Exercise 1. (recycled) Recall that $\mathrm{SL}_{2}(\mathbb{R})$ acts (non-faithfully) on the upper half-plane $H=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$ by $\gamma \cdot \tau=\gamma(\tau)=(a \tau+b) /(c \tau+d)$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$. Let $G \subset \mathrm{SL}_{2}(\mathbb{R})$ be a subgroup which is discrete for the (usual) topology induced by the embedding $\mathrm{SL}_{2}(\mathbb{R}) \subset M_{2}(\mathbb{R}) \simeq \mathbb{R}^{4}$.
a) Show that G is closed in $\mathrm{SL}_{2}(\mathbb{R})$, and also in $M_{2}(\mathbb{R})$.
b) Show that the action of G on the upper half-plane H is proper, first by admitting that the action of $\mathrm{SL}_{2}(\mathbb{R})$ on H is proper.
c) Show that the action of $\mathrm{SL}_{2}(\mathbb{R})$ is proper (hint : first show that the stabilizer of $i \in H$ is compact. Then find a sequence of compact subsets K_{n} of $\mathrm{SL}_{2}(\mathbb{R})$ such that the subsets $K_{n} \cdot i$ exhaust H) ${ }^{\text {T }}$.
d) Show that $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{R})$. What are the possible orders of finite order elements of Γ ?
e) Show that the set $F=\{\tau \in \mathbb{C}| | \operatorname{Re}(\tau)|\leq 1 / 2,|\tau| \geq 1\}$ meets each orbit of Γ on H (hint : for fixed $\tau \in H$, maximize $\operatorname{Im}(\gamma(\tau)), \gamma \in \Gamma$, and use the elements $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ of Γ)
f) Show that in the preceding question, one proved in fact that F meets each orbit of the subgroup $\tilde{\Gamma} \subset \Gamma$ generated by S and T. By considering the Γ-orbit of the point $2 i \in H$, deduce that $\Gamma=\tilde{\Gamma}$, that is $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by S and T (this can also be deduced from the termination of the euclidean algorithm on \mathbb{Z}).
g) Show that if a holomorphic function $f: H \rightarrow \mathbb{C}$ is T-invariant it is necessarily of the form

$$
f(\tau)=\varphi(q)=\sum_{n \in \mathbb{Z}} a_{n} q^{n}=\sum_{n \in \mathbb{Z}} a_{n} \exp (2 i \pi n \tau)
$$

where $q=\exp (2 i \pi \tau)$ lies in the pointed unit disk \mathbb{D}^{*} and φ is holomorphic there. What must the $\left|a_{n}\right|$ verify for $n \rightarrow \pm \infty$? The function f is then Γ-invariant if and only if one has moreover $f(-1 / \tau)=f(\tau)$ for all $\tau \in H$. It is then called a modular function ${ }^{2}$.
h) One can show that as a Riemann surface, H / Γ is isomorphic to \mathbb{C}, with coordinate given by the modular invariant $j(\tau)=1 / q+744+196884 q+\ldots$, a q-series with integral coefficients. A holomorphic function $f: H \rightarrow \mathbb{C}$ is called a (weak) modular form of weight $2 k$ under Γ if the expression $f(\tau)(d \tau)^{k}$ is formally invariant by Γ, which writes

$$
f(\gamma(\tau)) \gamma^{\prime}(\tau)^{k}=f(\tau), \tau \in H, \gamma \in \Gamma
$$

or more explicitly

$$
f((a \tau+b) /(c \tau+d))=(c \tau+d)^{2 k} f(\tau), a, b, c, d \in \mathbb{Z}, a d-b c=1, \tau \in H
$$

Show that this is equivalent to the conjunction of $f(\tau+1)=f(\tau)$ and $f(-1 / \tau)=\tau^{2 k} f(\tau)$ for $\tau \in$ H. In the case $k=1$, (weak) modular forms of weight 2 are identified to holomorphic 1-forms on H / Γ. For more on this subject, one can consult Serre's "Cours d'arithmétique" or Diamond

