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1 Let R denote the space of lattices in C, that is R = GL+
2 (R)/SL2(Z). By discreteness of

SL2(Z) in GL+
2 (R), this is a locally compact (Hausdor�) space.

The group C∗ acts (continuously and) properly by multiplication onR, with generic stabilizer
{±1}, and two orbits with (cyclic) stabilizers of orders 4 and 6, namely those of R = Z+ iZ and
R = Z + ρZ (ρ = e2iπ/3). Note that −1 acts trivially on R, and that the induced action of R∗+
on R is free, with R homeomorphic to R1 × R∗+, where R1 ⊂ R is the subspace of lattices of
area 1.

Recall that for a lattice R in C, the complex torus T = C/R is Riemann surface whose
isomorphism class is given by the orbit of R under multiplication by elements of C∗. The quotient
space M = C∗\R = C∗\GL+

2 (R)/SL2(Z) is thus the "moduli space" of (one dimensional)
complex tori. Moreover, the punctured curve T ′ = (C/R) \ {0} is isomorphic to the complex
plane curve de�ned by Weierstrass equation

y2 = 4x3 − g2(R)x− g3(R) , (x, y) ∈ C2

with

g2(R) = 60
∑

λ∈R\{0}

1

λ4
, g3(R) = 140

∑
λ∈R\{0}

1

λ6
,

and the isomorphism is given by z +R 7→ (℘(z), ℘′(z)) for the Weierstrass function

℘(z) =
1

z2
+

∑
λ∈R\{0}

(
1

(z + λ)2
− 1

λ2

)
.

Any orbit of C∗ in R contains a lattice of the form R = Zτ +Z for τ in the upper half-plane
H = {z ∈ C | Im(z) > 0}, and the di�erent values of τ giving a lattice in the same orbit of
C∗ constitute the orbits of the group Γ = PSL2(Z) acting on H by τ 7→ (aτ + b)/(cτ + d),
a, b, c, d ∈ Z, ad− bc = 1. Indeed if λ(Zτ +Z) = Zτ ′+Z for some λ ∈ C∗, one has τ ′ = λ(aτ + b),
1 = λ(cτ + d) for a, b, c, d ∈ Z ad − bc = ±1 hence by quotienting τ ′ = (aτ + b)/(cτ + d) and
necessarily ad− bc = 1 since τ, τ ′ are in H. In particular C∗\R ' H/Γ.

The functions g2, g3 on R obviously satisfy gk(cR) = c−2kgk(R), c ∈ C∗, and the discriminant
of the cubic polynomial P (x) on the right of Weierstrass equation is given (up to a multiplicative
constant) by ∆ = g32 − 27g23, which satis�es ∆(cR) = c−12∆(R).

The discriminant ∆ doesn't vanish at any R = Zω1 + Zω2 ∈ R since Weierstrass function
℘ : C/R → Ĉ, being of degree only 2, necessarily takes distinct values at its critical points,
which are the three zeros ω1/2, ω2/2, (ω1 + ω2)/2 (mod R) of its derivative ℘′ (clearly an odd
meromorphic function on C/R of degree 3). Those values being the roots of P (x), one obtains
∆(R) 6= 0.

The map

Φ : R → C2 , R 7→
(
g2(R)

3
, g3(R)

)
thus takes its values in the complement of the curve Σ de�ned by y2 = x3 and intertwines the
actions of C∗ on R and C2 given for c ∈ C∗ by R 7→ cR and (x, y) 7→ (c−4x, c−6y).

We will prove

Theorem. Φ is an homeomorphism R → C2 \ Σ.

1. These complements were inspired in part by Hubbard and Pourezza text "Ths pace of closed subgroups of
R2" www.math.cornell.edu/~hubbard/ClosedSubgroupsR2.pdf

www.math.cornell.edu/~hubbard/ClosedSubgroupsR2.pdf
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Quotienting on both sides by the action of the subgroup R∗+ ⊂ C∗, this will give an homeomor-
phism between the spaceR1 ' R/R∗+ of lattices of area 1 in C and the quotient (C2\Σ)/R∗+ where
the action of t ∈ R∗+ is (x, y) 7→ (t2x, t3y) (which corresponds via Φ to the action R 7→ t−1/2R
on R).

But this last quotient is homeomorphic to the complement of the (2, 3) torus knot (a.k.a.
trefoil knot) in S3. Indeed all curves t 7→ (t2x, t3y), t > 0, (x, y) ∈ C2 \ {0} intersect transversely
once the unit sphere S3 and on this sphere the circle S1 acts via (x, y) 7→ (e2iθx, e3iθy), eiθ ∈ S1.
The only non-free orbits are S1 × 0 and 0 × S1, with stabilizers of orders 3 and 2 respectively,
and the (free) orbit of the point (r, r3/2) with r2 + r3 = 1, r > 0 is the trefoil knot. Thus we
deduce

Corollary. The space R1 of lattices of unit area in C is homeomorphic to the complement of

the trefoil knot in S3.

To show that Φ is a homeomorphism, observe �rst that it is injective. Indeed if g2(R) =
g2(R

′), g3(R) = g3(R
′), the Weierstrass curves are the same, hence the two punctured tori

also, implying R′ = cR because the unpunctured tori are then isomorphic (by the removable
singularity theorem). If g2 and g3 are non-zero this implies c−4 = c−6 = 1, thus c2 = 1 and R = R′.
If g2 = 0, g3 6= 0, c6 = 1 and the curve y2 = 4x3 − g3 has an automorphism (x, y) 7→ (ρx,−y)
of order 6, hence C/R also, implying R′ = cR = R. If g3 = 0, g2 6= 0, c4 = 1 and the curve
y2 = 4x3 − g2x has an automorphism (x, y) 7→ (−x, iy) of order 4 hence R′ = cR = R.

