¹ Let \mathcal{R} denote the space of lattices in \mathbb{C} , that is $\mathcal{R} = \mathrm{GL}_2^+(\mathbb{R})/\mathrm{SL}_2(\mathbb{Z})$. By discreteness of $\mathrm{SL}_2(\mathbb{Z})$ in $\mathrm{GL}_2^+(\mathbb{R})$, this is a locally compact (Hausdorff) space.

The group \mathbb{C}^* acts (continuously and) properly by multiplication on \mathcal{R} , with generic stabilizer $\{\pm 1\}$, and two orbits with (cyclic) stabilizers of orders 4 and 6, namely those of $R = \mathbb{Z} + i\mathbb{Z}$ and $R = \mathbb{Z} + \rho\mathbb{Z}$ ($\rho = e^{2i\pi/3}$). Note that -1 acts trivially on \mathcal{R} , and that the induced action of \mathbb{R}^*_+ on \mathcal{R} is free, with \mathcal{R} homeomorphic to $\mathcal{R}_1 \times \mathbb{R}^*_+$, where $\mathcal{R}_1 \subset \mathcal{R}$ is the subspace of lattices of area 1.

Recall that for a lattice R in \mathbb{C} , the complex torus $T = \mathbb{C}/R$ is Riemann surface whose isomorphism class is given by the orbit of R under multiplication by elements of \mathbb{C}^* . The quotient space $\mathcal{M} = \mathbb{C}^* \backslash \mathcal{R} = \mathbb{C}^* \backslash \mathrm{GL}_2^+(\mathbb{R})/\mathrm{SL}_2(\mathbb{Z})$ is thus the "moduli space" of (one dimensional) complex tori. Moreover, the punctured curve $T' = (\mathbb{C}/R) \setminus \{0\}$ is isomorphic to the complex plane curve defined by Weierstrass equation

$$y^2 = 4x^3 - g_2(R)x - g_3(R)$$
, $(x, y) \in \mathbb{C}^2$

with

$$g_2(R) = 60 \sum_{\lambda \in R \setminus \{0\}} \frac{1}{\lambda^4} , \quad g_3(R) = 140 \sum_{\lambda \in R \setminus \{0\}} \frac{1}{\lambda^6} ,$$

and the isomorphism is given by $z + R \mapsto (\wp(z), \wp'(z))$ for the Weierstrass function

$$\wp(z) = \frac{1}{z^2} + \sum_{\lambda \in R \setminus \{0\}} \left(\frac{1}{(z+\lambda)^2} - \frac{1}{\lambda^2} \right) \ .$$

Any orbit of \mathbb{C}^* in \mathcal{R} contains a lattice of the form $R = \mathbb{Z}\tau + \mathbb{Z}$ for τ in the upper half-plane $\mathcal{H} = \{z \in \mathbb{C} \mid \mathrm{Im}(z) > 0\}$, and the different values of τ giving a lattice in the same orbit of \mathbb{C}^* constitute the orbits of the group $\Gamma = \mathrm{PSL}_2(\mathbb{Z})$ acting on \mathcal{H} by $\tau \mapsto (a\tau + b)/(c\tau + d)$, $a, b, c, d \in \mathbb{Z}, ad - bc = 1$. Indeed if $\lambda(\mathbb{Z}\tau + \mathbb{Z}) = \mathbb{Z}\tau' + \mathbb{Z}$ for some $\lambda \in \mathbb{C}^*$, one has $\tau' = \lambda(a\tau + b)$, $1 = \lambda(c\tau + d)$ for $a, b, c, d \in \mathbb{Z}$ ad $-bc = \pm 1$ hence by quotienting $\tau' = (a\tau + b)/(c\tau + d)$ and necessarily ad - bc = 1 since τ, τ' are in \mathcal{H} . In particular $\mathbb{C}^* \setminus \mathcal{R} \simeq \mathcal{H}/\Gamma$.

The functions g_2 , g_3 on \mathcal{R} obviously satisfy $g_k(cR) = c^{-2k}g_k(R)$, $c \in \mathbb{C}^*$, and the discriminant of the cubic polynomial P(x) on the right of Weierstrass equation is given (up to a multiplicative constant) by $\Delta = g_2^3 - 27g_3^2$, which satisfies $\Delta(cR) = c^{-12}\Delta(R)$.

The discriminant Δ doesn't vanish at any $R = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \in \mathcal{R}$ since Weierstrass function $\wp : \mathbb{C}/R \to \hat{\mathbb{C}}$, being of degree only 2, necessarily takes distinct values at its critical points, which are the three zeros $\omega_1/2, \omega_2/2, (\omega_1 + \omega_2)/2 \pmod{R}$ of its derivative \wp' (clearly an odd meromorphic function on \mathbb{C}/R of degree 3). Those values being the roots of P(x), one obtains $\Delta(R) \neq 0$.

