
A Category of Explicit Fusions

Filippo Bonchi1, Maria Grazia Buscemi2,
Vincenzo Ciancia1, and Fabio Gadducci1

1 Dipartimento di Informatica, University of Pisa, Italy
{fibonchi,ciancia, gadducci}@di.unipi.it

2 IMT Lucca Institute for Advanced Studies, Italy
m.buscemi@imtlucca.it

Abstract. Name passing calculi are nowadays an established field on
its own. Besides their practical relevance, they offered an intriguing chal-
lenge, since the standard operational, denotational and logical methods
often proved inadequate to reason about these formalisms. A domain
which has been successfully employed for languages with asymmetric
communication, like the π-calculus, are presheaf categories based on (in-
jective) relabelings, such as Set I. Calculi with symmetric binding, in the
spirit of the fusion calculus, give rise to new research problems. In this
work we examine the calculus of explicit fusions, and propose to model
its syntax and semantics using the presheaf category SetE, where E is the
category of equivalence relations and equivalence preserving morphisms.

1 Introduction

Among the many research themes Ugo Montanari considered in his carrier, he
was always concerned with the semantics of interactive systems. In our work we
consider a few topics, related to such a large area, that always interested Ugo,
namely final semantics, coalgebras, names and name fusions, and constraints.

Denotational Semantics via Final Object. In [35] Scott and Strachey intro-
duced denotational semantics as a way of formalizing the meaning of program-
ming languages: to each expression of the language a denotation is assigned, i.e.,
an object in a mathematical domain. In their original proposal, each program de-
notes a continuous function on a partially ordered set, mapping each input of the
program into the corresponding output. Despite its expressiveness, the approach
is less adequate in modelling the semantics of interactive systems : indeed, in this
case the non-deterministic behaviour of a program is more important than the
function it computes: thus, these systems can not be simply denoted as if they
were input-output functions.

An important tenet of denotational semantics is that it should be compo-
sitional, i.e, the denotation of a program expression has to be constructed by
the denotation of its sub-expressions. This property allows one to reason induc-
tively on the program structure, providing a general methodology for proving
properties of programs.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 544–562, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Category of Explicit Fusions 545

A lot of effort has been spent to give compositional denotational semantics
to concurrent programming languages. Usually, this has been accomplished by
restricting the focus to simple computational models exhibiting fundamental as-
pects of concurrent computations. Amongst the various proposals, process cal-
culi are one of the most successful: a set of basic operators defines the syntax
of the calculus (more formally, the set of operators is a signature and the ex-
pressions of the language are the elements of the initial algebra associated to
such a signature) and for each operator there is a set of (SOS [32]) rules de-
scribing the behaviour of the composite expression in terms of the behaviours
of its sub-expressions. The resulting operational semantics is usually a labeled
transition system (lts) where labels represent interactions amongst the various
sub-expressions (representing components) of an expression (a system).

Moreover, Universal Coalgebra [33] provides a good categorical framework
for the denotation of process calculi. Given a behavioural endo-functor B, one
can define the category of B-coalgebras and B-cohomomorphisms. By choosing
a certain endo-functor on Set (i.e., the category of sets and functions), we get
the category of all labeled transition systems and “zig-zag” morphisms (i.e.,
morphisms that both respect and reflect transitions). This category has a final
object F, i.e., from every lts there is a unique morphism to F.

In this setting, one can easily define the denotation of an lts as its image
through this unique morphism. This idea, that nowadays is called final semantics,
was originally proposed for abstract data types by Giarratana, Gimona and
Montanari in [20] and it is still central in Ugo’s work (see e.g. [11,2]).

Compositional Denotational Semantics via Initial and Final Object.
This kind of representation is not completely satisfactory, because the intrinsic
algebraic structure of states is lost, and compositionality of denotational seman-
tics is not reflected in this model. In [37], Turi and Plotkin provide a solution by
means of bialgebras. These are pairs composed of a Σ-algebra and a B-coalgebra
for Σ and B two endo-functors on Set related by a distributive law λ. Roughly,
they have shown that providing a set of SOS rules (in some well-behaved format)
corresponds to defining λ; the syntax of the formalism is the initial algebra for
Σ and the semantics domain is the final coalgebra for B. This uniquely induces
a (bialgebraic) morphism (representing the denotational semantics) that maps
each element of the initial Σ-algebra (i.e., each term of the syntax) into the final
B-coalgebra (representing the denotation of the terms). Since morphisms also
respect the operations of Σ, the denotational semantics is also compositional.

This approach is general enough to allow one, by simply modifying either
the base category or the associated endo-functors, also to handle sophisticated
process calculi having complex variable binding (like the value passing CCS [25]
and the π-calculus [26]). More precisely, in order to represent both syntax and
semantics, one has to consider proper endo-functors not on Set , but on categories
SetC of covariant presheaves over some C. These are functors from a generic
category C of interfaces and contexts to Set . Intuitively, a presheaf maps each
object i of C to the set of states having i as interface, and each arrow c : i → j
to a function turning states with interface i into states with interface j.

546 F. Bonchi et al.

As an example, abstract syntax with variable binding has been tackled as
a category of endo-functors Σ over SetF [14,21], for F the category of finite
cardinals (i.e., sets of variables) and all functions (i.e., variable substitutions).

Models for Names. The index category C can be made up of a single object.
This is the case of presheaves in the category SetG with G the group of per-
mutations over natural numbers. This category is essentially the same as the
nominal sets of Pitts and Gabbay [16], used to model abstract syntax with vari-
able binding, and of permutation algebras, that have been exploited to give a
final semantics of the π-calculus [28,6]. This corresponds to an untyped view of
interfaces, where the actual element of interest is the action of a presheaf on the
arrows of the one-object category.

Having more objects in the index category corresponds instead to a typed
framework. One of the most widely investigated cases is I, that is, the full sub-
category of F containing only injective morphisms. Both the early and late se-
mantics of the π-calculus [26] can be characterized by proper endo-functors on
Set I [36,13,15]. Intuitively, any object i of I is mapped to a set of processes whose
free names belong to i, and an arrow is mapped into an injective renaming. In
this perspective, it is easy to understand the roots of a problem which is common
to the typed and untyped case: interfaces of π-processes can always be enlarged
(an operation that corresponds to allocate new names) but never contracted (so
that two names can never be coalesced).

