Anneaux, corps, polynômes et fractions rationnelles (2)

Exercice 1 (Division euclidienne par un polynôme unitaire) Soient A un anneau commutatif et F, G des polynômes de A[X] avec G unitaire.

- 1. Montrer qu'il existe un unique couple de polynômes (Q, R) de A[X] tels que F = QG + R avec deg $R < \deg G$.
- 2. Montrer sur un exemple la nécessité de supposer G unitaire.

Exercice 2 Dans $\mathbb{Z}[X]$, déterminer le reste dans la division euclidienne de $P = (X+1)^n + (X-1)^n$ par les polynômes suivants : X; X-1; X^2 ; $(X-1)^2$; X^2-1 ; $(X+1)(X-1)^2$. À quelle condition X^2+1 divise-t-il P?

Exercice 3 (Division selon les puissances croissantes) Soient A un anneau commutatif et F, G des polynômes de A[X] avec $G(0) \in A^*$.

- 1. Pour tout $p \in \mathbb{N}$, montrer qu'il existe un unique couple de polynômes (Q, R) de A[X] tels que $F = QG + X^{p+1}R$ avec deg $Q \leq p$.
- 2. Soit $\theta \in \mathbf{R}$. Diviser selon les puissances croissantes à l'ordre $p \in \mathbf{N}$ le polynôme $F = 1 X \cos \theta$ par $G = 1 2X \cos \theta + X^2$ dans $\mathbf{R}[X]$.

Exercice 4 Soit P un polynôme de $\mathbf{R}[X]$ tel que $P(x) \geq 0$ pour tout $x \in \mathbf{R}$. Montrer qu'il existe $A, B \in \mathbf{R}[X]$ tels que $P = A^2 + B^2$. Cette écriture est-elle unique (à permutation et aux signes près de A et B)?

Exercice 5 Soient A un anneau intègre infini. Montrer par récurrence sur n que pour toutes parties infinies $S_1, \ldots, S_n \subset A$ et tout $P \in A[X_1, \ldots, X_n]$ non nul, l'ensemble $\{x = (x_1, \ldots, x_n) \in S_1 \times \cdots \times S_n, P(x) \neq 0\}$ est infini.

Exercice 6 Soit A un anneau intègre. Montrer la formule $\deg(PQ) = \deg(P) + \deg(Q)$ pour tous polynômes non nuls $P, Q \in A[X_1, \dots, X_n]$.

Exercice 7 Soit $F \in \mathbf{Z}[X]$ unitaire. On pose $F = \prod_{i=1}^{n} (X - \alpha_i)$ avec $\alpha_i \in \mathbf{C}$. Montrer que pour tout polynôme symétrique $P \in \mathbf{Z}[X_1, \dots, X_n]$, on a $P(\alpha_1, \dots, \alpha_n) \in \mathbf{Z}$.

Exercice 8 Exprimer les polynômes suivants de $\mathbb{Z}[X,Y,Z]$ en termes des polynômes symétriques élémentaires : $X^2 + Y^2 + Z^2$; $X^2(Y+Z) + Y^2(X+Z) + Z^2(X+Y)$.

Exercice 9 Pour tout monôme P de $\mathbf{Z}[X_1, \dots, X_n]$, le symétrisé ΣP de P est la somme des éléments de l'orbite de P sous l'action du groupe \mathfrak{S}_n .

- 1. Montrer que le polynôme symétrique élémentaire Σ_k $(1 \le k \le n)$ est le symétrisé d'un monôme.
- 2. Montrer que tout polynôme symétrique $P \in \mathbf{Z}[X_1, \dots, X_n]$ est combinaison linéaire à coefficients dans \mathbf{Z} de monômes symétrisés.
- 3. Exprimer en termes des polynômes symétriques élémentaires les polynômes suivants, à l'aide de la méthode de Waring :
 - (a) $\Sigma X_1^2 \ (n \ge 2)$;
 - (b) $\Sigma X_1^2 X_2$, ΣX_1^3 (n > 3);
 - (c) $\Sigma X_1^2 X_2 X_3$, $\Sigma X_1^2 X_2^2$, $\Sigma X_1^3 X_2$, ΣX_1^4 $(n \ge 4)$.

Exercice 10 La famille $(1, X, X^2, ...)$ est-elle une base du K-espace vectoriel K[[X]]?

Exercice 11 Soit K un corps et $G \in K[[X]]$, val $(G) \ge 1$.

- 1. Montrer que $F \mapsto F \circ G$ est un endomorphisme de l'anneau K[[X]] et que $val(F \circ G) = val(F) val(G)$.
- 2. Supposons $\operatorname{val}(G) = 1$. Montrer qu'il existe une unique $F \in K[[X]]$ telle que $F \circ G = X$ et qu'alors $\operatorname{val}(F) = 1$ et $G \circ F = X$.

Exercice 12 Soit A un anneau intègre tel que

- l'ensemble $\mathfrak{m}=A-A^*$ des éléments non inversibles est un idéal principal de A ;
- on a $\bigcap_{n\geq 1} \mathfrak{m}^n = \{0\}.$

Pour $x \in A$, $x \neq 0$, on pose $v(x) = \sup\{n \in \mathbb{N}; x \in \mathfrak{m}^n\}$. On pose de plus $v(0) = +\infty$ et on note f un générateur de \mathfrak{m} .

- (a) Montrer que $v(x) = +\infty$ si et seulement si x = 0.
- (b) Soit $x \in A \{0\}$ et n = v(x). Montrer que $x = f^n u$ avec $u \in A^*$.
- (c) Montrer que A est principal et décrire les idéaux de A (Indication : si I est un idéal de A, on pourra considérer inf $\{v(x); x \in I\}$).
- (d) Quels sont les idéaux maximaux de A? les idéaux premiers?

(e) Application. Montrer que l'anneau K[[X]] est principal. Montrer que l'anneau $\mathbb{C}\{z\}$ des séries entières de rayon de convergence >0 est principal. L'anneau des séries entières de rayon de convergence ≥ 1 est-il principal?

Exercice 13 Soit A un anneau et $v: A \to \mathbb{N} \cup \{+\infty\}$ vérifiant :

- pour tout $x \in A$, $v(x) = +\infty \Leftrightarrow x = 0$;
- pour tous $x, y \in A$, v(xy) = v(x) + v(y);
- pour tous $x, y \in A$, $v(x + y) \ge \min(v(x), v(y))$.
- (a) Montrer que A est intègre.
- (b) Soit K le corps des fractions de A. Montrer que v s'étend en une application de K dans $\mathbf{Z} \cup \{+\infty\}$ et qu'elle y vérifie encore les propriétés ci-dessus.
- (c) Montrer que $A_v = \{x \in K; v(x) \ge 0\}$ est un sous-anneau principal de K et décrire les idéaux de A_v .
- (d) On suppose que la relation $v(x) \le v(y)$, avec x et $y \in A$, entraı̂ne que x divise y dans A. Montrer que $A = A_v$. Est-ce vrai en général?
- (e) Application. Retrouver le fait que les anneaux K[[X]] et $\mathbb{C}\{z\}$ sont principaux.

Exercice 14 Montrer que le seul morphisme de K-algèbres de K[[X]] dans K est $e: F \mapsto F(0)$.

Exercice 15 Pour tout anneau commutatif A, on définit A[[X]] de la même façon que pour les corps.

- 1. Montrer que A[X] est principal si et seulement si A est un corps.
- 2. Trouver un idéal non principal de K[[X,Y]] = (K[[X]])[[Y]].
- 3. Quels sont les idéaux maximaux de K[[X,Y]]?