Q, d〉) then J〈P, c〉K = J〈Q, d〉K

PROOF. (Sketch) Assume that (α, β) ∈ J〈P, c〉K then by defini-
tion 〈P, c t α〉 −→∗ 〈P ′, β′〉 s.t. β v β′. Using soundness and
completeness of =⇒ (Lemma 2) there exists (α′, c′) ∈M(〈P, c〉)
where α′ t b = α and c′ t b = β′. By well-foundedness of
� (Proposition 5) there is a relevant (α′′, c′′) ∈ MC(〈P, c〉) s.t.
(α′′ t x) = α′ and c′ v (c′′ tα′). Since (α′′, c′′) ∈MC(〈P, c〉)
then (α′′, c′′) ∈ MC(〈Q, d〉) and so (α′′, c′′) ∈ M(〈Q, d〉).
Therefore 〈Q, dtα′′〉 −→∗ 〈Q′, c′′〉 and by monotonicity 〈Q, dt
α′′ t x t b〉 −→∗ 〈Q′, c′′ t x t b〉 which is equivalent to say that
〈Q, dtα〉 −→∗ 〈Q′, c′′ t xt b〉. Finally, since β v (c′′ t xt b)
then (α, β) ∈ J〈Q, d〉K. The full proof can be found in the technical
report [24].

Lemma 6. If J〈P, c〉K = J〈Q, d〉K thenMC(〈P, c〉) =MC(〈Q, d〉)

PROOF. (Sketch) Assume that (α, β) ∈MC(〈P, c〉) and (α, β)
is relevant inM(〈P, c〉) (1). Then (α, β) ∈ M(〈P, c〉) and using
Proposition 7 we can conclude that (α, β) ∈ J〈P, c〉K, hence by
hypothesis (α, β) ∈ J〈Q, d〉K. This means that there exists d′ s.t.
〈Q, d t α〉 −→∗ 〈Q′, d′〉 where β v d′. By completeness of

=⇒ (Lemma 2) there exists α′ s.t. 〈Q, d〉 α′
=⇒ 〈Q′, d′′〉. By con-

tradiction, we assume that α′ = α and this we arrive to conclude
that (α, β) is irrelevant in M(〈P, c〉) (a contradiction with (1)).
Hence d′′ = d′, thus we have 〈Q, d〉 α

=⇒ 〈Q′, d′〉. Using the same
reasoning by contradiction we can prove that d′ = β, this way
we have 〈Q, d〉 α

=⇒ 〈Q′, β〉. This means, by Proposition 6, that
(α, β) ∈M(〈Q, d〉). Finally, we can prove again by contradiction
that (α, β) is relevant inM(〈Q, d〉) and so (α, β) ∈MC(〈Q, d〉).
The full proof can be found in the technical report [24].

Using the these lemmata above we conclude the following theorem.

Theorem 6. J〈P, c〉K = J〈Q, d〉K iffMC(〈P, c〉) =MC(〈Q, d〉)

By combining Theorem 5 and Theorem 6 we get a simple decision
procedure for ≈̇sb by reducing weak saturated equivalence between
two given configuration to the set equivalence of the corresponding
compact input-output representations. The complexity of this pro-
cedure is clearly determined by the complexity of constructions of
the compact input-output sets.

Theorem 7. Let γ and γ′ be two ccp-{+} configurations. Let
IS = {γ, γ′} and let N = |Config−→(IS)|. Then

• MC(γ) =MC(γ′) iff γ ≈̇sb γ′.

• Checking whether MC(γ) = MC(γ′) takes O(N2) time
and uses O(N) space.

PROOF. The first item follows from Follows from Theorem 5
and Theorem 6 and the second item is derived from the construction
ofMC(γ) andMC(γ′).

6. IMPROVING THE PARTITION REFINE-
MENT FOR CCP

In this section we show that in the general case of ccp systems,
the strategy from Section 4.2 can be used for their ccp-{+} com-
ponents, thus producing a IS? which may be significant smaller
(although the worst case remains exponential).

Given a configuration γ the idea is to detect when an evolution of
γ, i.e. a γ′ s.t. γ

α1=⇒ . . .
αk=⇒ γ′, is a ccp-{+} configuration. This

way we can avoid adding new configurations with Rule (RDIS
)

whenever γ′ ∈ Conf ccp−{+}, and redundancy can be then checked
using Proposition 3.