A solution to this problem was proposed by Montanari and Pistore by intro-
ducing history dependent automata [27,31], where at any step of the execution
a set of names can be junked away, obtaining an operational model where finite
state verification of name passing calculi can be carried out in interesting cases.
A coalgebraic formulation of HD-automata was given in [10,11], by employing
the category of named sets.

An equivalence result between the categories of named sets, permutation al-
gebras, SetG and the full subcategory of Set I of pullback preserving functors
(also known as Schanuel topos) has been given by the fourth author, Marino
Miculan and Ugo in [17]. An extension of this result to the associated categories
of coalgebras has recently been proposed in [9], by the third author and Ugo.
There, a garbage-collecting functor for name abstraction is defined on named
sets, allowing the coalgebraic framework of HD-automata to be generalised to
calculi different than the π-calculus.

In the previous proposals, arrows of the index category are just injections
of names, and thus names can not be fused. In order to tackle non injective
substitutions of names, one can consider different index categories. The open
semantics of the π-calculus [34], for example, can be defined using an endo-
functor on SetD, for D the category of irreflexive relations and relation-preserving
morphisms [19,24]. Roughly, every object is a set of names equipped with an
irreflexive relation such that two related names are considered distinguished.
Morphisms are functions between sets of names that preserve the relation and
thus they can not coalesce those names that are considered distinct.

A Category of Explicit Fusions 547

Explicit Fusions. In this work we introduce the category E, of equivalence
relations, in order to properly model explicit fusions [39], i.e., processes that
equate two names, allowing all the processes running in parallel with them to
use one name in place of the other. Our interest for the explicit fusion calculus
comes from the fact that it lies half-way between the fusion calculus [30] (to
which Ugo has devoted much attention in the last years [4,22,18,12,8]) and the
CC-Pi [7]. Indeed, explicit fusions are just instances of the more general concept
of named c-semiring introduced in [7] by the second author and Ugo.

Each object of E is an equivalence relation over a set of names. Analogously to
I, morphisms preserve names (i.e., names can not be junked away), but equiva-
lence classes can be enlarged, thus obtaining semantical fusion of names without
loosing any syntactic name. We prove that E is suitable for providing both syntax
and semantics to the calculus of explicit fusions [39] by showing both a syntactic
endo-functor Σ and a behavioural endo-functor B on SetE.

Unfortunately, it seems hard to recover the Turi-Plotkin framework, since the
operational behaviour of explicit fusion calculus is not compositional with re-
spect to the semantical name fusions provided by the arrows of E. This might
suggest that E is not adequate for our purposes, but the main result states that
inside-outside bisimulations [38] (i.e., the standard bisimulation of explicit fu-
sion) are in one to one correspondence with coalgebraic bisimulations for the
endo-functor B. Moreover, considering a proper saturated semantics [29,1] in
SetE might bring to a compositional operational semantics, and thus to a bial-
gebraic representation.

Thus the paper presents no conclusive result for the denotational semantics of
explicit fusion, but just a solid base for further studies. Moving beyond explicit
fusion, E is the first step toward a deeper understanding of named c-semirings
and then for a Turi-Plotkin characterization of CC-Pi [7]. Moreover, by slightly
modifying E, thanks to its definition as a comma category, one can obtain a cate-
gory of equivalence relations and distinctions that is suitable for open π-calculus
[34] and D-fusion [4]. Finally, these formalisms share a symbolic semantics that
can not be naively tackled through coalgebras. Giving a presheaf semantics for
them will hopefully allow these symbolic semantics to be characterized through
normalized coalgebras as shown by the first author and Ugo in [2,3].

Synopsis. In § 2 we give a brief overview of the explicit fusion calculus. In § 3
we introduce the category E of equivalence relations. In § 4 we show how to
use E to characterise an abstract syntax of explicit fusion calculus as an initial
algebra. In § 5 we define a behavioural endo-functor B on SetE and we state
a correspondence between inside-outside bisimulations and B-bisimulations. In
§ 6 we draw some conclusions and provide directions for future work.

2 Background on the Explicit Fusion Calculus

The explicit fusion calculus is a variant of the π-calculus that aims at guaran-
teeing asynchronous broadcasting of name equivalences to the environment. In

548 F. Bonchi et al.

order to ease its introduction, this section presents the explicit fusion calculus in
the standard π-calculus fashion rather than in the “commitment” style of [39].

Assume a set of names N , ranged over by x, y, . . . The (explicit) fusion
processes, ranged over by P, Q, . . . are defined by the syntax in Fig. 1(a). The
τ prefix stands for a silent action, while the complementary output x〈y〉 and
input x〈y〉 prefixes are used for communications. Unlike π-calculus, the input
prefix is not a binder, hence input and output operations are fully symmet-
ric. As usual, 0 stands for the inert process, P | P for the parallel composi-
tion, !P for the replication operator and (x)P for the process that makes the
name x local in P . An explicit fusion x = y is a process that exists concur-
rently with the rest of the system and that enables to use the names x and y
interchangeably.

We now define the structural congruences ≡1 and ≡2 as the least congruences
over processes closed with respect to α-conversion and satisfying the axioms in
Fig. 1(b) and Fig. 1(c), respectively. Finally, we define the structural congruence
≡ as the transitive closure (≡1 ∪ ≡2)∗. With respect to the standard structural
congruence of fusion processes, here we changed a few axioms. In particular,
we weakened the axiom called reflexivity, equating x = x and 0: in our case,
we offer a name-preserving version, equating x = x | P with P , whenever P
contains x free. Moreover, instead of the subtraction axiom, that equates the
processes (νx)(x = y) and 0 (thus allowing us to remove names from an equiv-
alence relation via restriction), we prefer to add an explicit α-conversion law
for our processes, which is apparently the reason underlying the introduction of
the subtraction axiom in [39]. Summing up, we considered a set of axioms guar-
anteeing that any parallel composition of fusions is closed with respect to the
composition with any fusion, when that fusion occurs in the induced equivalence
relation plus three axioms. These axioms (the left-most of Fig. 1(c)) ensure what
is called small-step substitution in Fig. 2 of [39]: this is further made explicit
by Proposition 1, taking into account the equivalence relation Eq(P) (Fig 1(d)),
specifying the name equivalences induced by a process P : it properly general-
izes [39, Lemma 5].

