Exercise 1

a) Let $f: X \to Y$ be a *nonconstant* holomorphic map between connected Riemann surfaces. Show that for any point $p \in X$, denoting $q = f(p) \in Y$, there exist local holomorphic coordinates z, w centered at p and q respectively¹ and an integer $m \ge 1$ such that in these coordinates f is given by $w = z^m$. The integer m = m(p) = m(f, p)doesn't depend on coordinates, and might be called the "multiplicity" of f at p. Show that the set of points² p with m(f, p) > 1 is a closed discrete subset of X, hence finite if X is compact.

b) Let $f : X \to Y$ be a bijective holomorphic map between Riemann surfaces. Show that it is a biholomorphism, *i.e.* that f^{-1} is holomorphic. What can one conclude if f is only injective?

c) Let $f: X \to Y$ be a nonconstant holomorphic map between compact connected Riemann surfaces. Show that for any point q in Y, the set $f^{-1}(q)$ is finite, and that the sum of multiplicities $\sum_{p \in f^{-1}(q)} m(f, p)$ doesn't depend on q.

Exercise 2 Recall the "principle of removable singularities" : if U is open in \mathbb{C} and $f: U \setminus \{a\} \to \mathbb{C}$ is holomorphic, bounded in the neighbourhood of $a \in U$, it extends as a (continuous and) holomorphic function on U.

a) Let $f : \mathbb{C} \to \mathbb{C}$ be a *proper* holomorphic map, meaning that inverse images of compact subsets are compact, or equivalently that its extension to one point compactifications $\hat{f} : \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ by $\infty \mapsto \infty$ is continuous. Show that ∞ is a pole of \hat{f} .

b) Conclude that f is a polynomial. Did you use Cauchy's formula?

c) Show that each biholomorphism $f : \mathbb{C} \to \mathbb{C}$ is of the form f(z) = az + b, $a, b \in \mathbb{C}, a \neq 0$.

Exercise 3 The goal of this (somewhat hard) exercise is to follow the proof by Gauss of the local uniformization theorem for real-analytic metrics (or conformal structures). In a first try, you can admit that real-analytic functions are "very well-behaved" : they add, multiply, compose (like differentiable functions). And that complex analytic functions of several variables satisfy "standard theorems" of real variable differentiable calculus : local inversion theorem, local existence of solutions of ordinary differential equations (with complex time!), for instance.

Let V be a neighbourhood (abbreviated nbhd in the sequel) of the origin in \mathbb{R}^2 and a, b, c three *real-analytic* functions from V to \mathbb{R} , meaning that their (real) Taylor series at each point of V converge in a nbhd of this point³. In particular a, b, c extend to a nbhd of (0,0) in \mathbb{C}^2 as holomorphic functions of two *complex* variables.

Assume that a, c and $ac - b^2$ are > 0 in V, *i.e.* that $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive definite.

^{1.} meaning z(p) = 0, w(q) = 0

^{2.} called "critical points" of f

^{3.} for some C, M, and all j, k, $|\partial_x^j \partial_u^k f| \leq C j! k! M^{j+k}$

a) Show that there exists a real-analytic function $\lambda: V \to \mathbb{C} \setminus \mathbb{R}$ such that

$$a\lambda^2 + 2b\lambda + c = 0$$

in V. One can assume $\text{Im}(\lambda) < 0$. The imaginary directions (complex lines in \mathbb{C}^2)

$$dx - \lambda(x, y)dy = 0,$$

$$dx - \overline{\lambda}(x, y)dy = 0$$

are the isotropic directions of the (positive definite) quadratic form

$$\eta_{(x,y)} = a(x,y) \, dx^2 + 2b(x,y) \, dx \, dy + c(x,y) \, dy^2 = a(x,y) \, (dx - \lambda(x,y)dy) \, (dx - \overline{\lambda}(x,y)dy)$$

which for (x, y) varying in the nbhd V of (0, 0) in \mathbb{R}^2 defines a (real analytic) riemannian metric there.

b) Show that the solution $\phi(x,t) = \phi_t(x)$ of the differential equation $\frac{d}{dt}\phi_t(x) = \lambda(\phi_t(x), t)$, with initial condition $\phi_0(x) = x$ defines a complex-analytic function of (x, t) in a neigbourhood of $(0,0) \in \mathbb{C}^2$.

c) Show that $(x,t) \mapsto (\phi_t(x),t)$ is a complex-analytic diffeomorphism on a nbhd of $(0,0) \in \mathbb{C}^2$, which fixes (0,0).

d) Show that $(x, y) \mapsto w(x, y) = (\phi_y)^{-1}(x)$ is a complex-analytic function on a nbhd of $(0, 0) \in \mathbb{C}^2$, with w(x, 0) = x and $\partial_y w(x, 0) = -\lambda(x, 0)$. More generally $\partial_y w(x, y) = -\lambda(x, y)\partial_x w(x, y)$ on a nbhd of $(0, 0) \in \mathbb{C}^2$.

e) Deduce that w defines a diffeomorphism from a nbhd of (0,0) in \mathbb{R}^2 to a nbhd of 0 in \mathbb{C} . It is thus a complex coordinate on a nbhd of (0,0), which verifies $dw = \partial_x w(x,y) (dx - \lambda(x,y)dy)$. The choice of $\text{Im}(\lambda) < 0$ ensures that it respects the standard orientations.

f) Conclude that in the complex coordinate w = u + iv (on a nbhd of $(0,0) \in \mathbb{R}^2$), the metric η can be written $\eta = \rho |dw|^2 = \rho (du^2 + dv^2)$, where $u = \operatorname{Re}(w)$, $v = \operatorname{Im}(w)$, and ρ is a positive function. The coordinates (u, v) are called *conformal* (or *isothermal*) for the metric η .

g) Explain why for any other local complex coordinate w_1 satisfying the same conditions, the transition map $w_1 \circ w^{-1}$ is holomorphic.