Anneaux, corps, polynômes et fractions rationnelles (3)

Exercice 1 (Critère d'Eisenstein) Soit p un nombre premier. Soit $P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbf{Z}[X]$ un polynôme vérifiant

- (a) p ne divise pas a_n ;
- (b) pour tout $0 \le i \le n 1$, p divise a_i ;
- (c) p^2 ne divise pas a_0 .
- 1. Montrer que P est irréductible dans $\mathbf{Q}[X]$.
- 2. P est-il irréductible dans $\mathbf{Z}[X]$?
- 3. Montrer que $X^{p-1} + \cdots + X + 1$ est irréductible dans $\mathbb{Q}[X]$.

Exercice 2 Montrer que les polynômes suivants sont irréductibles dans $\mathbf{Q}[X]: 3X^2 - 2X - 10, 2X^4 + 5X^3 - 10, 2X^6 - 15, X^n - 2 (n \ge 2).$

Exercice 3 On considère le polynôme $P = X^4 + 1 \in \mathbf{Q}[X]$.

- 1. Montrer que P est irréductible sur \mathbb{Q} .
- 2. Quelle est sa décomposition en irréductibles dans $\mathbb{C}[X]$? $\mathbb{R}[X]$?

Exercice 4 Soit $Q \in \mathbf{Z}[X]$ unitaire. Soit $P \in \mathbf{Z}[X]$ tel que P divise Q dans $\mathbf{Q}[X]$. Montrer que P divise Q dans $\mathbf{Z}[X]$.

Exercice 5 Soient $K \subset L$ deux corps. Soient $P, Q \in K[X]$ tels que P divise Q dans L[X]. Montrer que P divise Q dans K[X].

Exercice 6 Soient $K \subset L$ deux corps et $P, Q \in K[X]$. Montrer que le pgcd de P et de Q dans L[X] coïncide avec le pgcd de P et de Q dans K[X].

Exercice 7 (Polynômes cyclotomiques) Pour $n \ge 1$, soit P_n l'ensemble des racines primitives n-ièmes de 1 dans \mathbb{C} et $\Phi_n = \prod_{z \in P_n} (X - z) \in \mathbb{C}[X]$.

- 1. Montrer que $X^n 1 = \prod_{d|n} \Phi_d$ dans $\mathbf{C}[X]$.
- 2. À l'aide de l'exercice 5, montrer par récurrence sur n que $\Phi_n \in \mathbf{Q}[X]$.
- 3. À l'aide de l'exercice 4, montrer par récurrence sur n que $\Phi_n \in \mathbf{Z}[X]$.

Exercice 8 Montrer que $C[X^2, X^3]$ n'est pas factoriel.

Exercice 9 L'anneau des polynômes trigonométriques $\mathbf{R}[\cos x, \sin x]$ est-il factoriel?

Exercice 10 Montrer que si $P \in K[X]$ n'est pas un carré, alors $Y^2 - P(X)$ est irréductible dans K[X, Y].

Exercice 11 Montrer les isomorphismes d'anneaux suivants : $K[X,Y]/(Y-X^2) \cong K[X]$; $K[X,Y]/(Y^2-X^3) \cong K[T^2,T^3]$ (on pourra considérer le morphisme $X \mapsto T^2, Y \mapsto T^3$).

Exercice 12 Décomposer les nombres suivants en irréductibles de $\mathbf{Z}[i]$: 1+i, 2, 3, 5, 1+3i, 4+3i, 5-2i.

Exercice 13 Montrer que $\mathbf{Z}[i\sqrt{5}]$ n'est pas factoriel. Exhiber un idéal non principal.

Exercice 14 Montrer que $\mathbf{Z}[i]$, $\mathbf{Z}[\frac{1+i\sqrt{3}}{2}]$, $\mathbf{Z}[i\sqrt{2}]$ et $\mathbf{Z}[\sqrt{2}]$ sont euclidiens (on rappelle que $\mathbf{Z}[\alpha] = \{P(\alpha); P \in \mathbf{Z}[X]\}$). Qu'en est-il de $\mathbf{Z}[i\sqrt{3}]$?

Exercice 15 Le but de cet exercice est de montrer que le polynôme $X^n - X - 1$ est irréductible sur \mathbb{Q} pour $n \geq 2$.

- 1. Traiter les cas n = 2 et n = 3.
- 2. On suppose $n \geq 4$. Montrer que les racines de P dans \mathbf{C} sont simples et n'appartiennent pas à \mathbf{Q} .
- 3. Si Q est un diviseur de P dans $\mathbf{Z}[X]$, on pose

$$S(Q) = \sum_{Q(z)=0} z - \frac{1}{z}$$

À l'aide des polynômes symétriques élémentaires, montrer $S(Q) \in \mathbf{Z}$. Que vaut S(P)?

- 4. On suppose P = QR avec $Q, R \in \mathbf{Q}[X]$ unitaires de degré ≥ 2 . Montrer que $Q, R \in \mathbf{Z}[X]$ et S(P) = S(Q) + S(R).
- 5. Si z est une racine de P, montrer $\Re(z-\frac{1}{z}) > \frac{1}{|z|^2} 1$.
- 6. En déduire que $S(Q) \ge 1$ et conclure.