Proposition 1 (decomposition). Let P , Q be processes such that P = C[Q]
for a unary context C[−] that does not bind the names in fn(P) (i.e., such that
the placeholder − does not fall in the scope of a restriction operator (x), for any
x ∈ fn(P)). Moreover, let EP be the process

∏

{x,y∈fn(P)|(x,y)∈Eq(P)}
x = y

(where
∏

denotes the multiple parallel composition). Then, P ≡2 C[EP | Q].

The rules of the operational semantics, as depicted in Fig. 1(e), recall the rules
of the π-calculus. We assume a set of labels

L = {τ, z〈y〉, z〈y〉, z(w), z(w)}

A Category of Explicit Fusions 549

where z, y are free and w is bound. We let λ, λ1, . . . range over L. By Eq(P) �
λ1 = λ2 we mean that P contains enough fusions to interchange λ1 and λ2.
Formally, we have

Eq(P) � τ = τ

Eq(P) � z〈y〉 = x〈w〉 if (z, x), (y, w) ∈ Eq(P) (similarly for output)

Eq(P) � z(v) = x(v) if (z, x) ∈ Eq(P) (similarly for output)

Unlike the π-calculus, the synchronization of two complementary processes
x〈y〉.P and x〈z〉.Q yields an explicit fusion y = z rather than binding y to
z. According to rule (fus), a process can undergo any transition up to inter-
changing names that are fused. For instance, a process x = y | x〈z〉.P can make
both actions x〈z〉 and y〈z〉.

In [38] several bisimulations have been proposed for the explicit fusion calcu-
lus: they were all proved to coincide, and in fact to be congruences. For conve-
nience, as a reference semantics we consider the inside-outside bisimulation that
is much like π-calculus open bisimulation.

Definition 1 (inside-outside bisimulation). Let R be a symmetric relation
on fusion processes. We say that R is an inside-outside bisimulation if whenever
P R Q holds then

1. Eq(P) = Eq(Q);
2. If P

λ→ P ′ with bn(λ) ∩ fn(Q) = ∅ then Q
λ→ Q′ and P ′ R Q′;

3. P | x = y R Q | x = y, for all fusions x = y.

We let ∼io denote the largest such bisimulation, the inside-outside bisimilarity.

According to clause 1, two processes x = y and 0 are not bisimilar, since Eq(x = y)
and Eq(0) differ. However, bisimilarity is not name preserving, so that 0 is indeed
bisimilar to x = x. Finally, note that clause 3 allows bisimilarity to distinguish the
following processes (inspired by an example described by Boreale and Sangiorgi [5]
for the π-calculus)

P =!y〈〉.x〈〉.τ.z〈〉 | !x〈〉.y〈〉.τ.z〈〉 Q =!(w)(y〈〉.w〈〉 | x〈〉.w〈〉.z〈〉)

When inserted into the context | x = y, Q can perform an action
z〈〉→ after two

steps (synchronizing y〈〉 with x〈〉), while P at least after three steps.

3 A Category of Name Equivalences

The paper aims at extending the presheaf approach in order to tackle the calcu-
lus of explicit fusions. To this end, we now define a category of equivalence re-
lations E that will be used to represent (the sets of) fusion processes as a presheaf

550 F. Bonchi et al.

π ::= τ
�
� x〈y〉

�
� x〈y〉 P ::= 0

�
� x = y

�
� π.P

�
� P | P

�
� (x)P

�
� !P

(a) syntax

P |0 ≡1 P P | Q ≡1 Q | P (P | Q) | R ≡1 P | (Q | R)

!P ≡1 P | !P (x)(y)P ≡1 (y)(x)P P | (x)Q ≡1 (x)(P | Q) if x �∈ fn(P)

(b) structural congruence, I

x = y | π.P ≡2 x = y | π.(x = y | P) x = x | P ≡2 P if x ∈ fn(P)

x = y | (z)P ≡2 x = y | (z)(x = y | P) if z �∈ {x, y} x = y ≡2 y = x

x = y | !P ≡2!(x = y | P) x = y | y = z ≡2 x = z | y = z

(c) structural congruence, II

Eq(0) = Eq(π.P) = Id the identity relation

Eq(x = y) = {(x, y), (y, x)} ∪ Id smallest equivalence including (x, y)

Eq(P | Q) = (Eq(P) ∪ Eq(Q))∗ transitively-closed union

Eq((x)P) = Eq(P) \ {(y, z) | x ∈ {y, z}} removing name from equivalence classes

Eq(! P) = Eq(P) removing replication operator

(d) equivalence relation Eq(P)

(pref)

π.P
π→ P

(comm)

P
x〈y〉→ P ′ Q

x〈w〉→ Q′

P | Q τ→ P ′ | Q′ | y = w

(par)

P
λ→ P ′ bn(λ) ∩ fn(Q) = ∅

P | Q λ→ P ′ | Q
(res)

P
λ→ P ′ x /∈ n(λ)

(x)P
λ→ (x)P ′

(open-i)

P
z〈x〉→ P ′ (x, z) /∈ Eq(P)

(x)P
z(x)→ P ′

(fus)

P
λ→ Q Eq(P) � λ = λ′

P
λ′
→ Q

(struct)

P ≡ P ′ λ→ Q′ ≡ Q

P
λ→ Q

(e) operational semantics (omitting rule (open-o) for output)

Fig. 1. Explicit fusion calculus

E → Set . The objects of E are basically surjective functions on sets and the
arrows of E are defined by taking suitable injective functions.

