Exercise 1.

a) Let $g: U \rightarrow U$ be a C^{1} diffeomorphism of a neighbourhood U of the origin $0 \in \mathbb{R}^{d}$. Assume that $g(0)=0$ and g is of finite order dividing n (meaning $g^{n}=\operatorname{id}_{U}$). Letting $A=$ $D g(0) \in G L_{d}(\mathbb{R})$, show that $A^{n}=\mathrm{Id}$ and that the formula

$$
\Phi(x)=\frac{1}{n} \sum_{0 \leq k<n} A^{-k} g^{k}(x)
$$

defines a map $\Phi ; U \rightarrow \mathbb{R}^{d}$ such that $\Phi \circ g=A \circ \Phi$, and that Φ restricts to a C^{1}-diffeomorphism on a neigbourhood of 0 ($" g$ is C^{1}-linearizable near 0 ").
b) Show that for any integer m dividing n, the set U_{m} of points $x \in U$ such that $g^{m}=\mathrm{id}$ in a neighbourhood of x is open and closed in U (apply the previous question to g^{m} near a point of $\overline{U_{m}} \backslash U_{m}$).
c) Deduce that if U is connected and $g^{k} \neq \operatorname{id}_{U}$ for $0<k<n, A$ is also of exact order n (hint : any neighbourhood of 0 contains points of exact period n under g).
d) In the particular case where $d=2, \mathbb{R}^{2} \simeq \mathbb{C}$ and g is holomorphic, verify that Φ is also holomorphic near 0 and conjugates g to the map $w \mapsto \lambda w$ for some n-root of unity $\lambda \in \mathbb{C}$. If n is the smallest integer with this property, λ is a primitive n-root of unity. In particular the g-invariant holomorphic functions f defined near 0 are then of the form $f=\tilde{f} \circ \pi_{n}$, where $\pi_{n}(z)=z^{n}$ and \tilde{f} is holomorphic near 0.

Exercise 2. Recall that $\operatorname{Aut}\left(P^{1}(\mathbb{C})\right) \simeq \mathrm{PGL}_{2}(\mathbb{C})=\mathrm{GL}_{2}(\mathbb{C}) / \mathbb{C}^{*}$ is the group of homographic transformations $z \mapsto(a z+b) /(c z+d)$ of $\mathbb{C} \cup\{\infty\}$, with $a, b, c, d \in \mathbb{C}, a d-b c \neq 0$. One may reduce to $a d-b c=1$, that is $\mathrm{PGL}_{2}(\mathbb{C}) \simeq \mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm 1\}$.
a) If $G \subset \operatorname{PSL}_{2}(\mathbb{C})$ is a discrete subgroup acting properly on $P^{1}(\mathbb{C})$, show that G is finite.
b) For G a finite subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$, let \tilde{G} denote its inverse image in $\mathrm{SL}_{2}(\mathbb{C})$. It is also finite. Show that there is a $P \in \mathrm{GL}_{2}(\mathbb{C})$ such that $P \tilde{G} P^{-1} \subset \mathrm{SU}(2)$ (hint : take any hermitian metric on \mathbb{C}^{2} and average it under G).
c) Show that any element of order n in $\mathrm{SU}(2)$ is conjugate to $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$, with λ a primitive n-th root of 1 in \mathbb{C}. This matrix acts on $P^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$ as $z \mapsto \lambda^{2} z$. In particular -id is the only element of order 2 . It acts trivially on $P^{1}(\mathbb{C})$.
d) Show that the action of $\operatorname{SU}(2) /\{ \pm 1\} \subset \mathrm{PSL}_{2}(\mathbb{C})$ on $P^{1}(\mathbb{C})$ is sent by stereographic projection $z \mapsto\left(2 z /\left(|z|^{2}+1\right),\left(|z|^{2}-1\right) /\left(|z|^{2}+1\right)\right) \in \mathbb{C} \times \mathbb{R} \simeq \mathbb{R}^{3}$ to the usual action of $\mathrm{SO}(3)$ on the unit sphere \mathbb{S}^{2} (hint : show that the induced action on \mathbb{S}^{2} is by linear transformations of $\left.\mathbb{R}^{3}\right)$. Hence any finite subgroup of $\operatorname{Aut}\left(P^{1}(\mathbb{C})\right)$ is isomorphic to a finite subgroup of $\mathrm{SO}(3)^{1}$.
e) Let G be a finite subgroup of $\operatorname{Aut}\left(P^{1}(\mathbb{C})\right), X=P^{1}(\mathbb{C}), Y=X / G$ the quotient Riemann surface and $\pi: X \rightarrow Y$ the quotient map. The Riemann-Hurwitz formula reads

