${ }^{1}$ Let \mathcal{R} denote the space of lattices in \mathbb{C}, that is $\mathcal{R}=\mathrm{GL}_{2}^{+}(\mathbb{R}) / \mathrm{SL}_{2}(\mathbb{Z})$. By discreteness of $\mathrm{SL}_{2}(\mathbb{Z})$ in $\mathrm{GL}_{2}^{+}(\mathbb{R})$, this is a locally compact (Hausdorff) space.

The group \mathbb{C}^{*} acts (continuously and) properly by multiplication on \mathcal{R}, with generic stabilizer $\{ \pm 1\}$, and two orbits with (cyclic) stabilizers of orders 4 and 6 , namely those of $R=\mathbb{Z}+i \mathbb{Z}$ and $R=\mathbb{Z}+\rho \mathbb{Z}\left(\rho=e^{2 i \pi / 3}\right)$. Note that -1 acts trivially on \mathcal{R}, and that the induced action of \mathbb{R}_{+}^{*} on \mathcal{R} is free, with \mathcal{R} homeomorphic to $\mathcal{R}_{1} \times \mathbb{R}_{+}^{*}$, where $\mathcal{R}_{1} \subset \mathcal{R}$ is the subspace of lattices of area 1 .

Recall that for a lattice R in \mathbb{C}, the complex torus $T=\mathbb{C} / R$ is Riemann surface whose isomorphism class is given by the orbit of R under multiplication by elements of \mathbb{C}^{*}. The quotient space $\mathcal{M}=\mathbb{C}^{*} \backslash \mathcal{R}=\mathbb{C}^{*} \backslash \mathrm{GL}_{2}^{+}(\mathbb{R}) / \mathrm{SL}_{2}(\mathbb{Z})$ is thus the "moduli space" of (one dimensional) complex tori. Moreover, the punctured curve $T^{\prime}=(\mathbb{C} / R) \backslash\{0\}$ is isomorphic to the complex plane curve defined by Weierstrass equation

$$
y^{2}=4 x^{3}-g_{2}(R) x-g_{3}(R), \quad(x, y) \in \mathbb{C}^{2}
$$

with

$$
g_{2}(R)=60 \sum_{\lambda \in R \backslash\{0\}} \frac{1}{\lambda^{4}}, \quad g_{3}(R)=140 \sum_{\lambda \in R \backslash\{0\}} \frac{1}{\lambda^{6}},
$$

and the isomorphism is given by $z+R \mapsto\left(\wp(z), \wp^{\prime}(z)\right)$ for the Weierstrass function

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\lambda \in R \backslash\{0\}}\left(\frac{1}{(z+\lambda)^{2}}-\frac{1}{\lambda^{2}}\right) .
$$

Any orbit of \mathbb{C}^{*} in \mathcal{R} contains a lattice of the form $R=\mathbb{Z} \tau+\mathbb{Z}$ for τ in the upper half-plane $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$, and the different values of τ giving a lattice in the same orbit of \mathbb{C}^{*} constitute the orbits of the group $\Gamma=\operatorname{PSL}_{2}(\mathbb{Z})$ acting on \mathcal{H} by $\tau \mapsto(a \tau+b) /(c \tau+d)$, $a, b, c, d \in \mathbb{Z}, a d-b c=1$. Indeed if $\lambda(\mathbb{Z} \tau+\mathbb{Z})=\mathbb{Z} \tau^{\prime}+\mathbb{Z}$ for some $\lambda \in \mathbb{C}^{*}$, one has $\tau^{\prime}=\lambda(a \tau+b)$, $1=\lambda(c \tau+d)$ for $a, b, c, d \in \mathbb{Z} a d-b c= \pm 1$ hence by quotienting $\tau^{\prime}=(a \tau+b) /(c \tau+d)$ and necessarily $a d-b c=1$ since τ, τ^{\prime} are in \mathcal{H}. In particular $\mathbb{C}^{*} \backslash \mathcal{R} \simeq \mathcal{H} / \Gamma$.