A Category of Explicit Fusions 551

Definition 2 (The category E). The category E of equivalence relations is
the category whose objects are surjective functions h : s � t in Set and whose
arrows σ : h → h′ are pairs 〈σ1, σ2〉 of functions in Set such that σ1 : s ↪→ s′ is
injective and the diagram below commutes.

s

h
����

� � σ1 �� s′

h′

����
t σ2

�� t′

The domain s of the function h specifies a set of names while the codomain
represents a set of equivalence classes involving the names of s. Note that every
s′ has at least the same arity of s. Furthermore, the equivalence classes in t must
be preserved in t′: in other words, the equivalence classes of the names in s,
as represented in t and carried along σ1 to s′, may be either left unchanged or
further merged in t′, but they can not be broken.

Note that all arrows in E are monomorphims. We let E(h, h′) denote the set of
all arrows in E with source h and target h′. Each object h of E defines a functor
E(h,) : E → Set as follows. Every object h′ of E is mapped into the set E(h, h′).
An arrow σ : h′ → h′′ of E is mapped in the function E(h, σ) : E(h, h′) →
E(h, h′′), defined by post-composition: for any ρ ∈ E(h, h′), E(h, σ)(ρ) = ρ; σ.

Let {�} denote the one element set, graphically represented as •, and let us
denote by 1 and E the following two objects of E (corresponding to id{�} and
[id{�}, id{�}], respectively, for the uniquely-induced arrow)

•

��
•

•

���
��

��
� •

����
��
��

•
1 E

Then, E(1, h) is the set of all monomorphisms that map � to an element
of the domain of h: hence, it is isomorphic to it. Similarly, E(E, h) abstractly
represents the set of explicit fusions x = y (for x, y different names) that hold
in h. Hereafter, we denote the set E(1,) by Names and the set E(E,) by Fus.

On the structure of E Consider the comma category IDSet ↓ IDSet , i.e. the
category whose objects are triples 〈s, t, h : s → t〉 and whose arrows are pairs
σ1 : s → s′, σ2 : t → t′ such that the diagram below commutes.

s

��

σ1 �� s′

��
t σ2

�� t′

Let INI : I → Set be the functor that injects the category I into Set . Consider the
category INI ↓ IDSet , where I is the category of sets and injective functions: in

552 F. Bonchi et al.

the definition above, it simply means that σ1 must always be a monomorphism.
Now, E is the full subcategory of INI ↓ IDSet , including only those objects
〈s, t, h : s � t〉 such that h is surjective.

All limits do exist in INI ↓ IDSet : they are simply computed point-wise. This
is not the case instead in E. Let us consider e.g. pullbacks: given any two arrows
〈σ1, σ2〉 : h → h∗, and 〈σ′

1, σ
′
2〉 : h′ → h∗, their pullback exists only if either σ2

or σ′
2 is mono. Note that if both components of an arrow σ are mono, then σ is

a regular monomorphism in INI ↓ IDSet (and in E as well), meaning that it can
be computed as the equalizer of two arrows.

In the following, we sometimes consider functors from E to Set that are
pullback-preserving: this fact which basically implies that all regular monomor-
phisms in E are mapped into injective functions in Set .

4 Abstract Syntax

In this section we consider the category SetE of functors from E to Set (called
presheaves over E

op) and natural transformations. This category can be used for
both the syntax and the semantics of the explicit fusion calculus.

In the syntax, objects of the so-called index category E can be viewed as
types representing the equivalence classes of process names. The presheaf for the
syntax gives, for each index h : s � t, the set of those processes that can be
typed with h, i.e., processes whose set of free names coincides with s, and whose
equivalence class is the one induced by h.

In Section 4.1 we provide an account of the concrete syntax of the explicit
fusion calculus as a presheaf, exploiting the previously defined equivalence re-
lation Eq. Then, in Section 4.3 we explain how this syntax can be described as
an initial algebra in SetE for a suitable endo-functor, preserving types. For the
purpose, in Section 4.2 we introduce a number of basic constructions that are
used as a meta-language in SetE, and are distinguishing features of this category.

4.1 Typing the Concrete Syntax

For the definition of the syntactic presheaf, for each arrow h : s � t we introduce
the notation Kerh, representing the equivalence relation induced by h (obviously
defined), and the process Ph, containing all the pairs in an equivalence relation
h, viewed as fusions (analogous to the process EP induced by Eq(P))

Ph =
∏

{x,y∈s|h(x)=h(y)}
x = y.

Consider the functor Syn: E → Set , defined on objects as

Syn (h : s � t) = {P | fn(P) = s ∧ Eq(P) = Kerh ∪ Id} / ≡2 .

The intuition behind this definition is that if an agent P is in Syn (h : s � t),
then its free names are the elements of s, and its equivalence classes Eq(P) are
exactly those described by h, modulo adding the pairs (x, x) for x �∈ fn(P).

A Category of Explicit Fusions 553

The action of the functor on arrows must injectively relabel processes, whilst
it syntactically adds as many fusions as needed (actually, all of them) to put a
process in the equivalence class chosen as destination

Syn (〈σ1 : s ↪→ s′, σ2 : t → t′〉 : h → h′)(P) = Pσ1 | Ph′

4.2 A Basic Metalanguage in SetE

Besides the usual constructors for the polynomial endo-functors (namely con-
stants, finite sums and products), SetE actually allows us to define additional
constructors that are well-suited for handling fusions.

Bottom operator F⊥. For any s ∈ Set , let s⊥ be s + {�} and for any h :
s � t, let h⊥ : s⊥ � t⊥ be the arrow [h, id{�}]. The bottom operator F⊥

is an endo-functor on SetE defined as F⊥(h) = F (h⊥) and F⊥(〈σ1, σ2〉) =
F (〈(σ1)⊥, (σ2)⊥〉).

