Exercise 1. Let $\varphi: X \rightarrow Y$ be a non-constant holomorphic map between compact connected Riemann surfaces X and Y.
a) If $h \in \mathcal{M}(Y)^{\times}$is a non-zero meromorphic function on $Y, h \circ \varphi$ is a non-zero meromorphic function on X. Show that for $P \in X$,

$$
\operatorname{ord}_{P}(h \circ \varphi)=e_{P}(\varphi) \operatorname{ord}_{\varphi(P)}(h) .
$$

b) Deduce that

$$
\operatorname{div}(h \circ \varphi)=\sum_{Q \in Y} \operatorname{ord}_{Q}(h) \sum_{P \in \varphi^{-1}(Q)} e_{P}(\varphi)[P]
$$

which can be written more concisely as $\operatorname{div}(h \circ \varphi)=\varphi^{*}(\operatorname{div}(h))$ for the morphism of abelian groups $\varphi^{*}: \operatorname{Div}(Y) \rightarrow \operatorname{Div}(X)$ defined on free generators by $\varphi^{*}[Q]=\sum_{P \in \varphi^{-1}(Q)} e_{P}(\varphi)[P]$.
c) Similarly, if ω is a non-zero meromorphic form on Y, show that $\varphi^{*}(\omega)$ is a non-zero meromorphic form on X, and that

$$
\operatorname{div}\left(\varphi^{*}(\omega)\right)=\varphi^{*}(\operatorname{div}(\omega))+\sum_{P \in X}\left(e_{P}(\varphi)-1\right)[P]
$$

d) Recall that $\operatorname{deg}(\varphi)=\sum_{P \in \varphi^{-1}(Q)} e_{P}(\varphi)$ for any $Q \in Y$, and also that the degree of the divisor of any non-zero meromorphic form on a compact connected Riemann surface of genus g is $2 g-2$. Deduce the Riemann-Hurwitz formula

$$
2 g(X)-2=\operatorname{deg}(\varphi)(2 g(Y)-2)+\sum_{P \in X}\left(e_{P}(\varphi)-1\right)
$$

In particular, $g(X) \geq g(Y)$.
e) Let $F_{n}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{n}+y^{n}=1\right\}$. Show that F_{n} is a complex one dimensional submanifold of \mathbb{C}^{2}, hence a (non-compact) Riemann surface.
f) In the open subset $U=\left\{(x, y) \in \mathbb{C}^{2}| | x \mid>1\right\}$, consider the change of coordinates $x^{\prime}=1 / x, y^{\prime}=y / x$. More formally, show that $\psi:(x, y) \mapsto(1 / x, y / x)$ defines a biholomorphism between U and $U^{\prime}=\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{C}^{2}\left|0<\left|x^{\prime}\right|<1\right\}\right.$, and that $F_{n} \cap U$ is mapped by ψ onto the set $F_{n}^{\prime} \cap U^{\prime}$ where $F_{n}^{\prime}=\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{C}^{2} \mid 1+y^{\prime n}=x^{\prime n}\right\}^{1}$.
g) Conclude that there is a compact Riemann surface \widehat{F}_{n} with $\widehat{F}_{n} \backslash F_{n}$ of cardinal n, and a holomorphic map $\varphi: \widehat{F}_{n} \rightarrow P^{1}(\mathbb{C})$ extending the first projection $(x, y) \mapsto x$ from F_{n} to \mathbb{C} and mapping $\widehat{F}_{n} \backslash F_{n}$ to ∞.
h) Show that φ is ramified only over the n-th roots of unity $\mu_{n}=\left\{x \in \mathbb{C} \mid x^{n}=1\right\}$, with $\varphi^{-1}(x)=\{(x, 0)\}$ and $e_{(x, 0)}(\varphi)=n$ for each $x \in \mu_{n}$.
i) Denoting by \mathbb{D} the open unit disk in \mathbb{C}, show that $\varphi^{-1}(\mathbb{D})$ and $\varphi^{-1}(\mathbb{C} \backslash \overline{\mathbb{D}})$ have n connected components, and that $\mu_{n} \times\{0\}$ is contained in the closure of each of these components. Conclude that \widehat{F}_{n} is connected.
j) Show that $g\left(\widehat{F}_{n}\right)=(n-1)(n-2) / 2$. Verify directly that \widehat{F}_{2} is isomorphic to $P^{1}(\mathbb{C})$.
k) Show that the formula $\omega=d x / y^{n-1}$ defines a meromorphic differential on \widehat{F}_{n}, which is in fact holomorphic on F_{n} and has as divisor $K=(n-3) \sum_{P \in \widehat{F}_{n} \backslash F_{n}}[P]$.

