Exercise 1. Let $f(X) \in \mathbb{C}[X]$ be a polynomial of degree n such that the zeros a_{1}, \ldots, a_{n-1} of its derivative $f^{\prime}(X)$ are simple and the corresponding critical values $b_{1}=f\left(a_{1}\right), \ldots, b_{n-1}=$ $f\left(a_{n-1}\right)$ are distinct (a "Morse polynomial").
a) Show that the holomorphic map $f: \mathbb{C} \rightarrow \mathbb{C}$ is of degree n with branching set $B=$ $\left\{b_{1}, \ldots, b_{n-1}\right\}$. What are the cardinals of the fibers $f^{-1}(b), b \in B$?
b) Consider $Y=\mathbb{C} \backslash B$ and the restriction $p=\left.f\right|_{Y}: X=f^{-1}(Y) \rightarrow Y$. It is a covering map of degree n (by the inverse function theorem), and choosing a base point $y_{0} \in Y$ one defines the monodromy (permutation) representation

$$
\rho: \pi_{1}\left(Y, y_{0}\right) \rightarrow \operatorname{Sym}\left(p^{-1}\left(y_{0}\right)\right) \simeq S_{n}
$$

More precisely, the unique lifting property of continuous paths in Y defines for any $\gamma:[0,1] \rightarrow Y$ a "monodromy" bijection $\rho(\gamma): f^{-1}(\gamma(0)) \rightarrow f^{-1}(\gamma(1))$ which only depends on the homotopy class of γ (with fixed ends).

The concatenation of (homotopy classes) of paths is sent by ρ to the composition of monodromies.

For any two base points y_{0}, y_{1} in Y (in the same path component), the choice of a (homotopy class of) path λ from y_{0} to y_{1} gives rise to an isomorphism $\pi_{1}\left(Y, y_{1}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ obtained by preand post- concatenating any loop γ based at y_{1} with λ and its reverse $\bar{\lambda}$. Symbolically $\gamma \mapsto \bar{\lambda} \gamma \lambda{ }^{1}$. If the path λ is replaced by μ, say, the homotopy class of $\bar{\lambda} \gamma \lambda$ in $\pi_{1}\left(Y, y_{0}\right)$ changes by conjugation by the homotopy class of $\bar{\mu} \lambda$ in $\pi_{1}\left(Y, y_{0}\right)$,

$$
\bar{\mu} \gamma \mu \sim \bar{\mu} \lambda \bar{\lambda} \gamma \lambda \bar{\lambda} \mu=(\bar{\mu} \lambda)(\bar{\lambda} \gamma \lambda) \overline{(\bar{\mu} \lambda)}
$$

Without choosing a path from y_{0} to y_{1}, we see that this associates to γ based at y_{1} a conjugacy class in $\pi_{1}\left(Y, y_{0}\right)$.

Show that if $s_{i} \in \pi_{1}\left(Y, y_{0}\right)$ is in the conjugacy class defined by a small circle around $b_{i}=f\left(a_{i}\right)$ $\rho\left(s_{i}\right)$ is a transposition in S_{n}, for each $i=1, \ldots, n-1$.
c) Denote by $G \subset S_{n}$ the image of ρ. Deduce from the connectedness of $X=\mathbb{C} \backslash f^{-1}(B)$ that G is transitive on $\{1, \ldots, n\}$.
d) Show that if $s \in \pi_{1}\left(Y, y_{0}\right)$ is in the conjugacy class defined by a large circle encircling all $f\left(a_{i}\right), \rho(s)$ is a cycle of length n in S_{n} (thus re-proving the transitivity of G).
e) Conclude that $G=S_{n}$ (hint : show by suitable choice of y_{0} and representative loops of $s_{1}, \ldots, s_{n-1}, s$ that the product of s_{1}, \ldots, s_{n-1} in some order is equal to s; deduce that the transpositions $\rho\left(s_{i}\right)$ generate S_{n} from the lemma : if $n-1$ transpositions in S_{n} have a cycle of length n as product, they generate $\left.S_{n}\right)^{2}$.
f) Show that the polynomial $f(X)=X^{n}-X$ verifies the hypotheses (is a "Morse polynomial").
g) Show that in the space \mathbb{C}^{n} of monic degree n polynomials $f=X^{n}+c_{1} X^{n-1}+\cdots+c_{n}$, the subset of Morse polynomials is dense and open (hint : find a polynomial in the coefficients of f which vanishes if and only if f is not Morse).

Exercise 2. Consider the polynomial $P(T, X)=X^{n}-n T X+1 \in \mathbb{C}[T, X]$.

[^0]a) Show that $V=\left\{(t, x) \in \mathbb{C}^{2} \mid P(t, x)=0\right\}$ is a 1-dimensional complex submanifold of \mathbb{C}^{2}, hence a (non-compact) Riemann surface.
b) Show that V is connected, and that the function $f: V \rightarrow \mathbb{C}, f(t, x)=t$ is a ramified covering of degree n. Determine the set of its branching points $B \subset \mathbb{C}$
c) Show that around each branching point $b \in B$ of f, the monodromy is a transposition.
d) Conclude that the monodromy $\rho: \pi_{1}(\mathbb{C} \backslash B, *) \rightarrow S_{n}$ is surjective (as in the previous exercise).