Box operator F�. The box operator F� is the endo-functor on SetE defined
on objects and arrows as below. Let h : s � t be an object of E. Then

F�(h) =
∑

p

F (h; p)

where p : t � p(t) is a (identity preserving) morphism from t to a partition p(t)
of t. Intuitively, p is an epimorphism further merging the names in s. Choosing
p(t) as a target of p simply amounts to choose a canonical representative for
each isomorphic merging of names.

s � � ids ��

h
����

s

h;p
��

t p
�� p(t)

Let h : s � t and h′ : s′ � t′ be objects of E and σ = 〈σ1, σ2〉 : h → h′ be an
arrow of E. Then

F�(σ) =
∑

p

F (〈σ1, σ
∗
2〉)

where σ∗
2 is uniquely induced by the pushout depicted in the diagram below for

each p, noting that 〈σ1, σ
∗
2〉 : h; p → h′; p∗.

s

h;p
����

�� ids � �s

h
����

� � σ1 �� s′

h′

����
p(t)

σ∗
2 ���

�
�

�
����

p t σ2
�� t′

p∗�����
�

�
�

p(t′)

554 F. Bonchi et al.

Roughly, F� may add any possible name equivalence to an equivalence relation
on s. The box operator is used in Section 4.3 to define the functor for prefixes of
the explicit fusion. Indeed, a fusion process with a prefix π.P has no equivalence
relation on its names, while P may have any equivalence.

Shift operator F δ. The shift operator is the functor defined on objects and
arrows as follows. Let h : s � t be an object of E. Then

F δ(h) = F⊥(h) +
∑

e

F ([h, e])

where e : {�} → t is a function mapping � in some element of t and [h, e] :
s + {�} � t is the function uniquely induced by the coproduct, mapping all
elements of s in h(s) and � in e(�).

Let h : s � t and h′ : s′ � t′ be objects of E and σ = 〈σ1, σ2〉 : h → h′ be an
arrow of E. Then

F δ(σ) = F⊥(〈σ1, σ2〉) +
∑

e

F (〈(σ1)⊥, σ2〉)

noting that e; σ2 : {�} → t′ and 〈(σ1)⊥, σ2〉 : [h, e] → [h′, e; σ2].
The shift operator is used to define the functor for the restriction operation in

the explicit fusion. In fact, F δ is a variant of the functor for name generation used
to model restriction in the π-calculus. The main point here is that objects are
now equivalence relations. Hence, when generating a new name x, it is necessary
to specify whether x is equivalent to any other name already occurring in the
process, or it belongs to its own equivalence class.

4.3 Explicit Fusion Syntax as an Initial Algebra

An abstract syntax for the explicit fusion calculus is captured by the initial
algebra of the endo-functor Σ : SetE → SetE that is defined below.

ΣF = 1 (inert process)
+ F (replication)
+ F × F (parallel composition)
+ F� (tau prefix)
+ Names × Names × F� (input prefix)
+ Names × Names × F� (output prefix)
+ F δ (restriction)

We briefly comment on the component functors. For the purpose, we introduce
the notation !s representing the unique morphism of type s � {�} from s to the
final object in Set , viewed as an object of E (noting that !{�} = id{�}). Moreover,
we say that an object h : s � t of E is included in an object h1 : s1 � t1, and
we write h � h1, if there exists an arrow σ : h → h1.

The functor for the inert process just returns a singleton at each stage; whilst
the functor for replication just returns an additional copy of the processes at
each stage, as if prefixing them with a suitable operator.

A Category of Explicit Fusions 555

Table 1. Inference rules for Abstract Syntax

0 ∈ F (id∅)
p ∈ F (h) h � h1

p ∈ F (h1)
p ∈ F (h)
!p ∈ F (h)

p ∈ F �(h)
τ.p ∈ F (h)

p ∈ F δ(h)
(�)p ∈ F (h)

p ∈ F (h) q ∈ F (h)
p | q ∈ F (h)

a ∈ Names(h) b ∈ Names(h) p ∈ F �(h)
a〈b〉.p ∈ F (h)

a ∈ Names(h) b ∈ Names(h) p ∈ F �(h)
a〈b〉.p ∈ F (h)

The three functors for prefixing are similar, the idea being of “hiding” equiv-
alences of a process P when prefixed as π.P , similarly to what is done in the
definition of Eq(P). To this purpose, we use the functor F�: it returns, at stage
h : s � t, all the processes occurring in F (h′) for all h′ such that h � h′ � !s.

The parallel composition of two elements a ∈ F (h1) and b ∈ F (h2) can only
be found at a stage h such that h1 � h and h2 � h. Indeed, being a presheaf, the
product F ×F is a functor of type E → Set defined as (F ×F)(h) = F (h)×F (h).
Hence, we can not find the product of two elements h1 and h2 belonging to
different stages, but we have to “inject” them into a common stage h, where both
can be found. Note that, since arrows can never remove fusions from objects of
E, this requirement is equivalent to stating that Eq(P | Q) = (Eq(P) ∪ Eq(Q))∗,
carrying on the intuition that the stage of an element always includes its fusions.

Next, we consider F δ. We can exemplify its meaning using the process (x)(x =
y). This process belongs to F δ(id{y}), since its set of free names is indeed included
in {y}. However, it is obtained from the process x = y, which does not belong
to F (id{x,y}), but rather to F (!{x,y}). Hence, to capture the process (x)(x = y)
in the abstract syntax, F (!{y,�}) has to be a subset of F δ(id{y}).

The previous discussion is summed up by Table 1. The different stages h
account for the equivalences. Note e.g. that 0 belongs to F (id∅), for id∅ the
identity of the empty set. It thus belongs also to F (id{x}) and to F (!{x,y}), for
any name x, y. However, in the latter stage it represents the process 0 | x = y.

4.4 Including Fusions, Syntactically

We could have introduced explicitly the fusions in our syntactical functor, simply
considering the functor Fus to represent them

Σ′F = ΣF (fusionless calculus)
+ Fus (explicit fusions)

This ensures, by definition, that a process x = y (for x, y different names) can
not be found in F (h) unless (x, y) ∈ Kerh, i.e. that the syntax reflects the equiv-
alences of the objects in the index category. These constraints propagate to the
parallel composition of fusions with arbitrary processes, and they induce exactly

556 F. Bonchi et al.

the equivalence relation Eq on the abstract syntax. Nevertheless, this choice re-
quires a more complex relationship between concrete and abstract functor, and
we thus preferred to deal with the fusions only at the stage level.

