ÉNS Lyon M1 2010-2011

Géométrie algébrique élémentaire – TD 10

Soit k un corps algébriquement clos.

Exercice 1

Paramétrer la conique $C: x^2 - xy + y^2 + x + y = 0$.

Exercice 2

On suppose dans cet exercice $k = \mathbf{C}$. Soit C la conique affine d'équation $x^2 + y^2 = 2$.

- 1. Trouver un paramétrage de C par des fractions rationnelles de $\mathbf{Q}(t)$.
- 2. Montrer que le paramétrage $\varphi: \mathbf{P}^1 \to \overline{C}$ obtenu induit une bijection entre $\mathbf{P}^1(\mathbf{Q})$ et $\overline{C} \cap \mathbf{P}^2(\mathbf{Q})$.
- 3. Existe-t-il un paramétrage de $C': x^2 + y^2 = 3$ par des éléments de $\mathbf{Q}(t)$?

Exercice 3

On suppose dans cet exercice $\operatorname{car}(k) \neq 2$. Soit C une conique projective irréductible. Montrer que par tout point de \mathbf{P}^2 situé hors de C, il passe exactement deux tangentes de C.

Exercice 4

On considère la cubique affine plane $C: x^3 + y^3 + xy = 0$.

- 1. Montrer que P = (0,0) est un point double ordinaire de C.
- 2. Trouver un paramétrage de C.
- 3. Montrer que ce paramétrage s'étend en un morphisme $\varphi: \mathbf{P}^1 \to \overline{C}$.
- 4. Déterminer $\varphi^{-1}(P)$.

Exercice 5

On considère la cubique affine plane $C: y^2 = x^3$.

- 1. On suppose $\operatorname{car}(k)=2$. Montrer que toutes les tangentes de \overline{C} passent par un même point de \overline{C} que l'on déterminera.
- 2. On suppose $\operatorname{car}(k)=3.$ Montrer que toutes les tangentes de \overline{C} passent par un même point de ${\bf P}^2$ que l'on déterminera.
- 3. On suppose $car(k) \neq 2, 3$. Montrer que pour tout point lisse $P_0 \in C$, il existe un unique point lisse $P_1 \in C$ distinct de P_0 tel que la tangente de C en P_1 passe par P_0 .

Exercice 6

On prend ici $k = \mathbb{C}$. On considère la courbe $E: y^2 + y = x^3 - x^2$ et on pose $P_1 = (0,0) \in E$.

- 1. Montrer que P_1 est un point lisse de E et que $(T_{P_1}E) \cap E = \{P_1, P_2\}$ avec un point P_2 que l'on déterminera.
- 2. Que se passe-t-il si on itère le procédé ci-dessus?
- 3. Mêmes questions avec $E: y^2 + y = x^3 x$ et $P_1 = (0, 0)$.

Exercice 7

On suppose dans cet exercice $\operatorname{car}(k) \neq 2$. Soit $F \in k[X]$ un polynôme unitaire de degré 3. On note C_F la cubique affine plane d'équation $y^2 = F(x)$. Le but de cet exercice est de montrer que si C_F est lisse, alors C_F est irrationnelle.

Par l'aburde, supposons donc que C_F est lisse et que $k(C_F)=k(f)$ avec $f\in k(C_F)$.

- 1. Montrer que C_F possède un unique point à l'infini P_{∞} et que $\overline{C_F}$ est lisse.
- 2. Montrer que si $P \in \overline{C_F}$ est un pôle de f, alors $\operatorname{ord}_P(f) = -1$ (on pourra commencer par montrer que pour tout $g \in k[f] \{0\}$, on a $\operatorname{ord}_P(f) \mid \operatorname{ord}_P(g)$).
- 3. Montrer qu'il existe au plus un point de $\overline{C_F}$ qui est un pôle de f.
- 4. Montrer qu'il existe $g \in k(C_F)$ ayant un pôle simple en P_{∞} et telle que $k(C_F) = k(g)$ (on pourra prendre g de la forme $1/(f \lambda)$ avec $\lambda \in k$).
- 5. Montrer que $\operatorname{ord}_{P_{\infty}}(x) = 2$ et $\operatorname{ord}_{P_{\infty}}(y) = 3$.
- 6. En déduire que C_F est irrationnelle.