$$
-2=(2 g(Y)-2) \operatorname{deg}(\pi)+\sum_{P \in X}\left(e_{P}(\pi)-1\right)
$$

with $\operatorname{deg}(\pi)=|G|$ (the order of G) and $e_{P}(\pi)=\left|G_{P}\right|$ (the order of the stabilizer of P). Necessarily $g(Y)=0^{2}$. Show that all points P in the same orbit/fiber $\pi^{-1}(Q)$ have the same

[^0]ramification index m_{Q}, and that their number is $|G| / m_{Q}$.
f) Let $S \subset Y$ be the finite set of points Q with $m_{Q}>1$. Show that S has cardinal 0,2 or 3 , with the first two cases corresponding to G trivial or cyclic. In case $|S|=3$, show that the possibilities for the three integers m_{1}, m_{2}, m_{3} are, up to reordering, 2,2 , $n(n \geq 2), 2,3,3$, $2,3,4$ and $2,3,5$. To which groups G can you relate these possibilities ? ${ }^{3}$

Exercise 3. Recall that $\mathrm{SL}_{2}(\mathbb{R})$ acts (non-faithfully) on the upper half-plane $H=\{z \in$ $\mathbb{C} \mid \operatorname{Im}(z)>0\}$ by $\gamma \cdot z=(a z+b) /(c z+d)$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{R})$. Let $G \subset \operatorname{SL}_{2}(\mathbb{R})$ be a subgroup which is discrete for the (usual) topology induced by the embedding $\mathrm{SL}_{2}(\mathbb{R}) \subset$ $M_{2}(\mathbb{R}) \simeq \mathbb{R}^{4}$.
a) Show that G is closed in $\mathrm{SL}_{2}(\mathbb{R})$, and also in $M_{2}(\mathbb{R})$.
b) Show that the action of G on the upper half-plane H is proper, first by admitting that the action of $\mathrm{SL}_{2}(\mathbb{R})$ on H is proper.
c) Show that the action of $\mathrm{SL}_{2}(\mathbb{R})$ is proper (hint : first show that the stabilizer of $i \in H$ is compact. Then find a sequence of compact subsets K_{n} of $\mathrm{SL}_{2}(\mathbb{R})$ such that the subsets $K_{n} \cdot i$ exhaust $H)^{4}$.
d) Show that $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{R})$. What are the possible orders of finite order elements of Γ ?
e) Show that the set $F=\{z \in \mathbb{C}| | \operatorname{Re}(z)|\leq 1 / 2,|z| \geq 1\}$ meets each orbit of Γ on H (hint : for fixed $z \in H$, maximize $\operatorname{Im}(\gamma(z)), \gamma \in \Gamma$, and use the elements $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ of $\left.\Gamma\right)^{5}$
f) Show that if a holomorphic function $f: H \rightarrow \mathbb{C}$ is Γ-invariant it is necessarily of the form

$$
f(z)=\sum_{n \in \mathbb{Z}} a_{n} q^{n}=\sum_{n \in \mathbb{Z}} a_{n} \exp (2 i \pi n z)
$$

where $q=\exp (2 i \pi z)$ lies in the pointed unit disk \mathbb{D}^{*} and moreover $f(-1 / z)=f(z)$ for all $z \in H$.

[^1]
[^0]: 1. A simple proof results from consideration of the action of $\mathrm{SU}(2)$ on hermitian 2 by 2 matrices of trace 0 .
 2. this implies that Y is isomorphic to $P^{1}(\mathbb{C})$, either by Riemann-Roch for the holomorphic definition of genus or by uniformization for the topological one.
[^1]: 3. see pages 80-82 in R. Miranda - Algebraic curves and Riemann surfaces - AMS 1995
 4. The real reason for properness is that the action is by isometries for a complete riemannian metric on H - the Poincare metric.
 5. search "keith conrad sl2z" on the web if you are stuck.
