Exercise 1 Let X be a connected Riemann surface.
a) Show that if $P \in X, \operatorname{ord}_{P}: \mathcal{M}(X) \rightarrow \mathbb{Z} \cup\{+\infty\}$ is a (discrete) valuation on the field $\mathcal{M}(X)$, i. e.

$$
\begin{aligned}
\operatorname{ord}_{P}(0) & =+\infty \\
\operatorname{ord}_{P}(f) & <+\infty \quad \text { if } f \neq 0 \\
\operatorname{ord}_{P}(f+g) & \geq \min \left(\operatorname{ord}_{P}(f), \operatorname{ord}_{P}(g)\right) \\
\operatorname{ord}_{P}(f g) & =\operatorname{ord}_{P}(f)+\operatorname{ord}_{P}(g)
\end{aligned}
$$

Is it obvious that this valuation is non-trivial, meaning its image is not reduced to $\{0,+\infty\}$? What other examples of valuations do you know?
b) If $f: X \rightarrow \mathbb{C} \cup\{\infty\}$ is a non-constant meromorphic function on X and $P \in X$, show that ${ }^{1} e_{P}(f)=\operatorname{ord}_{P}(f-f(P))$ if P is not a pole of f, and $e_{P}(f)=\operatorname{ord}_{P}(1 / f)=-\operatorname{ord}_{P}(f)$ if P is a pole of f.
c) If $f: X \rightarrow Y$ is a proper holomorphic map, show that the branching set ${ }^{2} B_{f} \subset Y$ is closed and discrete.

Exercise 2 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic with only simple zeros.
a) Show that $X=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=f(x)\right\}$ is a (non-compact) Riemann surface. What happens if f has multiple zeros?
b) Show that $p: X \rightarrow \mathbb{C}$, defined by $p(x, y)=x$, is holomorphic, with branching set equal to $f^{-1}(0)$.
c) Assuming f is a polynomial of degree m, describe $p^{-1}(\mathbb{C} \backslash B(0, R)$) for large R, and the restriction of p to it.

Exercise 3 Let $f: P^{1}(\mathbb{C}) \rightarrow P^{1}(\mathbb{C})$ be given by a non-constant rational fraction $f(z)=$ $P(z) / Q(z)$, for complex polynomials P, Q without common zero. Let $d=\max (\operatorname{deg} P, \operatorname{deg} Q)$ be the "degree" of f.
a) Assuming that f has only simple poles (more precisely that $\infty \notin B_{f}$), show that $\sum_{P \in P^{1}(\mathbb{C})}\left(e_{P}(f)-1\right)=2(d-1)$. This is the "total number of ramification points of f, counted with multiplicity".
b) Deduce the same equality with no assumption on the poles of f (hint : use automorphisms).

Exercise 4 A conformal structure on a real vector space V is the datum of a positive definite quadratic form q (a euclidean structure) on V, up to multiplication by a scalar.
a) Show that a conformal structure on V is determined by the relation of orthogonality between vectors.
b) If V is two dimensional and oriented, show that a conformal structure on V is the same as an endomorphism $J: V \rightarrow V$ such that $J^{2}=-\mathrm{id}_{V}$ and $(v, J v)$ is a direct basis of V

[^0]for each non-zero v in V. Observe that this is the same as a complex vector space structure on V extending the real one. So J is called a (linear) complex structure on V.
c) Verify that conversely, any complex line L has a canonical conformal structure and a canonical orientation, when viewed as a 2-dimensional real vector space.
d) Let V be a 2-dimensional real vector space, and, let $W=V \otimes_{\mathbb{R}} \mathbb{C}=V \oplus i V$ the complexification of V. It is a 2-dimensional complex vector space, with a conjugation antilinear involution
$$
w=v_{1}+i v_{2} \mapsto \bar{w}=v_{1}-i v_{2}, \quad v_{1}, v_{2} \in V
$$

Show that complex structures J on V are in natural bijection with complex lines $L \subset W$ such that $W=L \oplus \bar{L}$. Identify the set of these lines as the complement of $P(V) \simeq P^{1}(\mathbb{R})$ in $P(W) \simeq P^{1}(\mathbb{C})$, and show it is the union of two disjoint open hemispheres in $P(W)$. What distinguishes the two components?
e) If $V=\mathbb{R}^{2}$, show that the set of conformal structures on V is in natural bijection with the (half-) hyperboloid

$$
U=\left\{(a, b, c) \in \mathbb{R}^{3}\left|a c-b^{2}=1,\right| a>0\right\} .
$$

In these coordinates, give an expression for the complex line L and complex structure J associated to $(a, b, c) \in U$ and the usual orientation of \mathbb{R}^{2}.

Exercise 5 Let $G=\mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm 1\}$ be the group of automorphisms of $P^{1}(C)$, acting by Möbius transformations $z \mapsto(a z+b) /(c z+d), a, b, c, d \in \mathbb{C}, a d-b c=1$.
a) Show that $\mathrm{SL}_{2}(\mathbb{C})$ acts on the real vector space H of 2×2 hermitian matrices by $(g, h) \mapsto g^{*} h g$, preserving the quadratic form det : $h \mapsto \operatorname{det}(h)$.
b) Show that det is of signature $(1,3)$.
c) Deduce the existence of a group homomorphism

$$
\rho: G=\mathrm{PSL}_{2}(\mathbb{C}) \rightarrow \mathrm{SO}(1,3) .
$$

d) Show that ρ is injective, and that its differential at the unit $e \in G$ is bijective.
e) Conclude that ρ defines an isomorphism

$$
\rho: G=\operatorname{PSL}_{2}(\mathbb{C}) \rightarrow \rho(G)=\operatorname{SO}_{0}(1,3)
$$

the last group being the connected component of the identity in $\mathrm{SO}(1,3)$.
f) Let $\mathrm{PSL}_{2}(\mathbb{R}) \subset \mathrm{PSL}_{2}(\mathbb{C})$ be the subgroup of Möbius transformations $z \mapsto(a z+$ $b) /(c z+d), a, b, c, d \in \mathbb{R}$ with $a d-b c=1$. Show that it coincides with the subgroup preserving the upper half-plane $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\} \subset P^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$.
g) Verify that $\mathrm{SL}_{2}(\mathbb{R}) \subset \mathrm{SL}_{2}(\mathbb{C})$ preserves the subspace $S \subset H$ (question a)) of 2×2 real symmetric matrices, and deduce that the group $\mathrm{PSL}_{2}(\mathbb{R})$ is isomorphic to $\mathrm{SO}_{0}(1,2)$.
h) Define a bijection between the upper half-plane $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ and the set of (real) positive definite 2×2 matrices of determinant 1 which is compatible with the isomorphism of the previous question ${ }^{3}$.
3. There is a relation with the last question in the previous exercise...

[^0]: 1. the ramification index $e_{P}(f)$ of f at P is the same as the "local multiplicity" $m(f, P)$ of a previous sheet.
 2. a.k.a. set of "critical values" of f, set of values $f(P)$ with $e_{P}(f)>1$ (P a ramification point, a.k.a."critical point")