1. one could also have taken $U=U^{\prime}=\mathbb{C}^{*} \times \mathbb{C}$.

Exercise 2. Let $P \in \mathbb{C}[X]$ be a polynomial of degree n with distinct roots, and $X=$ $\left\{(x, y) \in \mathbb{C}^{2} \mid y^{m}=P(x)\right\}$.
a) Show that X is a one dimensional complex submanifold of \mathbb{C}^{2}, hence a (non-compact) Riemann surface.
b) For a large enough $R>0$ construct a biholomorphism from $X_{R}=X \cap\left\{(x, y) \in \mathbb{C}^{2} \mid\right.$ $|x|>R\}$ to the curve $X^{\prime}=\left\{\left(x^{\prime}, y^{\prime}\right) \in\left(U^{\prime} \backslash\{0\}\right) \times \mathbb{C} \mid y^{\prime m}=x^{\prime n}\right\} \subset \mathbb{C}^{*} \times \mathbb{C}^{*}$, where U^{\prime} is a neigbourhood of 0 in \mathbb{C}.
c) Show that if a, b, p, q are integers, and $a q-b p=1$, the map $(u, v) \mapsto\left(u^{a} v^{b}, u^{p} v^{q}\right)$ is a biholomorphism of $\mathbb{C}^{*} \times \mathbb{C}^{*}$ (and a group automorphism), with inverse of the same form.
d) Returning to question ??, assume that m, n are relatively prime. Show that the map $\gamma: t \mapsto\left(t^{m}, t^{n}\right)$ is a biholomorphism from a pointed neighbourhood of 0 in \mathbb{C} to X^{\prime}, and use this to construct a compact connected Riemann surface $\widehat{X}=X \sqcup\left\{P_{\infty}\right\}$ with a holomorphic map φ of degree m to $P^{1}(\mathbb{C})$ such that $\varphi^{-1}(\infty)=\left\{P_{\infty}\right\}$.
e) Using Riemann-Hurwitz formula show that the genus of \widehat{X} is $(m-1)(n-1) / 2$.
f) No longer assuming m, n relatively prime, let $m=m^{\prime} \delta, n=n^{\prime} \delta$, where $\delta=\operatorname{gcd}(m, n)$. Show that X^{\prime} is biholomorphic to a disjoint union of δ pointed neighborhoods of 0 in \mathbb{C}.
g) Use this to construct a compact connected Riemann surface $\widehat{X}=X \sqcup S_{\infty}$ with $\operatorname{card}\left(S_{\infty}\right)=\delta$, together with a holomorphic map φ of degree m to $P^{1}(\mathbb{C})$ such that $\varphi^{-1}(\infty)=$ S_{∞}.
h) Use Riemann-Hurwitz formula to show that the genus of \widehat{X} is $((m-1)(n-1)-(\delta-1)) / 2$.
i) Check that the formula $d x / y^{m-1}$ defines a meromorphic 1-form ω on \widehat{X}, with no poles or zeros on X. If m, n are relatively prime (so that $S_{\infty}=\left\{P_{\infty}\right\}$), verify that $\operatorname{ord}_{P_{\infty}}(\omega)=$ $m n-m-n-1$. Discuss the case $m=2, n=3$.