Next, to see that Φ is locally an homeomorphism 2, one can resort to Brouwer's invariance
of domain, but since the map is so explicit a simpler argument should be possible, for instance
trying to use the inverse function theorem.

Observe that, using the action of C∗ on R and on C2 \ Σ, one can work near a lattice
R0 = Z + Zτ0, τ0 ∈ H, and parametrize locally R near R0 by R = R(λ, τ) = λ(Z + Zτ) with
λ ∈ C∗ near 1 and τ ∈ H near τ0 (λ and λτ will be the only points of R near 1 and τ0 respectively
if R is near enough R0).

Then
(λ, τ) 7→ Ψ(λ, τ) = Φ(R(λ, τ)) = (λ−4g2(τ)/3, λ−6g3(τ))

is holomorphic in (λ, τ), and is injective near (1, τ0). It is then known that the di�erential
DΨ(1, τ0) is injective

3, which would su�ce, but a direct elementary argument is the following.
Since ∂λΨ(1, τ0) 6= (0, 0), it is easy to �nd a linear change of coordinates (L1, L2) on C2 such
that the derivative at 1 of λ 7→ Ψ1(λ, τ0) = L1(Ψ(λ, τ0)) is non-zero. By the inverse function
theorem,

(λ, τ) 7→ (s, τ) = (Ψ1(λ, τ), τ)

is a biholomorphism between neighbourhoods of (1, τ0), (s0, τ0) and (with hopefully obvious
notations)

(s, τ) 7→ Ψ̃(s, τ) = (s, Ψ̃2(s, τ)) =
(
s, L2(Ψ̃(s, τ))

)
is holomorphic and injective near (s0, τ0). But this forces ∂τ Ψ̃2(s0, τ0) to be non-zero (by injec-
tivity the one variable map τ 7→ Ψ̃2(s0, τ) near τ0), hence Ψ̃ is a biholomorphism near (s0, τ0).
Unwinding the coordinate changes, one conclude that Ψ is a local biholomorphism near (1, τ0),
in particular a local homeomorphism.

2. equivalently an open map, but this seems not easier to prove.
3. see e.g. https://math.stackexchange.com/a/497551/25917

https://math.stackexchange.com/a/497551/25917
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To show that Φ is a homeomorphism, it is now enough to show that it is proper, because an
injective proper local homeomorphism between connected locally compact spaces is an homeo-
morphism.

We will show that the map J : H/Γ→ C de�ned by 4

J(τ) = 123 g3(τ)2/∆(τ) = 1728 g2(τ)3/(g2(τ)3 − 27g3(τ)2)

is proper (and in fact an homeomorphism). It is then not hard to conclude that Φ is proper,
noting that J is the composition of Φ with (x, y) 7→ 1728/(1− y2/x3).

Using a previous exercise sheet, one �nds that with q = exp(2iπτ), τ ∈ H,

g2(τ) =
4

3
π4

(
1 + 240

∑
n≥1

σ3(n)qn

)

g3(τ) =
8

27
π6

(
1− 504

∑
n≥1

σ5(n)qn

)
which with some more calculations leads to

J(τ) =
1

q
+O(1).

In particular the function J on H/Γ tends to ∞ for q → 0, corresponding to Im(τ) → +∞,
i.e. going to in�nity in H/Γ. Thus J is proper. Moreover, J de�nes an isomorphism H/Γ→ C,
since it has a simple pole for q → 0, implying both that q is a (holomorphic) coordinate in the
neighbourhood of in�nity in H/Γ and that J is a global coordinate.

One can also exhibit a continous inverse map to Φ, namely the "period mapping" P : C2 \
Σ → R. For (a, b) ∈ C2 \ Σ, de�ne P (a, b) as the set of values of the integral

∫
γ
ωa,b, where

ωa,b = dx/y is a holomorphic one-form on the compacti�cation Ca,b of the a�ne curve with
equation y2 = 4x3 − ax − b and γ : S1 → Ca,b is a closed piecewise di�erentiable curve. This is
a subgroup of C, as one sees by considering change of orientation on γ to obtain the opposite
and joining two curves by a path and its reverse to obtain the sum. That it is at most of rank 2
comes from the fact that two homotopic (or even only homologous) curves γ give (by Cauchy)
the same value of the integral and that π1(Ca,b) = Z2.

But that it is discrete and of rank precisely 2 is much more subtle and results from so-called
Riemann bilinear relations (in this genus 1 case).

If x1, x2, x3 = −x1−x2 ∈ C are the zeros of 4x3−ax−b (distinct since a3−27b2 6= 0), P (a, b)
is generated for instance by ω1 = 2

∫∞
x1
dx/y, ω2 = 2

∫ x2
x1
dx/y (for some "reasonable" choice of

paths of integration, e.g. straight). Then one can show that Im(ω1ω2) 6= 0, giving rank 2 and
discreteness.

4. the coe�cient 1728 is a traditional normalization, natural only from later developments (and not only to
have a pole with residue 1). It obviously could have been omitted here.