[^0]and Shurman's "A first course in modular forms" (2005), or James Milne "Modular Functions and Modular Forms" (available at http://www.jmilne.org/math/CourseNotes/mf.html).
i) (examples) Let
$$
f_{k}(\tau)=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}}(m \tau+n)^{-2 k}, \tau \in H
$$

Show that f_{k} is a modular form of weight $2 k$ under Γ. We saw in the construction of the Weierstrass function $\wp(z ; \tau)$ (with period lattice $\mathbb{Z}+\tau \mathbb{Z}$) that $g_{2}(\tau)=60 f_{2}(\tau)$ and $g_{3}(\tau)=$ $140 f_{3}(\tau)$ were coefficients for the differential equation $(d \wp / d z)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}$ satisfied by \wp. The discriminant $\Delta=g_{2}^{3}-27 g_{3}^{2}$ is then a weight 12 modular form, with no zeros on H, and one can show that the modular invariant $j(\tau)$ alluded to above is $1728 g_{2}^{3} / \Delta$. It is a ("the") modular function under Γ.

Exercise 2. (Another source of modular forms) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a function which is smooth and rapidly decreasing, along with all its derivatives. Define the Fourier transform of f as

$$
\hat{f}(\xi)=\int_{\mathbb{R}} e^{-2 i \pi \xi x} f(x) d x
$$

Recall that a smooth function $F: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{C}$ is the sum of its Fourier series $F(x)=\sum_{n \in \mathbb{Z}} a_{n} e^{2 i \pi n x}$, where

$$
a_{n}=\int_{\mathbb{R} / \mathbb{Z}} e^{-2 i \pi n x} F(x) d x
$$

a) Show that by taking $F(x)=\sum_{m \in \mathbb{Z}} f(x+m)$ and expressing that $F(0)=\sum_{n \in \mathbb{Z}} a_{n}$, one obtains the Poisson summation formula

$$
\sum_{n \in \mathbb{Z}} \hat{f}(n)=\sum_{m \in \mathbb{Z}} f(m) .
$$

b) For λ real and non-zero, show that

$$
\sum_{n \in \mathbb{Z}} \hat{f}(n \lambda)=\frac{1}{\lambda} \sum_{m \in \mathbb{Z}} f(m / \lambda) .
$$

c) Show that for all $\xi \in \mathbb{R}, \int_{\mathbb{R}} \exp \left(2 i \pi \xi x-\pi x^{2}\right) d x=\exp \left(-\pi \xi^{2}\right)$ by considering a contour integral in the complex domain after having written the integrand as $\exp (-\pi(x+$ $\left.i \xi)^{2}\right) \exp \left(-\pi \xi^{2}\right)$.
d) Using that $f(x)=e^{-\pi x^{2}}$ is its own Fourier transform (preceding question), deduce that if $a \in \mathbb{C}$ and $\operatorname{Re}(a)>0$,

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} a}=\frac{1}{\sqrt{a}} \sum_{m \in \mathbb{Z}} e^{-\pi m^{2} / a}
$$

where $\sqrt{ } \cdot$ denotes the determination taking \mathbb{R}_{+}into itself.
e) For $\operatorname{Im}(z)>0$, define $q=\exp (i \pi z) \in \mathbb{D}^{*}$ and $\theta(z)=\sum_{n \in \mathbb{Z}} q^{n^{2}}$. Show that $\theta(-1 / z)=$ $\sqrt{z / i} \theta(z)$ (and "only" $\theta(z+2)=\theta(z)$).

[^0]: 1. The real reason for properness is that the action is by isometries for a complete riemannian metric on H, the Poincaré metric $|d \tau|^{2} / \operatorname{Im}(\tau)^{2}$.
 2. This comes from Γ being called the "modular group"