Exercise 3. Let $f(X, Y)=Y^{n}-P(X) \in \mathbb{C}[X, Y]$, where P is a polynomial of degree $m \geq 1$ with simple roots.
a) Show that $V=\left\{(x, y) \in \mathbb{C}^{2} \mid f(x, y)=0\right\}$ is a Riemann surface, that the restriction of the first projection $p_{1}: V \rightarrow \mathbb{C}$ a ramified covering of degree n, and determine its branching set $B \subset \mathbb{C}$.
b) Show that the monodromy $\rho: \pi_{1}(\mathbb{C} \backslash B, *) \rightarrow S_{n}$ has for image a cyclic group of order n (hint : consider the simply connected set $\Omega=\mathbb{C} \backslash\left(B+e^{i \alpha} \mathbb{R}_{+}\right)$for a "generic" angle α and how the n determinations of $(P(x))^{1 / n}$ on Ω behave along the cuts $\left.b+e^{i \alpha} \mathbb{R}_{+}, b \in B\right)$.

Exercise 4. Let $B=\left\{b_{1}, \ldots, b_{r}\right\} \subset P^{1}(\mathbb{C})$ be a finite subset, $n \geq 2$ an integer, and for each $i=1, \ldots, r$ let $\sigma_{i} \in S_{n}$ be a permutation.

Assume chosen a basepoint $o \in P^{1}(\mathbb{C}) \backslash B$, and segments $\lambda_{i} \simeq[0,1], i=1, \ldots, r$ from o to b_{i}, pairwise disjoint outside o and ordered by $1,2, \ldots, r$ around o.

Denote by $s_{i} \in \pi_{1}\left(P^{1}(\mathbb{C}) \backslash B, o\right)$ the homotopy class of a loop first following λ_{i}, going once around b_{i}, and returning to o along $\overline{\lambda_{i}}$.
a) Show that if there exists a ramified covering $f: X \rightarrow P^{1}(\mathbb{C})$ with branching set B and monodromy $\rho: \pi_{1}\left(P^{1}(\mathbb{C}) \backslash B, o\right) \rightarrow S_{n}$ satisfying $\rho\left(s_{i}\right)=\sigma_{i}, i=1, \ldots, r$, the product $\sigma_{r} \ldots \sigma_{1}$ is the identity in S_{n}.

Conversely, this condition is sufficient for the existence of (non-compact) surface X_{0} and a covering map $f_{0}: X_{0} \rightarrow Y_{0}=P^{1}(\mathbb{C}) \backslash B$ with monodromy ρ, which amounts to say that the fundamental group of $P^{1}(\mathbb{C}) \backslash\left\{b_{1}, \ldots, b_{r}\right\}$ is generated by s_{1}, \ldots, s_{r} with the "only relation" $s_{r} \ldots s_{1}=1$.

The surface X_{0} has a unique Riemann surface structure making the covering map f_{0} holomorphic. The covering $f_{0}: X_{0} \rightarrow Y_{0}=P^{1}(\mathbb{C}) \backslash B$ restricted to the preimage of a small pointed disk D_{i}^{*} around $b_{i} \in B$ is determined by the decomposition of the permutation $\sigma_{i}=c_{i, 1} \ldots c_{i, m_{i}}$ as a product of disjoint cycles. Namely, $f_{0}^{-1}\left(D_{i}^{*}\right)$ is the disjoint union of punctured disks $D_{i, 1}^{*}, \ldots D_{i, m_{i}}^{*}$, with $\left.f_{0}\right|_{D_{i, j}^{*}}$ modeled on $z \mapsto z^{\ell}$, where $\ell=\ell_{i, j}$ denotes the length of the cycle $c_{i, j}, j=1, \ldots, m_{i}$.

By "closing the puncture" of each $D_{i, j}^{*}$ and extending f by continuity to the added point one obtains a compact Riemann surface X and a ramified covering $f: X \rightarrow P^{1}(\mathbb{C})$ with the prescribed monodromy data.
b) Show that X is connected iff the subgroup G of S_{n} generated by $\sigma_{1} \ldots, \sigma_{r}$ acts transitively on $\{1, \ldots, n\}$.
c) If X is connected, translate the Riemann-Hurwitz formula into a relation between the genus of X, the number r of permutations and m_{1}, \ldots, m_{r} of their cycles.
d) Check your formula on the polynomial exemples of previous exercices.

[^1]
[^0]: 1. Here concatenation is denoted in the "compositional" order, which makes ρ a morphism $\rho\left(\gamma_{2} \gamma_{1}\right)=$ $\rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)$ rather than an anti-morphism.
 2. In fact a better result holds : if $G \subset S_{n}$ is transitive and generated by transpositions, $G=S_{n}$, see J.-P. Serre "Topics in Galois theory", p. 40.
[^1]: 3. this results from Van Kampen theorem in covering theory.