5 Behavioural Functor

In this section we introduce a behavioural endo-functor B on SetE. This auto-
matically derives a notion of bisimulation that remarkably coincides with inside-
outside bisimulation. In order to prove this, we will first provide a more concrete
characterization of B-coalgebras in terms of E-transition systems and then a
corresponding notion of bisimulation.

The behavioural endo-functor B describes the type of the transition system.

BF = Pf (
F� (tau action)

+ Names × Names × F� (input action)
+ Names × Names × F� (output action)
+ Names × F⊥�

(bound input action)
+ Names × F⊥�

(bound output action)
)

First of all, note the definition of input. This is quite different from the stan-
dard works on presheaf semantics for π-calculus, such as [15], where an exponen-
tial type was used for the input action. In the explicit fusion calculus the input
and output prefixes are completely symmetric and thus input is non-binding.
For this reason, we can safely tackle it in the same way as output.

Moreover, the destination states for τ actions are in F�. This can be under-
stood by noting that when a process performs a τ transition, then the destination
has the same names of the starting state, yet possibly with more fusions. As an
example, consider the fusion process τ.(x = y | Q). Performing a τ transition,
this process arrives into the state x = y | Q, where x and y are now identified.
Analogously for input and output actions. Instead, in the case of bound input
and bound output, the arriving state has one more name and (possibly) more
fusions (that is, it has to belong to F⊥�

).

5.1 B-coalgebras as E-transition Systems

A B-coalgebra is a pair 〈F, β〉, for F an object of SetE (i.e., F : E → Set is a
functor) and β : F → B(F) is an arrow of SetE, i.e., a natural transformation
between F and B(F). In other words, β : F → B(F) is a family of functions
(β)h : F (h) → B(F)(h) for all h ∈ E, satisfying suitable naturality requirements.
Now, let

∫
F denote the set of the elements of a functor F , namely, the disjoint

union
∑

h∈E
F (h). It is easy to note that for any functor F and h ∈ E the

following inclusions F⊥(h) ⊆
∫

F , F�(h) ⊆
∫

F and F δ(h) ⊆
∫

F hold, so

A Category of Explicit Fusions 557

that by construction every B-coalgebra induces a transition relation whose state
space is represented by

∫
F .

In the following, we denote the elements of a functor F as pairs h � f , for
f ∈ F (h) and we write h � f ∈ F (h′) whenever F (h) ⊆ F (h′).

Definition 3 (E-transition system). An E-transition system consists of a
presheaf F : E → Set and a transition relation −→ such that

1. states are elements of
∫

F ;
2. transitions are typed such that

– if h � f
τ−→ h′ � f ′ then h′ � f ′ ∈ F�(h),

– if h � f
z〈y〉−→ h′ � f ′ then h′ � f ′ ∈ F�(h) and z, y ∈ Names(h),

– if h � f
z(�)−→ h′ � f ′ then h′ � f ′ ∈ F⊥�

(h) and z ∈ Names(h),
where the symmetric rules for output are omitted;

3. transitions are preserved by morphisms σ = 〈σ1, σ2〉 : h → i, that is
– if h � f

τ−→ h′ � f ′ then i � F (σ)(f) τ−→ i; p∗ � F (〈σ1, σ
∗
2〉)(f ′) for p such

that h′ = h; p,

– if h � f
z〈y〉−→ h′ � f ′ then i � F (σ)(f)

σ1(z〈y〉)−−−−→ i; p∗ � F (〈σ1, σ
∗
2〉)(f ′) for p

such that h′ = h; p,

– if h � f
z(�)−→ h′ � f ′ then i � F (σ)(f)

(σ1)⊥(z(�))−−−−−−→ i; p∗ �
F (〈(σ1)⊥, (σ2)∗⊥〉)(f ′) for p such that h′ = h⊥; p

where p, p∗, and σ∗
2 are as in the definition of the box operator (see Sec-

tion 4.2) and where the symmetric rules for output are omitted;
4. transitions are reflected by morphisms σ = 〈σ1, σ2〉 : h → i, that is

– if i � F (σ)(f) τ−→ i′ � f ′ then h � f
τ−→ h′′ � f ′′ such that h′′ = h; p and

i′ = i; p∗ and F (〈σ1, σ
∗
2〉)(f ′′) = f ′,

– if i � F (σ)(f)
z〈y〉−→ i′ � f ′ then h � f

u〈v〉−→ h′′ � f ′′ such that h′′ = h; p,
i′ = i; p∗, F (〈σ1, σ

∗
2〉)(f ′′) = f ′ and σ1(u〈v〉) = z〈y〉,

– if i � F (σ)(f)
z(�)−→ i′ � f ′ then h � f

u(v)−→ h′′ � f ′′ such that h′′ = h⊥; p,
i′ = i; p∗, F (〈(σ1)⊥, (σ2)∗⊥〉)(f ′′) = f ′ and (σ1)⊥(u(�)) = z(�).

where p, p∗, and σ∗
2 are as in the definition of the box operator (see Sec-

tion 4.2) and where the symmetric rules for output are omitted.

The first condition requires that the states are indexed by the object of E. The
second condition requires that the transitions have the right type (according to
the definition of B). As for the third and fourth condition, they boil down to
require that for arrow σ : h → i (that is, for each renaming of names σ1 and
each enlargement of equivalence classes σ2), the set of transitions leaving from
each state h � f has to be precisely the same as for the set of transitions leaving
from i � f ′, for f ′ the state F (σ)(f) in the stage i.

We now give the first result of our contribution.

Proposition 2. E-transition systems are in one to one correspondence with B-
coalgebras.

558 F. Bonchi et al.

Proof. Consider the requirements of E-transition system. The first condition just
states that we are working with a presheaf. The second condition imposes the
correct type. The third and fourth requirement just impose that the transition
structure is a natural transformation between F and B(F), for each functor F .

��
We now move to introduce a suitable notion of E-bisimulation.