The functions g_{2}, g_{3} on \mathcal{R} obviously satisfy $g_{k}(c R)=c^{-2 k} g_{k}(R), c \in \mathbb{C}^{*}$, and the discriminant of the cubic polynomial $P(x)$ on the right of Weierstrass equation is given (up to a multiplicative constant) by $\Delta=g_{2}^{3}-27 g_{3}^{2}$, which satisfies $\Delta(c R)=c^{-12} \Delta(R)$.

The discriminant Δ doesn't vanish at any $R=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \in \mathcal{R}$ since Weierstrass function $\wp: \mathbb{C} / R \rightarrow \hat{\mathbb{C}}$, being of degree only 2 , necessarily takes distinct values at its critical points, which are the three zeros $\omega_{1} / 2, \omega_{2} / 2,\left(\omega_{1}+\omega_{2}\right) / 2(\bmod R)$ of its derivative \wp^{\prime} (clearly an odd meromorphic function on \mathbb{C} / R of degree 3). Those values being the roots of $P(x)$, one obtains $\Delta(R) \neq 0$.

The map

$$
\Phi: \mathcal{R} \rightarrow \mathbb{C}^{2}, \quad R \mapsto\left(\frac{g_{2}(R)}{3}, g_{3}(R)\right)
$$

thus takes its values in the complement of the curve Σ defined by $y^{2}=x^{3}$ and intertwines the actions of \mathbb{C}^{*} on \mathcal{R} and \mathbb{C}^{2} given for $c \in \mathbb{C}^{*}$ by $R \mapsto c R$ and $(x, y) \mapsto\left(c^{-4} x, c^{-6} y\right)$.

We will prove
Theorem. Φ is an homeomorphism $\mathcal{R} \rightarrow \mathbb{C}^{2} \backslash \Sigma$.

[^0]Quotienting on both sides by the action of the subgroup $\mathbb{R}_{+}^{*} \subset \mathbb{C}^{*}$, this will give an homeomorphism between the space $\mathcal{R}_{1} \simeq \mathcal{R} / \mathbb{R}_{+}^{*}$ of lattices of area 1 in \mathbb{C} and the quotient $\left(\mathbb{C}^{2} \backslash \Sigma\right) / \mathbb{R}_{+}^{*}$ where the action of $t \in \mathbb{R}_{+}^{*}$ is $(x, y) \mapsto\left(t^{2} x, t^{3} y\right)$ (which corresponds via Φ to the action $R \mapsto t^{-1 / 2} R$ on \mathcal{R}).

But this last quotient is homeomorphic to the complement of the $(2,3)$ torus knot (a.k.a. trefoil knot) in \mathbb{S}^{3}. Indeed all curves $t \mapsto\left(t^{2} x, t^{3} y\right), t>0,(x, y) \in \mathbb{C}^{2} \backslash\{0\}$ intersect transversely once the unit sphere \mathbb{S}^{3} and on this sphere the circle \mathbb{S}^{1} acts via $(x, y) \mapsto\left(e^{2 i \theta} x, e^{3 i \theta} y\right), e^{i \theta} \in \mathbb{S}^{1}$. The only non-free orbits are $\mathbb{S}^{1} \times 0$ and $0 \times \mathbb{S}^{1}$, with stabilizers of orders 3 and 2 respectively, and the (free) orbit of the point $\left(r, r^{3 / 2}\right)$ with $r^{2}+r^{3}=1, r>0$ is the trefoil knot. Thus we deduce

Corollary. The space \mathcal{R}_{1} of lattices of unit area in \mathbb{C} is homeomorphic to the complement of the trefoil knot in \mathbb{S}^{3}.