Definition 15. (Improved partition refinement for ccp) We de-
fine the procedure imp-weak-pr-ccp(IS ,) by replacing the
rules in Step 1 of weak-pr-ccp(IS ,) from Definition 7 with
the rules defined in Table 5.

Using this algorithm we can decide ≈̇sb in a more efficient manner,
although, in the worst-case scenario, still with exponential time.
This follows from Proposition 3 and Theorem 1.

Theorem 8. Let γ and γ′ be two ccp configurations. Let IS =
{γ, γ′} and let P be the output of imp-weak-pr-ccp(IS ,=⇒)
in Definition 15. Then

• γ P γ′ iff γ ≈̇sb γ′.

• imp-weak-pr-ccp(IS ,=⇒) may take exponential time
in the size of Config−→(IS).

It is clear that imp-weak-pr-ccp(IS ,=⇒) performs better than
weak-pr-ccp(IS ,=⇒) since the new procedure avoids adding
new states whenever they are not necessary to check redundancy
w.r.t. ≈̇sb. Unfortunately, this improvement does not escape from
the worst-case scenario of weak-pr-ccp(IS ,=⇒). Neverthe-
less, this approach shows the applicability of the strategy developed
in Section 4.2.

7. CONCLUSIONS AND FUTURE WORK
In this paper we explored the use of the partition refinement algo-
rithm for ccp from [4] and [5] for checking observational equiv-
alence in the ccp-{+} fragment. We proved that this procedure
takes exponential time and space (in the size of the set of reach-
able configurations) even for the restricted case of ccp-{+}. We
then proposed two alternative methods for checking observational
equivalence in ccp-{+} by exploiting some of the intrinsic proper-
ties of this fragment, in particular confluence. We proved that both
procedures take polynomial time (in the size of the set of reachable
configurations), thus significantly improving the exponential-time
approach from [4, 5], which is, to the best of our knowledge the
only algorithm for checking observational equivalence in ccp. Each

(IS’ =⇒)
γ ∈ IS
γ ∈ IS?

(RS’ =⇒) γ ∈ IS? γ
α
 γ′

γ′ ∈ IS?

(opt-RD =⇒) γ ∈ IS? γ 6∈ Conf ccp−{+} t1 = γ
α
 〈P1, c1〉 t2 = γ

β
 〈P2, c2〉 α < β c2 = c1 t β

〈P1, c2〉 ∈ IS?

Table 5: Rules for improved version of the partition refinement for ccp.

of the two method has its advantages over the other. On the one
hand, the algorithm from Section 4 uses significantly more time
and space than the one from Section 5, however it can be easily
adapted for verifying observational equivalence for the full ccp as
shown in Section 6. On the other hand, the procedure from Section
5 takes less time and uses only linear space nevertheless there is no
“trivial” adaptation for the full language since it does not use the
partition refinement approach.

Most of the related work was already discussed in the introduc-
tion. As we mentioned in Section 4, it remains as a future work to
consider more efficient partition refinement algorithms [13] to see
whether the algorithm from Section 4 can be further improved. The
challenge would be to find a more efficient version of =⇒ that can
still be used for deciding ≈̇sb and so it can be adapted to the case
of the full ccp. Finally, we plan to investigate how the procedures
here defined can be extended to different versions of ccp where the
summation operator is not present, for instance timed ccp (tcc) [25],
universal temporal ccp (utcc) [21] and epistemic ccp (eccp) [17]).

8. REFERENCES
[1] L. Aceto, A. Ingolfsdottir, and J. Srba. Advanced Topics in

Bisimulation and Coinduction, chapter The Algorithmics of
Bisimilarity, pages 100–172. Cambridge University Press,
2011.

[2] R. M. Amadio, I. Castellani, and D. Sangiorgi. On
bisimulations for the asynchronous pi-calculus. In CONCUR,
volume 1119 of Lecture Notes in Computer Science, pages
147–162. Springer, 1996.

[3] A. Aristizabal, F. Bonchi, C. Palamidessi, L. Pino, and F. D.
Valencia. Deriving labels and bisimilarity for concurrent
constraint programming. In FOSSACS, LNCS, pages
138–152. Springer, 2011.

[4] A. Aristizabal, F. Bonchi, L. Pino, and F. D. Valencia.
Partition refinement for bisimilarity in ccp. In SAC, pages
88–93. ACM, 2012.

[5] A. Aristizábal, F. Bonchi, L. F. Pino, and F. Valencia.
Reducing weak to strong bisimilarity in ccp. In ICE, pages
2–16, 2012.