Definition 4. Let (F, −→) and (G, −→) be two E-transition systems. Let R ⊆⊕
h∈E

F (h)×G(h) be an E-sorted family of symmetric relations. We say that R
is an E-bisimulation if whenever fRhg then

– if σ : h → i, then F (σ)(f)RiG(σ)(g),
– if h � f

α−→ h′ � f ′ then h � g
α−→ h′ � g′ and f ′Rh′g′.

We finally state the main result of the paper.

Proposition 3. E-bisimulations are in one to one correspondence with coalge-
braic bisimulations for the endo-functor B : SetE → SetE.

Proof. Let us now consider the definition of the coalgebraic bisimulation for the
endo-functor B : SetE → SetE.

A presheaf R and two natural transformations a : R → F and b : R → G form
a bisimulation (R, a, b) between (F, α) and (G, β) if (R, a, b) is a monic span1 in
SetE and there exists in SetE a natural transformation γ : R → B(R) such that
the following commutes.

F

α

��

R
a�� b ��

γ

��

G

β

��
B(F) B(R)

B(b)
��

B(a)
�� B(G)

First of all note that in any category C with binary product, (R, a, b) is a monic
span if and only if the induced morphism 〈a, b〉 : R → F ×G is a monomorphism.
In Definition 4 we require that R ⊆

⊕
h∈E

F (h)×G(h), and this is equivalent to
restricting to those 〈a, b〉 that are injections of R into F × G, instead of simply
monomorphisms. Therefore, the one to one correspondence holds only up to
isomorphism, as it is standard in the theory of coalgebras.

Then, the first requirement of Definition 4 coincides with the fact that R is a
presheaf and a, b are natural transformations. Indeed, if fRhg (i.e., (f, g) ∈ R(h))
and σ : h → i, then R(σ)(f, g) ∈ R(i), because R is a functor E → Set . Notice
that R(σ)(f, g) = (F (σ)(f), G(σ)(g)), when considering 〈a, b〉 as the injection
of R into F × G. Indeed, since a : R → F is a natural transformation, then
ai(R(σ)(f, g)) = F (σ)ah(f, g) = F (σ)(f) (because 〈a, b〉 is the injection and not
simply a mono). Similarly bi(R(σ)(f, g)) = G(σ)bh(f, g) = G(σ)(g).
1 The triple (R, a, b) is a monic span (or monic pair) in a category C if for all h, i ∈ C

it holds that h = i whenever h; a = i; a and h; b = i; b do.

A Category of Explicit Fusions 559

The second requirement of Definition 4 (together with the fact that R is sym-
metric) coincides with requiring the existence of a γ making the above diagram
commute. This is a standard reasoning in the theory of coalgebras. The inter-
ested reader is referred to [33, Example 2.1]. ��

The correspondence between inside-outside bisimulations and B-bisimulatios is
now evident. Both definitions require that the same equations must hold in the
compared processes (this is implicitly expressed in E-bisimulations by requiring
that the relation is indexed over E). Moreover, both definitions require that the
relation is closed with respect to name fusions (this is equivalent to requiring that
the relation is closed under all arrows of E). And finally, the cases of bound input
and bound output (expressed in inside-outside bisimulation by bn (α)∩fn (Q) = ∅)
is safely tackled by considering as the bound name a new name for both processes.

5.2 A Further Abstraction

We round up the section by showing an alternative definition of the behavioural
functor. The definition would allow one to observe directly the classes of name
equivalences, instead of the names themselves.

Let Equiv : E → Set be the functor defined as Equiv(h : s � t) = t and
Equiv(〈σ1, σ2〉) = σ2. The behavioural endofunctor B : SetE → SetE is formally
defined as

BF = Pf (
F� (tau action)

+ Equiv × Equiv × F� (input action)
+ Equiv × Equiv × F� (output action)
+ Equiv × F⊥�

(bound input action)
+ Equiv × F⊥�

(bound output action)
)

¿From one side, this implicitly mimics the rule fus, by forcing all processes to
perform actions with equivalent names. On the other hand, this could be useful
as an efficient characterization, since there would only be one transition for any
two actions from a process P , as long as they are identified by the equivalence
class Eq(P). We leave the exploration of this functor as future work.

6 Conclusions and Further Work

In this paper, we introduced the category E of equivalence classes, and we started
the study of the presheaf category SetE. Some preliminary results, summed up
in the last section, show that the category SetE seems the right universe for
providing denotational models for the fusion calculus.

Much work remains to be done. First of all, our propositions just proved
that SetE is the right category for discussing inside-outside bisimulation, but
it is yet to be proved that the operational semantics induced by the rules in

560 F. Bonchi et al.

Fig. 1(c) coincides with the unique morphism from the initial Σ-algebra TΣ

to B(TΣ) of our construction. The main problem concerns the fact that the
operational semantics of explicit fusion calculus is not compositional with respect
to name fusion, and thus it does not correspond to any arrow in SetE (natural
transformation). A possible way out of the empasse could be to consider the
category of functors from E to Set and lax natural transformations. Another
solution might consist in considering the context transition system in the spirit
of [29,23]: for all σ ∈ E, p

σ,l−→ p′ if and only if σ(p) l−→ p′. It is evident that such
an operational semantics is clearly compositional with respect to all fusions, and
thus it is trivially an arrow in SetE.

The latter solution could lead us to a coalgebraic characterization of the so
called efficient bisimulation [38, Definition 9]. There, as in the case of open bisim-

ulation [34], instead of considering transitions p
σ,l−→ p′ for all possible σ, only the

minimal σ’s are considered. This is also similar to reactive systems, as proposed
by Leifer and Milner [23]. The exact correspondence with this approach is shown
in [3] for the case of open π-calculus, and can be trivially extended to explicit
fusion calculus. Unfortunately, the definition of efficient bisimulation is asym-
metric and thus it seems hard to characterize it through canonical coalgebras.
Probably, normalized coalgebras [2] can be fruitfully employed for this aim.

In more general terms, we would like to have a better understanding of the
properties of SetE. In particular, we plan to check if alternative characterisations
exist, mimicking the correspondence between nominal sets and Schanuel topos
holding for the subcategory of Set I of pullback-preserving functors. As a start,
we noticed that in E pullbacks exist only along regular monomorphims.