To show that Φ is a homeomorphism, observe first that it is injective. Indeed if $g_{2}(R)=$ $g_{2}\left(R^{\prime}\right), g_{3}(R)=g_{3}\left(R^{\prime}\right)$, the Weierstrass curves are the same, hence the two punctured tori also, implying $R^{\prime}=c R$ because the unpunctured tori are then isomorphic (by the removable singularity theorem). If g_{2} and g_{3} are non-zero this implies $c^{-4}=c^{-6}=1$, thus $c^{2}=1$ and $R=R^{\prime}$. If $g_{2}=0, g_{3} \neq 0, c^{6}=1$ and the curve $y^{2}=4 x^{3}-g_{3}$ has an automorphism $(x, y) \mapsto(\rho x,-y)$ of order 6 , hence \mathbb{C} / R also, implying $R^{\prime}=c R=R$. If $g_{3}=0, g_{2} \neq 0, c^{4}=1$ and the curve $y^{2}=4 x^{3}-g_{2} x$ has an automorphism $(x, y) \mapsto(-x, i y)$ of order 4 hence $R^{\prime}=c R=R$.

Next, to see that Φ is locally an homeomorphism ${ }^{2}$, one can resort to Brouwer's invariance of domain, but since the map is so explicit a simpler argument should be possible, for instance trying to use the inverse function theorem.

Observe that, using the action of \mathbb{C}^{*} on \mathcal{R} and on $\mathbb{C}^{2} \backslash \Sigma$, one can work near a lattice $R_{0}=\mathbb{Z}+\mathbb{Z} \tau_{0}, \tau_{0} \in \mathcal{H}$, and parametrize locally \mathcal{R} near R_{0} by $R=R(\lambda, \tau)=\lambda(\mathbb{Z}+\mathbb{Z} \tau)$ with $\lambda \in \mathbb{C}^{*}$ near 1 and $\tau \in \mathcal{H}$ near τ_{0} (λ and $\lambda \tau$ will be the only points of R near 1 and τ_{0} respectively if R is near enough R_{0}).

Then

$$
(\lambda, \tau) \mapsto \Psi(\lambda, \tau)=\Phi(R(\lambda, \tau))=\left(\lambda^{-4} g_{2}(\tau) / 3, \lambda^{-6} g_{3}(\tau)\right)
$$

is holomorphic in (λ, τ), and is injective near $\left(1, \tau_{0}\right)$. It is then known that the differential $D \Psi\left(1, \tau_{0}\right)$ is injective ${ }^{3}$, which would suffice, but a direct elementary argument is the following. Since $\partial_{\lambda} \Psi\left(1, \tau_{0}\right) \neq(0,0)$, it is easy to find a linear change of coordinates $\left(L_{1}, L_{2}\right)$ on \mathbb{C}^{2} such that the derivative at 1 of $\lambda \mapsto \Psi_{1}\left(\lambda, \tau_{0}\right)=L_{1}\left(\Psi\left(\lambda, \tau_{0}\right)\right)$ is non-zero. By the inverse function theorem,

$$
(\lambda, \tau) \mapsto(s, \tau)=\left(\Psi_{1}(\lambda, \tau), \tau\right)
$$

is a biholomorphism between neighbourhoods of $\left(1, \tau_{0}\right),\left(s_{0}, \tau_{0}\right)$ and (with hopefully obvious notations)

$$
(s, \tau) \mapsto \tilde{\Psi}(s, \tau)=\left(s, \tilde{\Psi}_{2}(s, \tau)\right)=\left(s, L_{2}(\tilde{\Psi}(s, \tau))\right)
$$

is holomorphic and injective near $\left(s_{0}, \tau_{0}\right)$. But this forces $\partial_{\tau} \tilde{\Psi}_{2}\left(s_{0}, \tau_{0}\right)$ to be non-zero (by injectivity the one variable map $\tau \mapsto \tilde{\Psi}_{2}\left(s_{0}, \tau\right)$ near $\left.\tau_{0}\right)$, hence $\tilde{\Psi}$ is a biholomorphism near $\left(s_{0}, \tau_{0}\right)$. Unwinding the coordinate changes, one conclude that Ψ is a local biholomorphism near $\left(1, \tau_{0}\right)$, in particular a local homeomorphism.

[^1]To show that Φ is a homeomorphism, it is now enough to show that it is proper, because an injective proper local homeomorphism between connected locally compact spaces is an homeomorphism.