Exercise 3. Let V be a complex vector space of finite dimension n, and consider for $k \in \mathbb{N}$ the complex vector space $A_{\mathbb{R}}^{k}(V)$ of \mathbb{R}-multilinear antisymmetric maps $\alpha: V^{k} \rightarrow \mathbb{C}$, $\left(v_{1}, \ldots, v_{k}\right) \mapsto \alpha\left(v_{1}, \ldots, v_{k}\right)$.
a) For $k=1$ show that $A_{\mathbb{R}}^{1}(V)=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ is the direct sum its subspaces V^{*} and \bar{V}^{*} of \mathbb{C}-linear and \mathbb{C}-antilinear maps $V \rightarrow \mathbb{C}$. Here \bar{V} denotes V with the conjugate complex structure $v \mapsto-i v$, with elements written \bar{v} to avoid confusion, and an antilinear "identity map" $v \mapsto \bar{v}$ from V to \bar{V}.
b) Show that $A_{\mathbb{R}}^{k}(V)$ is isomorphic to the space $A_{\mathbb{C}}^{k}(V \oplus \bar{V})$ of \mathbb{C}-multilinear antisymmetric maps $(V \oplus \bar{V})^{k} \rightarrow \mathbb{C}$. More precisely, show that composition with the product map $\Delta^{k}: V^{k} \mapsto$ $(V \oplus \bar{V})^{k}, \Delta(v)=(v \oplus \bar{v}) / 2$ induces an isomorphism $A_{\mathbb{C}}^{k}(V \oplus \bar{V}) \rightarrow A_{\mathbb{R}}^{k}(V)$ (remark that $\Delta\left(e_{1}\right), \Delta\left(i e_{1}\right), \ldots, \Delta\left(e_{n}\right), \Delta\left(i e_{n}\right)$ constitute a basis of the complex vector space $\left.V \oplus \bar{V}\right)$. We will write $\tilde{\alpha} \in A_{\mathbb{C}}^{k}(V \oplus \bar{V})$ the map sent to $\alpha \in A_{\mathbb{R}}^{k}(V)$ by this isomorphism.
c) For $p, q \in \mathbb{N}, p+q=k$, and $\tilde{\alpha} \in A_{\mathbb{C}}^{k}(V \oplus \bar{V})$, denote by $\tilde{\alpha}_{p, q}$ the restriction of $\tilde{\alpha}$ to $V^{p} \times \bar{V}^{q}$. This is a \mathbb{C}-multilinear map which is antisymmetric in the first p and last q variables. Show that the maps $\tilde{\alpha}_{p, q}$ for $p, q \in \mathbb{N}, p+q=k$ determine $\tilde{\alpha}$.
d) Conversely, show that a \mathbb{C}-multilinear map $\beta: V^{p} \times \bar{V}^{q} \rightarrow \mathbb{C}$ which is antisymmetric in the first p and last q variables determines a (unique) map $\tilde{\alpha} \in A_{\mathbb{C}}^{k}(V \oplus \bar{V})$ whith $\tilde{\alpha}_{p, q}=\beta$ and $\tilde{\alpha}_{p^{\prime}, q^{\prime}}=0$ for $\left(p^{\prime}, q^{\prime}\right) \neq(p, q)$.
e) Show that the vector subspace $A^{p, q}(V) \subset A_{\mathbb{R}}^{k}(V)$ of maps α such that $\tilde{\alpha}_{p^{\prime}, q^{\prime}}=0$ for $\left(p^{\prime}, q^{\prime}\right) \neq(p, q)$ is characterized by the condition $\alpha\left(\lambda v_{1}, \ldots, \lambda v_{k}\right)=\lambda^{p} \bar{\lambda}^{q} \alpha\left(v_{1}, \ldots, v_{k}\right)$ for all $\lambda \in \mathbb{C}\left(\right.$ or $\left.\mathbb{S}^{1}\right)$ and all v_{1}, \ldots, v_{k} in V.
f) Show that $A_{\mathbb{R}}^{k}(V)=\bigoplus_{p+q=k} A^{p, q}(V)$.
g) Show that $A^{p, q}(V) \neq 0$ only if $0 \leq p, q \leq k$ and $p+q=k$.