The map

$$\Phi: \mathcal{R} \to \mathbb{C}^2$$
, $R \mapsto \left(\frac{g_2(R)}{3}, g_3(R)\right)$

thus takes its values in the complement of the curve Σ defined by $y^2 = x^3$ and intertwines the actions of \mathbb{C}^* on \mathcal{R} and \mathbb{C}^2 given for $c \in \mathbb{C}^*$ by $R \mapsto cR$ and $(x, y) \mapsto (c^{-4}x, c^{-6}y)$.

We will prove

Theorem. Φ is an homeomorphism $\mathcal{R} \to \mathbb{C}^2 \setminus \Sigma$.

^{1.} These complements were inspired in part by Hubbard and Pourezza text "Ths pace of closed subgroups of \mathbb{R}^2 " www.math.cornell.edu/~hubbard/ClosedSubgroupsR2.pdf

Quotienting on both sides by the action of the subgroup $\mathbb{R}^*_+ \subset \mathbb{C}^*$, this will give an homeomorphism between the space $\mathcal{R}_1 \simeq \mathcal{R}/\mathbb{R}^*_+$ of lattices of area 1 in \mathbb{C} and the quotient $(\mathbb{C}^2 \setminus \Sigma)/\mathbb{R}^*_+$ where the action of $t \in \mathbb{R}^*_+$ is $(x, y) \mapsto (t^2 x, t^3 y)$ (which corresponds via Φ to the action $R \mapsto t^{-1/2}R$ on \mathcal{R}).

But this last quotient is homeomorphic to the complement of the (2,3) torus knot (a.k.a. trefoil knot) in \mathbb{S}^3 . Indeed all curves $t \mapsto (t^2x, t^3y), t > 0, (x, y) \in \mathbb{C}^2 \setminus \{0\}$ intersect transversely once the unit sphere \mathbb{S}^3 and on this sphere the circle \mathbb{S}^1 acts via $(x, y) \mapsto (e^{2i\theta}x, e^{3i\theta}y), e^{i\theta} \in \mathbb{S}^1$. The only non-free orbits are $\mathbb{S}^1 \times 0$ and $0 \times \mathbb{S}^1$, with stabilizers of orders 3 and 2 respectively, and the (free) orbit of the point $(r, r^{3/2})$ with $r^2 + r^3 = 1, r > 0$ is the trefoil knot. Thus we deduce

Corollary. The space \mathcal{R}_1 of lattices of unit area in \mathbb{C} is homeomorphic to the complement of the trefoil knot in \mathbb{S}^3 .

To show that Φ is a homeomorphism, observe first that it is injective. Indeed if $g_2(R) = g_2(R')$, $g_3(R) = g_3(R')$, the Weierstrass curves are the same, hence the two punctured tori also, implying R' = cR because the unpunctured tori are then isomorphic (by the removable singularity theorem). If g_2 and g_3 are non-zero this implies $c^{-4} = c^{-6} = 1$, thus $c^2 = 1$ and R = R'. If $g_2 = 0$, $g_3 \neq 0$, $c^6 = 1$ and the curve $y^2 = 4x^3 - g_3$ has an automorphism $(x, y) \mapsto (\rho x, -y)$ of order 6, hence \mathbb{C}/R also, implying R' = cR = R. If $g_3 = 0$, $g_2 \neq 0$, $c^4 = 1$ and the curve $y^2 = 4x^3 - g_2 x$ has an automorphism $(x, y) \mapsto (-x, iy)$ of order 4 hence R' = cR = R.

Next, to see that Φ is *locally* an homeomorphism², one can resort to Brouwer's invariance of domain, but since the map is so explicit a simpler argument should be possible, for instance trying to use the inverse function theorem.

Observe that, using the action of \mathbb{C}^* on \mathcal{R} and on $\mathbb{C}^2 \setminus \Sigma$, one can work near a lattice $R_0 = \mathbb{Z} + \mathbb{Z}\tau_0, \tau_0 \in \mathcal{H}$, and parametrize locally \mathcal{R} near R_0 by $R = R(\lambda, \tau) = \lambda(\mathbb{Z} + \mathbb{Z}\tau)$ with $\lambda \in \mathbb{C}^*$ near 1 and $\tau \in \mathcal{H}$ near τ_0 (λ and $\lambda \tau$ will be the only points of R near 1 and τ_0 respectively if R is near enough R_0).

