Exercise 1 Let D be a divisor on a compact connected Riemann surface X, and $L(D)=$ $\{f \in \mathcal{M}(X) \mid f=0$ or $\operatorname{div}(f)+D \geq 0\}$ (it is a finite dimensional vector space of meromorphic functions on X).
a) Show that $L(D)=0$ when $\operatorname{deg}(D)<0$.
b) Show (or recall) that if D, D^{\prime} are divisors on X with $D-D^{\prime}=\operatorname{div}(g)$ for some g in $\mathcal{M}(X)^{*}$ (a principal divisor) then $L(D), L\left(D^{\prime}\right)$ have the same dimension. In this situation, D, D^{\prime} are said to be linearly equivalent, sometimes abbreviated $D \sim D^{\prime}$. This (obviously) also implies $D_{0}+D \sim D_{0}+D^{\prime}$ and $D_{0}-D \sim D_{0}-D^{\prime}$ for any divisor D_{0} on X.
c) Assuming $X=P^{1}(\mathbb{C})$, show that $\operatorname{dim} L(D)=1+\operatorname{deg}(D)$ if $\operatorname{deg}(D) \geq 0$ (one may reduce to the case $D=n[\infty]$).

Exercise 2 Let $E=\mathbb{C} / \Lambda$ where $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is a lattice in \mathbb{C}.
a) Show that if P is a point of $E, \operatorname{dim} L([P])=1$ (and in fact $L([P])=\mathbb{C}$, the constant functions; one may use the residue theorem on E (first lesson)).
b) Recall that there is a meromorphic function (Weierstrass function) \wp on E with a single pole at 0 , which is of order 2, i. e. $\operatorname{ord}_{0}(\wp)=-2$. Show that if P is a point of E, $\operatorname{dim} L(2[P])=2$ (reduce to $P=0$, and consider Laurent expansions). Generalize to $\operatorname{dim} L(n[P])=n, n \geq 1$.
c) Show that if P, Q are points of $E, \operatorname{dim} L([P]+[Q])=2$ (reduce to the case $P=$ $-Q \neq Q$, and recall that \wp is even).
d) Recall Abel's theorem that a degree 0 divisor D on \mathbb{C} / Λ is principal $(D \sim 0)$ if and only if $A(D)=0$, where A denotes the morphism of abelian groups $A: \operatorname{Div}(E)=\mathbb{Z}^{(E)} \rightarrow E=$ \mathbb{C} / Λ defined on basis elements by $[P] \mapsto P$. Show that if D is a divisor on E with $\operatorname{deg} D \geq 1$, the space $L(D)$ is of dimension $\operatorname{deg} D$ (reduce to the case $D=n[P]$).
e) If D is a divisor on E with $\operatorname{deg}(D)=0$, the dimension of $L(D)$ is 0 except if $A(D)=0 \in \mathbb{C} / \Lambda$ and then $\operatorname{dim} L(D)=1$.
f) What is the degree of $\wp: E \rightarrow P^{1}(\mathbb{C})$? And of \wp^{\prime} ?
g) Give the value of $\operatorname{div}\left(\wp^{\prime}\right)$ (hint : \wp^{\prime} is an odd function).

Exercise 3 Let $(a, b ; c, d)=(a-c)(b-d) /(a-d)(b-c)$ be (one of the possible definitions of) the cross-ratio ${ }^{1}$ of four distinct complex numbers a, b, c, d.
a) Verify that on $P^{1}(\mathbb{C})$ the map $z \mapsto(a, b ; c, z)$ is the homography sending a, b, c to $\infty, 0,1$ respectively. Deduce that the cross-ratio of distinct complex numbers extends to distinct points of $P^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$, and takes values in $\mathbb{C} \backslash\{0,1\}$. Suggest an extension to not necessarily distinct points.
b) Show that by permuting the arguments of $(a, b ; c, d)$ one obtains at most six values. If x is one of them, the others are $1 / x, 1-x, 1-1 / x, 1 /(1-x), x /(x-1)$ (hint : consider generators of the symmetric group on four letters).
c) Which group Γ of order 6 acting biholomorphically on $P^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$ appears in the previous question?
d) Show that $F(T)=\left(T^{2}-T+1\right)^{3} /(T(T-1))^{2} \in \mathbb{C}(T)$ verifies $F(1 / T)=F(1-T)=$ $F(T)$ and deduce that $F((a, b ; c ; d))$ is invariant by permutations of a, b, c, d.

[^0]e) Denote again by $F: P^{1}(\mathbb{C}) \rightarrow P^{1}(\mathbb{C})$ the holomorphic map defined by F. What is its degree? What are the points $P \in P^{1}(\mathbb{C})$ such that $e_{P}(F)>1$? Show that the fibers $F^{-1}(y)$, $y \in P^{1}(\mathbb{C})$ are the orbits of the action found in question c$)$.
f) Draw a picture of the group action found in question c) by showing that $D=$ $\left\{z \in \mathbb{C}||z| \leq 1\right.$ and $\operatorname{Re}(z) \geq 1 / 2\}$ is a fundamental domain, i. e. $P^{1}(\mathbb{C})=\cup_{\gamma \in \Gamma} \gamma(D)$ and $\operatorname{int}(\gamma(D) \cap D)=\emptyset$ if $\gamma \in \Gamma \backslash\{1\}$ (hint $: \Gamma \subset \operatorname{Aut}\left(P^{1}(\mathbb{C})\right)$ sends circles to circles).

[^0]: 1. "birapport" en français
