ÉNS Lyon

Préparation à l'agrégation 2012

SÉRIES FORMELLES

Exercice 1

Soit K un corps. On munit K de la topologie discrète et K[[T]] de la topologie produit, c'est-à-dire de la topologie la moins fine pour laquelle toutes les projections $\sum_{n=0}^{\infty} a_n T^n \mapsto a_n$ soient continues.

- 1. Montrer que pour tout $F = \sum_{n=0}^{\infty} a_n T^n \in K[[T]]$, la suite $(F_N)_{N \geq 0}$ définie par $F_N = \sum_{n=0}^N a_n T^n$ converge vers F dans K[[T]].
- 2. À quelle condition une suite de K[[T]] converge-t-elle vers 0?
- 3. À quelle condition une série de K[[T]] converge-t-elle dans K[[T]]?

Exercice 2

Soit $G \in K[[T]]$ une série formelle telle que $\operatorname{val}(G) \geq 1$. On note $\varphi_G : K[[T]] \to K[[T]]$ l'application définie par $\varphi_G(F) = F \circ G$.

- 1. Vérifier que φ_G est un morphisme de K-algèbres.
- 2. À quelle condition sur G l'endomorphisme φ_G est-il injectif?
- 3. Montrer que φ_G est surjectif si et seulement si val(G) = 1.
- 4. Montrer que l'ensemble $E = \{G \in K[[T]] : val(G) = 1\}$ muni de la loi de composition interne \circ est un groupe.

Exercice 3

Montrer que le seul morphisme de K-algèbres de K[[T]] dans K est le morphisme « évaluation en 0 », défini par $\varphi(\sum_{n=0}^{\infty} a_n T^n) = a_0$.

Exercice 4

Soit K un corps et $n \ge 1$ un entier. Montrer l'isomorphisme de K-algèbres $K[T]/(T^n) \cong K[[T]]/(T^n)$.

Exercice 5 (Une identité combinatoire)

Pour tous entiers $n \geq 1$ et $k \geq 0$, on pose

$$S(n,k) = \text{Card}\{(k_1,\ldots,k_n) \in \mathbf{N}^n : k_1 + \cdots + k_n = k\}.$$

1. Démontrer l'identité suivante dans $\mathbf{Q}[[T]]$:

$$\sum_{k=0}^{\infty} S(n,k)T^k = \frac{1}{(1-T)^n}.$$

- 2. En déduire la formule $S(n,k) = C_{n+k-1}^{k-1}$.
- 3. Si K est un corps, que vaut $\dim_K K[X_1, \ldots, X_n]_d$?

Exercice 6 (Dérangements)

Pour $n \geq 1$, on note D_n le nombre de dérangements de $\{1, \ldots, n\}$, c'est-àdire le nombre de permutations de $\{1, \ldots, n\}$ sans point fixe. On pose $D_0 = 1$ et $D(T) = \sum_{n=0}^{\infty} \frac{D_n}{n!} T^n \in \mathbf{Q}[[T]]$.

- 1. Démontrer que $n! = \sum_{k=0}^{n} C_n^k D_{n-k}$.
- 2. Établir l'identité $\sum_{n=0}^{\infty} T^n = e^T \cdot D(T)$ dans $\mathbf{Q}[[T]]$.
- 3. En déduire la formule $D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$.
- 4. Lorsque n est grand, quelle est la probabilité qu'une permutation d'un ensemble à n éléments possède un point fixe?

Exercice 7 (Identités de Newton)

Soit $n \geq 1$ un entier et $K = \mathbf{Q}(X_1, \dots, X_n)$. Pour tout entier $k \geq 1$, on définit la somme de Newton $S_k = X_1^k + \dots + X_n^k$. Le but de cet exercice est d'obtenir une expression de S_k en termes des polynômes symétriques élémentaires.

- 1. Exprimer le polynôme $P(T) = \prod_{i=1}^{n} (1 X_i T) \in K[T]$ en termes des polynômes symétriques élémentaires $\Sigma_1, \ldots, \Sigma_n$.
- 2. Démontrer l'identité suivante dans K[[T]] :

$$-\frac{TP'(T)}{P(T)} = \sum_{i=1}^{n} \frac{X_i T}{1 - X_i T} = \sum_{k=1}^{\infty} S_k T^k.$$

3. En déduire, pour tout $k \geq 1$, l'égalité

$$S_k - \Sigma_1 S_{k-1} + \dots + (-1)^{k-1} \Sigma_{k-1} S_1 + (-1)^k k \Sigma_k = 0.$$

(On convient que $\Sigma_m = 0$ pour tout m > n.)

- 4. Démontrer que $S_k \in \mathbf{Z}[\Sigma_1, \dots, \Sigma_k]$ pour tout $k \geq 1$.
- 5. Écrire explicitement S_1 , S_2 , S_3 et S_4 en termes des polynômes symétriques élémentaires.
- 6. Démontrer que $\Sigma_k \in \mathbf{Q}[S_1, \dots, S_k]$ pour tout $k \geq 1$.