ÉNS Lyon M1 2010-2011

Géométrie algébrique élémentaire - TD 5

Dans toute la feuille, on fixe un corps k algébriquement clos.

Exercice 1

Déterminer les points singuliers des courbes affines planes suivantes $(car(k) \neq 2)$:

- (a) $C: x^2 = x^4 + y^4$
- (b) $C: xy = x^6 + y^6$
- (c) $C: x^3 = y^2 + x^4 + y^4$
- (d) $C: x^2y + xy^2 = x^4 + y^4$

Pour chacune de ces courbes, déterminer la multiplicité du point (0,0) ainsi que la ou les tangentes en ce point.

Exercice 2

Soit $F \in k[X,Y]$ un polynôme non constant et C = V(F). Montrer que si $P \in C$ vérifie $(\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y})(P) \neq (0,0)$, alors P est lisse et T_PC est donnée par l'équation habituelle (attention, on ne suppose pas I(C) = (F)).

Exercice 3

Soit C une courbe affine plane et P un point lisse de C. Soit $\alpha, \beta, \gamma \in k$ et D la droite affine définie par $D = V(\alpha X + \beta Y + \gamma)$. Montrer que D est la tangente de C en P si et seulement si $\alpha x + \beta y + \gamma \in \mathfrak{m}^2$, où \mathfrak{m} est l'idéal maximal de k[C] associé à P.

Exercice 4

Soit C une courbe affine plane. Montrer que l'ensemble des points singuliers de C est fini (on pourra commencer par le cas où C est irréductible).

Exercice 5

Soient $P, Q \in k[T]$ des polynômes, avec P ou Q non constant. Soit C la courbe affine plane irréductible définie par $C = \gamma(\mathbf{A}^1)$, avec $\gamma(t) = (P(t), Q(t))$. Soit $M \in C$.

- 1. On suppose que $M = \gamma(t_1) = \gamma(t_2)$ avec $t_1, t_2 \in k$ distincts. Montrer que si les vecteurs $\gamma'(t_1)$ et $\gamma'(t_2)$ sont linéairement indépendants sur k, alors M est un point singulier de C.
- 2. On suppose qu'il existe un unique $t \in k$ tel que $M = \gamma(t)$. Montrer que si $\gamma'(t) \neq (0,0)$, alors M est un point lisse de C.

Exercice 6

On suppose dans cet exercice $car(k) \neq 2$. Soit $P \in k[X]$ non constant.

- 1. À quelle condition sur P la courbe affine plane $C = V(Y^2 P(X))$ est-elle lisse?
- 2. On prend $P = X^4 + 1$. Trouver les droites passant par (0,0) et tangentes à C.
- 3. On prend $P = X^4 + 1$. Déterminer les bitangentes de C (droites tangentes en deux points distints de C).
- 4. Pour un polynôme P de degré $4 \ll$ général \gg , combien y a-t-il de droites passant par (0,0) et tangentes à C? combien C admet-elle de bitangentes?

Exercice 7

On considère la courbe $C: y^2 = x^3 - x$ (on suppose $\operatorname{car}(k) \neq 2$).

- 1. Montrer que C est irréductible.
- 2. Montrer que C est lisse.
- 3. Montrer que tout $f \in k[C]$ s'écrit de manière unique f = P(x) + Q(x)y avec $P, Q \in k[X]$.
- 4. Soit σ l'involution de C définie par $\sigma(x,y)=(x,-y)$. Montrer que σ est une application régulière et que σ^* est un automorphisme de la k-algèbre k[C]. Que peut-on dire d'un élément de k[C] fixé par σ^* ?
- 5. Montrer que $k[C]^{\times}=k^{\times}$ (on pourra considérer l'application $N:k[C]\to k[x]$ définie par $N(f)=f\cdot\sigma^*(f)$).
- 6. Montrer que x et y sont irréductibles et non associés dans k[C] (on pourra remarquer que si f|g dans k[C] alors N(f)|N(g) dans k[x]).
- 7. En déduire que l'idéal maximal $\mathfrak{m} = (x, y)$ de k[C] n'est pas principal.
- 8. Montrer que k[C] n'est pas factoriel.