We will show that the map $J: \mathcal{H} / \Gamma \rightarrow \mathbb{C}$ defined by ${ }^{母}$

$$
J(\tau)=12^{3} g_{3}(\tau)^{2} / \Delta(\tau)=1728 g_{2}(\tau)^{3} /\left(g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}\right)
$$

is proper (and in fact an homeomorphism). It is then not hard to conclude that Φ is proper, noting that J is the composition of Φ with $(x, y) \mapsto 1728 /\left(1-y^{2} / x^{3}\right)$.

Using a previous exercise sheet, one finds that with $q=\exp (2 i \pi \tau), \tau \in \mathcal{H}$,

$$
\begin{aligned}
& g_{2}(\tau)=\frac{4}{3} \pi^{4}\left(1+240 \sum_{n \geq 1} \sigma_{3}(n) q^{n}\right) \\
& g_{3}(\tau)=\frac{8}{27} \pi^{6}\left(1-504 \sum_{n \geq 1} \sigma_{5}(n) q^{n}\right)
\end{aligned}
$$

which with some more calculations leads to

$$
J(\tau)=\frac{1}{q}+O(1)
$$

In particular the function J on \mathcal{H} / Γ tends to ∞ for $q \rightarrow 0$, corresponding to $\operatorname{Im}(\tau) \rightarrow+\infty$, i.e. going to infinity in \mathcal{H} / Γ. Thus J is proper. Moreover, J defines an isomorphism $\mathcal{H} / \Gamma \rightarrow \mathbb{C}$, since it has a simple pole for $q \rightarrow 0$, implying both that q is a (holomorphic) coordinate in the neighbourhood of infinity in \mathcal{H} / Γ and that J is a global coordinate.

One can also exhibit a continous inverse map to Φ, namely the "period mapping" $P: \mathbb{C}^{2} \backslash$ $\Sigma \rightarrow \mathcal{R}$. For $(a, b) \in \mathbb{C}^{2} \backslash \Sigma$, define $P(a, b)$ as the set of values of the integral $\int_{\gamma} \omega_{a, b}$, where $\omega_{a, b}=d x / y$ is a holomorphic one-form on the compactification $C_{a, b}$ of the affine curve with equation $y^{2}=4 x^{3}-a x-b$ and $\gamma: \mathbb{S}^{1} \rightarrow C_{a, b}$ is a closed piecewise differentiable curve. This is a subgroup of \mathbb{C}, as one sees by considering change of orientation on γ to obtain the opposite and joining two curves by a path and its reverse to obtain the sum. That it is at most of rank 2 comes from the fact that two homotopic (or even only homologous) curves γ give (by Cauchy) the same value of the integral and that $\pi_{1}\left(C_{a, b}\right)=\mathbb{Z}^{2}$.

But that it is discrete and of rank precisely 2 is much more subtle and results from so-called Riemann bilinear relations (in this genus 1 case).

If $x_{1}, x_{2}, x_{3}=-x_{1}-x_{2} \in \mathbb{C}$ are the zeros of $4 x^{3}-a x-b$ (distinct since $a^{3}-27 b^{2} \neq 0$), $P(a, b)$ is generated for instance by $\omega_{1}=2 \int_{x_{1}}^{\infty} d x / y, \omega_{2}=2 \int_{x_{1}}^{x_{2}} d x / y$ (for some "reasonable" choice of paths of integration, e.g. straight). Then one can show that $\operatorname{Im}\left(\overline{\omega_{1}} \omega_{2}\right) \neq 0$, giving rank 2 and discreteness.

[^2]
[^0]: 1. These complements were inspired in part by Hubbard and Pourezza text "Ths pace of closed subgroups of $\mathbb{R}^{2 \prime}$ www.math.cornell.edu/~hubbard/ClosedSubgroupsR2.pdf
[^1]: 2. equivalently an open map, but this seems not easier to prove.
 3. see e.g. https://math.stackexchange.com/a/497551/25917
[^2]: 4. the coefficient 1728 is a traditional normalization, natural only from later developments (and not only to have a pole with residue 1). It obviously could have been omitted here.