[6] M. Bartoletti and R. Zunino. A calculus of contracting
processes. In LICS, pages 332–341. IEEE Computer Society,
2010.

[7] J. Bengtson, M. Johansson, J. Parrow, and B. Victor.
Psi-calculi: Mobile processes, nominal data, and logic. In
LICS, pages 39–48, 2009.

[8] F. Bonchi, F. Gadducci, and G. V. Monreale. Reactive
systems, barbed semantics, and the mobile ambients. In
FOSSACS, LNCS, pages 272–287, 2009.

[9] F. Bonchi, B. König, and U. Montanari. Saturated semantics
for reactive systems. In LICS, pages 69–80. IEEE, 2006.

[10] A. Bouali and R. de Simone. Symbolic bisimulation
minimisation. In CAV, volume 663 of Lecture Notes in
Computer Science, pages 96–108. Springer, 1992.

[11] M. G. Buscemi and U. Montanari. Open bisimulation for the
concurrent constraint pi-calculus. In ESOP, pages 254–268,
2008.

[12] F. S. de Boer, A. D. Pierro, and C. Palamidessi.
Nondeterminism and infinite computations in constraint
programming. Theor. Comput. Sci., 151(1):37–78, 1995.

[13] A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm
for computing bisimulation equivalence. Theor. Comput.
Sci., 311(1-3):221–256, 2004.

[14] J.-C. Fernandez and L. Mounier. Verifying bisimulations "on
the fly". In FORTE, pages 95–110. North-Holland, 1990.

[15] H. Garavel. Reflections on the future of concurrency theory
in general and process calculi in particular. In Proc. of LIX
Colloquium on Emergent Trends in Concurrency Theory,
Electr. Notes Theor. Comput. Sci. 209, pages 149–164, 2008.

[16] P. C. Kanellakis and S. A. Smolka. Ccs expressions, finite
state processes, and three problems of equivalence. In
PODC, pages 228–240. ACM, 1983.

[17] S. Knight, C. Palamidessi, P. Panangaden, and F. D. Valencia.
Spatial and epistemic modalities in constraint-based process
calculi. In CONCUR, pages 317–332, 2012.

[18] N. P. Mendler, P. Panangaden, P. J. Scott, and R. A. G. Seely.
A logical view of concurrent constraint programming. Nord.
J. Comput., 2(2):181–220, 1995.

[19] R. Milner. A Calculus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Springer-Verlag New
York, Inc., 1980.

[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In ICALP,
LNCS, pages 685–695. Springer, 1992.

[21] C. Olarte and F. D. Valencia. Universal concurrent constraint
programing: symbolic semantics and applications to security.
In SAC, pages 145–150. ACM, 2008.

[22] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM J. Comput., 16(6):973–989, Dec. 1987.

[23] C. Palamidessi, V. A. Saraswat, F. D. Valencia, and B. Victor.
On the expressiveness of linearity vs persistence in the
asychronous pi-calculus. In LICS, pages 59–68, 2006.

[24] L. Pino, F. Bonchi, and F. Valencia. Efficient computation of
program equivalence for confluent concurrent constraint
programming (technical report). Technical report, LIX,
Ecole Polytechnique, 2013.
http://www.lix.polytechnique.fr/~luis.
pino/files/minset-extended.pdf.

[25] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of
timed concurrent constraint programming. In LICS, pages
71–80. IEEE, 1994.

[26] V. A. Saraswat, M. C. Rinard, and P. Panangaden. Semantic
foundations of concurrent constraint programming. In POPL,
pages 333–352. ACM Press, 1991.

http://www.lix.polytechnique.fr/~luis.pino/files/minset-extended.pdf
http://www.lix.polytechnique.fr/~luis.pino/files/minset-extended.pdf

	Introduction
	Background
	Partition Refinement
	Constraint Systems
	Syntax
	Reduction Semantics
	Labeled Semantics

	Partition refinement for ccp
	Strong equivalence
	Weak equivalence

	Using Partition refinement for checking observational equivalence in ccp-{+}
	Properties of ccp-{+}
	Optimizations to partition refinement for ccp-{+}

	Using the compact input-output sets for verifying observational equivalence in ccp-{+}
	Weak bisimilarity and barb equivalence
	A canonical representation of ccp-{+} configurations

	Improving the partition refinement for ccp
	Conclusions and Future Work
	References