Then

$$(\lambda, \tau) \mapsto \Psi(\lambda, \tau) = \Phi(R(\lambda, \tau)) = (\lambda^{-4}g_2(\tau)/3, \lambda^{-6}g_3(\tau))$$

is holomorphic in (λ, τ) , and is injective near $(1, \tau_0)$. It is then known that the differential $D\Psi(1, \tau_0)$ is injective³, which would suffice, but a direct elementary argument is the following. Since $\partial_{\lambda}\Psi(1, \tau_0) \neq (0, 0)$, it is easy to find a linear change of coordinates (L_1, L_2) on \mathbb{C}^2 such that the derivative at 1 of $\lambda \mapsto \Psi_1(\lambda, \tau_0) = L_1(\Psi(\lambda, \tau_0))$ is non-zero. By the inverse function theorem,

$$(\lambda, \tau) \mapsto (s, \tau) = (\Psi_1(\lambda, \tau), \tau)$$

is a biholomorphism between neighbourhoods of $(1, \tau_0)$, (s_0, τ_0) and (with hopefully obvious notations)

$$(s,\tau) \mapsto \tilde{\Psi}(s,\tau) = (s,\tilde{\Psi}_2(s,\tau)) = \left(s,L_2(\tilde{\Psi}(s,\tau))\right)$$

is holomorphic and injective near (s_0, τ_0) . But this forces $\partial_{\tau} \tilde{\Psi}_2(s_0, \tau_0)$ to be non-zero (by injectivity the one variable map $\tau \mapsto \tilde{\Psi}_2(s_0, \tau)$ near τ_0), hence $\tilde{\Psi}$ is a biholomorphism near (s_0, τ_0) . Unwinding the coordinate changes, one conclude that Ψ is a local biholomorphism near $(1, \tau_0)$, in particular a local homeomorphism.

^{2.} equivalently an open map, but this seems not easier to prove.

^{3.} see e.g. https://math.stackexchange.com/a/497551/25917

To show that Φ is a homeomorphism, it is now enough to show that it is proper, because an injective proper local homeomorphism between connected locally compact spaces is an homeomorphism.

We will show that the map $J: \mathcal{H}/\Gamma \to \mathbb{C}$ defined by ⁴

$$J(\tau) = 12^3 g_3(\tau)^2 / \Delta(\tau) = 1728 g_2(\tau)^3 / (g_2(\tau)^3 - 27g_3(\tau)^2)$$

is proper (and in fact an homeomorphism). It is then not hard to conclude that Φ is proper, noting that J is the composition of Φ with $(x, y) \mapsto 1728/(1-y^2/x^3)$.

Using a previous exercise sheet, one finds that with $q = \exp(2i\pi\tau), \tau \in \mathcal{H}$,

$$g_2(\tau) = \frac{4}{3}\pi^4 \left(1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n \right)$$
$$g_3(\tau) = \frac{8}{27}\pi^6 \left(1 - 504 \sum_{n \ge 1} \sigma_5(n) q^n \right)$$

which with some more calculations leads to

$$J(\tau) = \frac{1}{q} + O(1).$$

In particular the function J on \mathcal{H}/Γ tends to ∞ for $q \to 0$, corresponding to $\operatorname{Im}(\tau) \to +\infty$, i.e. going to infinity in \mathcal{H}/Γ . Thus J is proper. Moreover, J defines an isomorphism $\mathcal{H}/\Gamma \to \mathbb{C}$, since it has a simple pole for $q \to 0$, implying both that q is a (holomorphic) coordinate in the neighbourhood of infinity in \mathcal{H}/Γ and that J is a global coordinate.

One can also exhibit a continuous inverse map to Φ , namely the "period mapping" $P : \mathbb{C}^2 \setminus \Sigma \to \mathcal{R}$. For $(a, b) \in \mathbb{C}^2 \setminus \Sigma$, define P(a, b) as the set of values of the integral $\int_{\gamma} \omega_{a,b}$, where $\omega_{a,b} = dx/y$ is a holomorphic one-form on the compactification $C_{a,b}$ of the affine curve with equation $y^2 = 4x^3 - ax - b$ and $\gamma : \mathbb{S}^1 \to C_{a,b}$ is a closed piecewise differentiable curve. This is a subgroup of \mathbb{C} , as one sees by considering change of orientation on γ to obtain the opposite and joining two curves by a path and its reverse to obtain the sum. That it is at most of rank 2 comes from the fact that two homotopic (or even only homologous) curves γ give (by Cauchy) the same value of the integral and that $\pi_1(C_{a,b}) = \mathbb{Z}^2$.

But that it is discrete and of rank precisely 2 is much more subtle and results from so-called *Riemann bilinear relations* (in this genus 1 case).

If $x_1, x_2, x_3 = -x_1 - x_2 \in \mathbb{C}$ are the zeros of $4x^3 - ax - b$ (distinct since $a^3 - 27b^2 \neq 0$), P(a, b) is generated for instance by $\omega_1 = 2 \int_{x_1}^{\infty} dx/y$, $\omega_2 = 2 \int_{x_1}^{x_2} dx/y$ (for some "reasonable" choice of paths of integration, e.g. straight). Then one can show that $\operatorname{Im}(\overline{\omega_1}\omega_2) \neq 0$, giving rank 2 and discreteness.

^{4.} the coefficient 1728 is a traditional normalization, natural only from later developments (and not only to have a pole with residue 1). It obviously could have been omitted here.