Algèbre Approfondie

11.10.2011

TD 4

Extensions normales, correspondance de Galois

Exercice 1. Extensions normales.

Soit K un corps.

- 1. Montrer que toute extension de degré 2 de K est normale.
- 2. Soit L/K une extension algébrique. Soient E/K et M/K deux extensions intermédiaires supposées normales.
 - (a) Montrer que l'extension $E \cap M$ est normale sur K.
 - (b) Montrer que l'extension composée EM est normale sur K.

Exercice 2.

- 1. Soit K un corps, soit \bar{K} une clôture algébrique de K. Si $L \subset \bar{K}$ est une extension de K, montrer qu'il existe une plus petite extension normale N/K dans \bar{K} telle que N contienne L. On l'appelle la clôture normale de l'extension L/K dans \bar{K} .
- 2. Déterminer la clôture normale du corps $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ sur \mathbb{Q} , dans \mathbb{Q} .

Exercice 3. Extensions quadratiques.

Soit K un corps de caractéristique différente de 2. Caractériser les extensions de degré 2 de K.

Exercice 4. Groupe de Galois de $(X^2-2)(X^2-3)$ sur \mathbb{Q} .

- 1. Déterminer le corps de décomposition L du polynôme $P(X) = (X^2 2)(X^2 3)$ sur \mathbb{Q} , puis son groupe de Galois.
- 2. Factoriser le polynôme P sur les corps $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$ et $\mathbb{Q}(\sqrt{6})$.
- 3. Trouver un sous-groupe de \mathfrak{S}_4 isomorphe à G, en numérotant les racines de P. Que se passe-t-il si l'on modifie la numérotation des racines ?

Exercice 5. Groupe de Galois de $X^4 - 2 \operatorname{sur} \mathbb{Q}$.

- 1. Montrer que le corps de décomposition du polynôme $P(X) = X^4 2$ sur \mathbb{Q} est le corps $L = \mathbb{Q}(2^{1/4}, i)$. En déduire que le groupe de Galois G de P est d'ordre 8.
- 2. Décrire les éléments de G.
- 3. Montrer que le groupe G est isomorphe au groupe diédral D_4 . Expliciter un isomorphisme entre ces groupes.

Exercice 6.

1. Pour tout entier $n \ge 1$, existe-t-il un polynôme de degré 2n à racines distinctes et non rationnelles dont le groupe de Galois sur \mathbb{Q} soit isomorphe à $(\mathbb{Z}/2\mathbb{Z})^n$?

2. Pour tout entier $n \ge 1$, existe-t-il un polynôme de degré 2n à racines distinctes et non rationnelles dont le groupe de Galois sur \mathbb{Q} soit isomorphe à $\mathbb{Z}/2\mathbb{Z}$?

Exercice 7. Extensions cubiques de \mathbb{Q} .

Soit $P(X) = X^3 + aX + b$, avec $a, b \in \mathbb{Q}$. On suppose que P n'a aucune racine dans \mathbb{Q} .

1. Montrer que le polynôme P est irréductible et séparable sur \mathbb{Q} .

Soit G le groupe de Galois de P sur \mathbb{Q} , et soient α_1 , α_2 et α_3 les racines de P dans \mathbb{C} . Pour tout $\sigma \in G$, on note $\tilde{\sigma}$ l'unique permutation de \mathfrak{S}_3 telle que $\sigma(\alpha_i) = \alpha_{\tilde{\sigma}(i)}$.

- 2. On pose $\delta = (\alpha_1 \alpha_2)(\alpha_1 \alpha_3)(\alpha_2 \alpha_3) \in \mathbb{C}$.
 - (a) Pour tout $\sigma \in G$, montrer la relation $\sigma(\delta) = \epsilon(\tilde{\sigma})\delta$, où $\epsilon(\tilde{\sigma})$ est la signature de $\tilde{\sigma}$.
 - (b) Montrer: $\delta^2 = -4a^3 27b^2 \in \mathbb{Q}$ (δ^2 est le discriminant du polynôme P).
- 3. Déduire des questions précédentes :
 - (a) si $-4a^2-27b^2$ est un carré dans \mathbb{Q} , alors G est isomorphe au groupe \mathfrak{A}_3 ;
 - (b) sinon, G est isomorphe à \mathfrak{S}_3 .
- 4. Exemples. Déterminer le groupe de Galois sur $\mathbb Q$ des polynômes suivants :
 - $P_1(X) = X^3 X + 1;$
 - $-P_2(X) = X^3 3X + 1.$

Exercice 8.

- 1. On considère le polynôme $P(X) = X^5 4X^3 2$. On note G son groupe de Galois sur \mathbb{Q} .
 - (a) Vérifier que le polynôme P est irréductible sur \mathbb{Q} . En déduire que le groupe G contient un élément d'ordre 5.
 - (b) Montrer que P possède 3 racines réelles et 2 racines complexes conjuguées dans \mathbb{C} . En déduire que l'image du groupe G dans \mathfrak{S}_5 contient une transposition.
 - (c) Déduire des questions précédentes que le groupe G est isomorphe à \mathfrak{S}_5 .
- 2. Soit p un nombre premier.
 - (a) Montrer que le groupe symétrique \mathfrak{S}_p est engendré par le p-cylce [123...p] et une transposition.
 - (b) Soit $P(X) \in \mathbb{Q}[X]$ un polynôme irréductible qui a exactement deux racines dans $\mathbb{C}\backslash\mathbb{R}$. Montrer que son groupe de Galois sur \mathbb{Q} contient une transposition. Si de plus P est de degré p, montrer que son groupe de Galois est isomorphe à \mathfrak{S}_p .

Exercice 9.

Montrer que le groupe de Galois sur \mathbb{Q} du polynôme cyclotomique $\Phi_5 = X^4 + X^3 + X^2 + X + 1$ est isomorphe au groupe $\mathbb{Z}/4\mathbb{Z}$. Expliciter un isomorphisme.