As a next step, we would like to address those calculi featuring distinctions,
such as D-Fusion [4] and the open semantics for π-calculus [34]. A suitable de-
notational model could be obtained by considering the category D of irreflexive
graphs [24]. Given the injection IND : D → Set , we should then study the
comma category INI ↓ IND, thus equipping each equivalence class (and each pair
of names belonging to them) with a suitable irreflexive relation.

References

1. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In:
Proc. of LICS, pp. 69–80. IEEE, Los Alamitos (2006)

2. Bonchi, F., Montanari, U.: Coalgebraic models for reactive systems. In: Kok, J.N.,
Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.)
ECML 2007. LNCS (LNAI), vol. 4701, pp. 364–380. Springer, Heidelberg (2007)

3. Bonchi, F., Montanari, U.: Symbolic semantics revisited. In: Amadio, R. (ed.)
FOSSACS 2008. LNCS, vol. 4962, pp. 395–412. Springer, Heidelberg (2008)

4. Boreale, M., Buscemi, M.G., Montanari, U.: D-fusion: A distinctive fusion calcu-
lus. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 296–310. Springer,
Heidelberg (2004)

5. Boreale, M., Sangiorgi, D.: Some congruence properties for pi-calculus bisimilari-
ties. Theoret. Comput. Sci. 198(1-2), 159–176 (1998)

A Category of Explicit Fusions 561

6. Buscemi, M.G., Montanari, U.: A first order coalgebraic model of pi-calculus early
observational equivalence. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 449–465. Springer, Heidelberg (2002)

7. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007)

8. Buscemi, M.G., Montanari, U.: A compositional coalgebraic model of fusion calcu-
lus. J. Log. Algebr. Program. 72(1), 78–97 (2007)

9. Ciancia, V., Montanari, U.: A name abstraction functor for named sets. In: Proc.
of CMCS. Elect. Notes in Th. Comput. Sci (to appear, 2008)

10. Ferrari, G.L., Montanari, U., Pistore, M.: Minimizing transition systems for name
passing calculi: A co-algebraic formulation. In: Nielsen, M., Engberg, U. (eds.)
FOSSACS 2002. LNCS, vol. 2303, pp. 129–158. Springer, Heidelberg (2002)

11. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-
automata for the pi-calculus using polymorphic types. Theoret. Comput. Sci. 331(2-
3), 325–365 (2005)

12. Ferrari, G.L., Montanari, U., Tuosto, E., Victor, B., Yemane, K.: Modelling fusion
calculus using HD-automata. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M.,
Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 142–156. Springer, Heidelberg
(2005)

13. Fiore, M.P., Moggi, E., Sangiorgi, D.: A fully abstract model for the π-calculus.
Inf. Comput. 179(1), 76–117 (2002)

14. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In:
Proc. of LICS, pp. 193–202 (1999)

15. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: Proc. of LICS, pp.
93–104. IEEE, Los Alamitos (2001)

16. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Asp. Comput. 13(3-5), 341–363 (2002)

17. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras
(pre)sheaves and named sets. Higher-Order and Symbolic Computation 19(2-3),
283–304 (2006)

18. Gadducci, F., Montanari, U.: Graph processes with fusions: Concurrency by colim-
its, again. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer,
G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393,
pp. 84–100. Springer, Heidelberg (2005)

19. Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi
of mobile processes. In: The Programming Language Ada. LNCS, vol. 106, pp.
105–120. Springer, Heidelberg (1981)

20. Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract
data type specifications. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45,
pp. 576–587. Springer, Heidelberg (1976)

21. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proc. of
LICS, pp. 204–213. IEEE, Los Alamitos (1999)

22. Lanese, I., Montanari, U.: Mapping fusion and synchronized hyperedge replacement
into logic programming. Theory Pract. Log. Program. 7(1-2), 123–151 (2007)

23. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

24. Miculan, M., Yemane, K.: A unifying model of variables and names. In: Sassone, V.
(ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 170–186. Springer, Heidelberg (2005)

562 F. Bonchi et al.

25. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inform.
and Comput. 100(1), 1–40 (1992)

27. Montanari, U., Pistore, M.: An introduction to history dependent automata. In:
Proc. of HOOTS. Elect. Notes in Th. Comput. Sci, vol. 10, pp. 170–188 (1997)

28. Montanari, U., Pistore, M.: Structured coalgebras and minimal HD-automata for
the pi-calculus. Theoret. Comput. Sci. 340(3), 539–576 (2005)

29. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for
CCS. Fundamenta Informaticae 16(1), 171–199 (1992)

30. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile
processes. In: Proc. of LICS, pp. 176–185. IEEE, Los Alamitos (1998)

31. Pistore, M.: History Dependent Automata. PhD thesis, Università di Pisa, Dipar-
timento di Informatica, Available at University of Pisa as PhD. Thesis TD-5/99
(1999)

32. Plotkin, G.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department (1981)

33. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput.
Sci. 249(1), 3–80 (2000)

34. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inform. 33(1),
69–97 (1996)

35. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages.
In: Programming Research Group Technical Monograph, Oxford University, Com-
puting Laboratory, vol. PRG-6 (1971)

36. Stark, I.: A fully abstract domain model for the π-calculus. In: Proc. of LICS, pp.
36–42. IEEE, Los Alamitos (1996)

37. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc.
of LICS, pp. 280–291. IEEE, Los Alamitos (1997)

38. Wischik, L., Gardner, P.: Strong bisimulation for the explicit fusion calculus. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 484–498. Springer,
Heidelberg (2004)

39. Wischik, L., Gardner, P.: Explicit fusions. Theoret. Comput. Sci. 340(3), 606–630
(2005)

	A Category of Explicit Fusions
	Introduction
	Background on the Explicit Fusion Calculus
	A Category of Name Equivalences
	Abstract Syntax
	Typing the Concrete Syntax
	A Basic Metalanguage in \Set^\E
	Explicit Fusion Syntax as an Initial Algebra
	Including Fusions, Syntactically

	Behavioural Functor
	B-coalgebras as E-transition Systems
	A Further Abstraction

	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

