Groupes et géométrie (3)

- Exercice 1. Parmi les sous-groupes de \mathfrak{S}_3 , lesquels sont distingués?
- **Exercice 2**. Tout groupe d'ordre 6 est isomorphe à $\mathbb{Z}/6\mathbb{Z}$ ou à \mathfrak{S}_3 .

Exercice 3. Faire la liste des sous-groupes de \mathfrak{S}_4 . Lesquels sont distingués? Même question pour \mathfrak{A}_4 .

Exercice 4. Soit G un groupe fini d'ordre n. Montrer que G est isomorphe à un sous-groupe de \mathfrak{S}_n .

Exercice 5. Montrer que toute permutation de \mathfrak{S}_n est produit d'au plus (n-1) transpositions, que l'on peut en outre suppposer distinctes.

Exercice 6. La décomposition d'une permutation en produit de transpositions est-elle unique?

Exercice 7. Écrire le *n*-cycle $[12...n] \in \mathfrak{S}_n$ comme produit de n-1 transpositions. Est-il produit de k transpositions avec k < n-1?

Exercice 8. Montrer les assertions suivantes.

- a) Les transpositions [12], [23], ..., [(n-1)n] engendrent \mathfrak{S}_n .
- b) Les 3-cycles [1 2 3], [2 3 4], ..., [(n-2)(n-1)n] engendrent \mathfrak{A}_n .

Exercice 9.

- a) Montrer que \mathfrak{A}_n est engendré par les carrés de \mathfrak{S}_n .
- b) Tout élément de \mathfrak{A}_n est-il le carré d'un élément de \mathfrak{S}_n ?

Exercice 10. Soit p premier. Montrer que pour tout p-cycle $\sigma \in \mathfrak{S}_p$ et toute transposition $\tau \in \mathfrak{S}_p$, on a $\mathfrak{S}_p = \langle \sigma, \tau \rangle$. Montrer que cela est faux dans \mathfrak{S}_4 .

Exercice 11. Les *n*-cycles engendrent-ils \mathfrak{S}_n ? Lorsque c'est le cas, montrer que deux suffisent.

Exercice 12. Quel est l'ordre maximal d'un élément de \mathfrak{S}_5 ? Même question de \mathfrak{S}_6 jusqu'à \mathfrak{S}_{10} .

Exercice 13. On appelle *exposant* d'un groupe fini G le plus petit entier $e \geq 1$ tel que pour tout $g \in G$ on ait $g^e = 1$. Montrer que l'exposant de \mathfrak{S}_n est égal au PPCM des entiers de 1 à n.

Exercice 14. Existe-t-il un groupe infini d'exposant fini?

Exercice 15. Montrer que le groupe des automorphismes de \mathfrak{S}_3 est isomorphe à \mathfrak{S}_3 .

Exercice 16. Existe-t-il un morphisme de groupes surjectif de \mathfrak{S}_4 sur \mathfrak{S}_3 ? de \mathfrak{S}_5 sur \mathfrak{S}_4 ? de \mathfrak{S}_5 sur \mathfrak{S}_3 ?

Exercice 17. Montrer que le centre de \mathfrak{S}_n est trivial pour $n \geq 3$. Montrer que le centre de \mathfrak{A}_n est trivial pour $n \geq 4$.

Exercice 18. Soit p un nombre premier. En utilisant une action judicieuse de $\mathbb{Z}/p\mathbb{Z}$ sur l'ensemble des p-cycles de \mathfrak{S}_p et la formule des classes, démontrer le théorème de Wilson : $(p-1)! \equiv -1 \pmod{p}$.

Exercice 19. Quel est le nombre moyen de points fixes d'une permutation d'un ensemble à n éléments?

Exercice 20. Dénombrer les permutations sans point fixe de $\{1, \ldots, n\}$.

Exercice 21. Le commutant de $\sigma \in \mathfrak{S}_n$ est $\{\tau \in \mathfrak{S}_n, \sigma\tau = \tau\sigma\}$. Calculer le cardinal du commutant de σ en fonction de la longueur des cycles intervenant dans la décomposition de σ . (*Indication*: on pourra commencer par traiter le cas où σ est un cycle.)