Exercise 1. (recycled) Recall that $\operatorname{SL}_2(\mathbb{R})$ acts (non-faithfully) on the upper half-plane $H = \{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau) > 0\}$ by $\gamma \cdot \tau = \gamma(\tau) = (a\tau + b)/(c\tau + d)$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R})$. Let $G \subset \operatorname{SL}_2(\mathbb{R})$ be a subgroup which is discrete for the (usual) topology induced by the embedding $\operatorname{SL}_2(\mathbb{R}) \subset M_2(\mathbb{R}) \simeq \mathbb{R}^4$.

- a) Show that G is closed in $SL_2(\mathbb{R})$, and also in $M_2(\mathbb{R})$.
- **b)** Show that the action of G on the upper half-plane H is proper, first by admitting that the action of $SL_2(\mathbb{R})$ on H is proper.
- c) Show that the action of $\mathrm{SL}_2(\mathbb{R})$ is proper (hint: first show that the stabilizer of $i \in H$ is compact. Then find a sequence of compact subsets K_n of $\mathrm{SL}_2(\mathbb{R})$ such that the subsets $K_n \cdot i$ exhaust H) 1 .
- d) Show that $\Gamma = \mathrm{SL}_2(\mathbb{Z})$ is a discrete subgroup of $\mathrm{SL}_2(\mathbb{R})$. What are the possible orders of finite order elements of Γ ?
- e) Show that the set $F = \{ \tau \in \mathbb{C} \mid |\text{Re}(\tau)| \leq 1/2, |\tau| \geq 1 \}$ meets each orbit of Γ on H (hint : for fixed $\tau \in H$, maximize $\text{Im}(\gamma(\tau))$, $\gamma \in \Gamma$, and use the elements $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ of Γ)
- $\hat{\mathbf{f}}$) Show that in the preceding question, one proved in fact that F meets each orbit of the subgroup $\tilde{\Gamma} \subset \Gamma$ generated by S and T. By considering the Γ -orbit of the point $2i \in H$, deduce that $\Gamma = \tilde{\Gamma}$, that is $\mathrm{SL}_2(\mathbb{Z})$ is generated by S and T (this can also be deduced from the termination of the euclidean algorithm on \mathbb{Z}).
- **g)** Show that if a holomorphic function $f: H \to \mathbb{C}$ is T-invariant it is necessarily of the form

$$f(\tau) = \varphi(q) = \sum_{n \in \mathbb{Z}} a_n q^n = \sum_{n \in \mathbb{Z}} a_n \exp(2i\pi n\tau)$$

where $q = \exp(2i\pi\tau)$ lies in the pointed unit disk \mathbb{D}^* and φ is holomorphic there. What must the $|a_n|$ verify for $n \to \pm \infty$? The function f is then Γ -invariant if and only if one has moreover $f(-1/\tau) = f(\tau)$ for all $\tau \in H$. It is then called a modular function².

h) One can show that as a Riemann surface, H/Γ is isomorphic to \mathbb{C} , with coordinate given by the modular invariant $j(\tau) = 1/q + 744 + 196884 q + \dots$, a q-series with integral coefficients. A holomorphic function $f: H \to \mathbb{C}$ is called a (weak) modular form of weight 2k under Γ if the expression $f(\tau)(d\tau)^k$ is formally invariant by Γ , which writes

$$f(\gamma(\tau)) \gamma'(\tau)^k = f(\tau), \ \tau \in H, \ \gamma \in \Gamma$$

or more explicitly

$$f((a\tau + b)/(c\tau + d)) = (c\tau + d)^{2k} f(\tau), \ a, b, c, d \in \mathbb{Z}, ad - bc = 1, \ \tau \in H.$$

Show that this is equivalent to the conjunction of $f(\tau+1) = f(\tau)$ and $f(-1/\tau) = \tau^{2k} f(\tau)$ for $\tau \in H$. In the case k = 1, (weak) modular forms of weight 2 are identified to holomorphic 1-forms on H/Γ . For more on this subject, one can consult Serre's "Cours d'arithmétique" or Diamond

^{1.} The real reason for properness is that the action is by isometries for a complete riemannian metric on H, the Poincaré metric $|d\tau|^2/\text{Im}(\tau)^2$.

^{2.} This comes from Γ being called the "modular group"

and Shurman's "A first course in modular forms" (2005), or James Milne "Modular Functions and Modular Forms" (available at http://www.jmilne.org/math/CourseNotes/mf.html).

i) (examples) Let

$$f_k(\tau) = \sum_{(m,n)\in\mathbb{Z}^2\setminus\{0\}} (m\tau + n)^{-2k} , \ \tau \in H.$$

Show that f_k is a modular form of weight 2k under Γ . We saw in the construction of the Weierstrass function $\wp(z;\tau)$ (with period lattice $\mathbb{Z} + \tau \mathbb{Z}$) that $g_2(\tau) = 60f_2(\tau)$ and $g_3(\tau) = 140f_3(\tau)$ were coefficients for the differential equation $(d\wp/dz)^2 = 4\wp^3 - g_2\wp - g_3$ satisfied by \wp . The discriminant $\Delta = g_2^3 - 27g_3^2$ is then a weight 12 modular form, with no zeros on H, and one can show that the modular invariant $j(\tau)$ alluded to above is $1728g_2^3/\Delta$. It is a ("the") modular function under Γ .

Exercise 2. (Another source of modular forms) Let $f : \mathbb{R} \to \mathbb{C}$ be a function which is smooth and rapidly decreasing, along with all its derivatives. Define the Fourier transform of f as

$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-2i\pi\xi x} f(x) \, dx.$$

Recall that a smooth function $F: \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ is the sum of its Fourier series $F(x) = \sum_{n \in \mathbb{Z}} a_n e^{2i\pi nx}$, where

$$a_n = \int_{\mathbb{R}/\mathbb{Z}} e^{-2i\pi nx} F(x) \, dx.$$

a) Show that by taking $F(x) = \sum_{m \in \mathbb{Z}} f(x+m)$ and expressing that $F(0) = \sum_{n \in \mathbb{Z}} a_n$, one obtains the *Poisson summation formula*

$$\sum_{n\in\mathbb{Z}}\hat{f}(n) = \sum_{m\in\mathbb{Z}}f(m).$$

b) For λ real and non-zero, show that

$$\sum_{n\in\mathbb{Z}} \hat{f}(n\lambda) = \frac{1}{\lambda} \sum_{m\in\mathbb{Z}} f(m/\lambda).$$

- c) Show that for all $\xi \in \mathbb{R}$, $\int_{\mathbb{R}} \exp(2i\pi\xi x \pi x^2) dx = \exp(-\pi\xi^2)$ by considering a contour integral in the complex domain after having written the integrand as $\exp(-\pi(x + i\xi)^2) \exp(-\pi\xi^2)$.
- d) Using that $f(x) = e^{-\pi x^2}$ is its own Fourier transform (preceding question), deduce that if $a \in \mathbb{C}$ and Re(a) > 0,

$$\sum_{n \in \mathbb{Z}} e^{-\pi n^2 a} = \frac{1}{\sqrt{a}} \sum_{m \in \mathbb{Z}} e^{-\pi m^2/a}$$

where $\sqrt{\cdot}$ denotes the determination taking \mathbb{R}_+ into itself.

e) For Im(z) > 0, define $q = \exp(i\pi z) \in \mathbb{D}^*$ and $\theta(z) = \sum_{n \in \mathbb{Z}} q^{n^2}$. Show that $\theta(-1/z) = \sqrt{z/i} \theta(z)$ (and "only" $\theta(z+2) = \theta(z)$).