ÉNS Lyon M1 2010-2011

Géométrie algébrique élémentaire – TD 6

Exercice 1

Soit K un corps.

- 1. Montrer que K[[T]] est un anneau de valuation discrète.
- 2. Décrire le corps résiduel et les idéaux de K[[T]].
- 3. On suppose $K = \mathbf{R}$ ou \mathbf{C} . Montrer que le sous-anneau de K[[T]] formé des séries entières ayant un rayon de convergence > 0 est un anneau de valuation discrète.

Exercice 2

Soit A un anneau factoriel et $\pi \in A$ un irréductible. Soit $K = \operatorname{Frac}(A)$.

- 1. Construire une valuation discrète v_{π} sur K telle que $v_{\pi}(\pi) = 1$.
- 2. Montrer que l'anneau de valuation associé à (K, v_{π}) est le localisé $A_{(\pi)}$.
- 3. En déduire le critère suivant : un anneau B est un anneau de valuation discrète si et seulement si B est principal, local et n'est pas un corps.

Exercice 3

Montrer que toute valuation discrète sur \mathbf{Q} est la valuation p-adique associée à un nombre premier p convenable.

Pour les exercices suivants, on fixe un corps k algébriquement clos.

Exercice 4

On considère la courbe affine plane $C = V(Y^2 + Y - X^3 - X)$ et le point $P = (0,0) \in C$.

- 1. Montrer que P est lisse et déterminer la tangente de C en P.
- 2. Montrer que x et y sont des uniformisantes de C en P.
- 3. Déterminer le développement limité de x en P à l'ordre 5 par rapport à y, puis celui de y en P à l'ordre 5 par rapport à x.
- 4. Montrer que ces développements limités sont à coefficients entiers. Pouvez-vous montrer que ces développements sont infinis (en toute caractéristique)?

Exercice 5

On considère la courbe $C = V(Y^2 - X^3 + 1)$ et le point P = (1, 0).

- 1. Montrer P est lisse si et seulement si $\operatorname{car}(k) \neq 3$, et donner dans ce cas la tangente de C en P.
- 2. On suppose $car(k) \neq 3$. Montrer que y est une uniformisante de C en P.
- 3. Déterminer le développement limité de x en P à l'ordre 5 par rapport à y.
- 4. Montrer que ce développement limité ne contient que des puissances paires de y.
- 5. Montrer que les coefficients de ce développement limité appartiennent à l'image de $\mathbf{Z}[\frac{1}{3}]$ dans k.

- 6. On suppose car(k) = 3. Montrer que Q = (-1, 1) est un point lisse de C et déterminer la tangente de C en Q.
- 7. Montrer que x + 1 est une uniformisante de C en Q.
- 8. Déterminer l'ordre d'annulation de y-1 en Q, puis son développement limité en Q à la précision $O((x+1)^{10})$.

Exercice 6

Soit C une courbe affine plane irréductible. On suppose que C est rationnelle et on fixe $t \in k(C)$ telle que k(C) = k(t). Soit P un point lisse de C.

- 1. On suppose que t est régulière en P et on pose $\lambda = t(P)$. Montrer que $t \lambda$ est une uniformisante de C en P (on pourra remarquer que $k(t) = k(t \lambda)$).
- 2. On suppose que t a un pôle en P. Montrer que $\operatorname{ord}_P(t) = -1$ et que $\frac{1}{t}$ est une uniformisante de C en P.
- 3. Décrire $\mathcal{O}_{C,P}$ dans chacun des cas précédents.
- 4. Montrer qu'il existe au plus un point lisse de C qui est un pôle de t.

Exercice 7 – Théorème d'approximation

- 1. Soit K un corps et v_1, \ldots, v_n des valuations discrètes sur K deux à deux distinctes. Pour tout $1 \le i \le n$, soit $x_i \in K$ et $n_i \in \mathbf{Z}$. Montrer qu'il existe $x \in K$ tel que pour tout $1 \le i \le n$, on ait $v_i(x x_i) \ge n_i$.
- 2. Soit C une courbe affine plane irréductible et P, P' des points lisses de C. Montrer que si les valuations discrètes ord_P et ord_{P'} coïncident, alors P = P'.
- 3. En déduire que si S est un ensemble fini de points lisses de C, alors pour toute famille $(f_P)_{P \in S}$ de k(C) et toute famille $(n_P)_{P \in S}$ de \mathbf{Z} , il existe $f \in k(C)$ telle que $\operatorname{ord}_P(f f_P) \ge n_P$ pour tout $P \in S$.