Exercise 1. Let $f(X) \in \mathbb{C}[X]$ be a polynomial of degree *n* such that the zeros a_1, \ldots, a_{n-1} of its derivative f'(X) are simple and the corresponding critical values $b_1 = f(a_1), \ldots, b_{n-1} = f(a_{n-1})$ are distinct (a "Morse polynomial").

a) Show that the holomorphic map $f : \mathbb{C} \to \mathbb{C}$ is of degree *n* with branching set $B = \{b_1, \ldots, b_{n-1}\}$. What are the cardinals of the fibers $f^{-1}(b), b \in B$?

b) Consider $Y = \mathbb{C} \setminus B$ and the restriction $p = f|_Y : X = f^{-1}(Y) \to Y$. It is a covering map of degree n (by the inverse function theorem), and choosing a base point $y_0 \in Y$ one defines the monodromy (permutation) representation

$$\rho: \pi_1(Y, y_0) \to \operatorname{Sym}(p^{-1}(y_0)) \simeq S_n.$$

More precisely, the unique lifting property of continuous paths in Y defines for any $\gamma : [0, 1] \to Y$ a "monodromy" bijection $\rho(\gamma) : f^{-1}(\gamma(0)) \to f^{-1}(\gamma(1))$ which only depends on the homotopy class of γ (with fixed ends).

The concatenation of (homotopy classes) of paths is sent by ρ to the composition of monodromies.

For any two base points y_0 , y_1 in Y (in the same path component), the choice of a (homotopy class of) path λ from y_0 to y_1 gives rise to an isomorphism $\pi_1(Y, y_1) \to \pi_1(Y, y_0)$ obtained by preand post- concatenating any loop γ based at y_1 with λ and its reverse $\overline{\lambda}$. Symbolically $\gamma \mapsto \overline{\lambda}\gamma\lambda^1$. If the path λ is replaced by μ , say, the homotopy class of $\overline{\lambda}\gamma\lambda$ in $\pi_1(Y, y_0)$ changes by *conjugation* by the homotopy class of $\overline{\mu}\lambda$ in $\pi_1(Y, y_0)$,

$$\overline{\mu}\gamma\mu\sim\overline{\mu}\lambda\overline{\lambda}\gamma\lambda\overline{\lambda}\mu=(\overline{\mu}\lambda)(\overline{\lambda}\gamma\lambda)\overline{(\overline{\mu}\lambda)}\ .$$

Without choosing a path from y_0 to y_1 , we see that this associates to γ based at y_1 a conjugacy class in $\pi_1(Y, y_0)$.

Show that if $s_i \in \pi_1(Y, y_0)$ is in the conjugacy class defined by a small circle around $b_i = f(a_i)$ $\rho(s_i)$ is a transposition in S_n , for each i = 1, ..., n - 1.

c) Denote by $G \subset S_n$ the image of ρ . Deduce from the connectedness of $X = \mathbb{C} \setminus f^{-1}(B)$ that G is transitive on $\{1, \ldots, n\}$.

d) Show that if $s \in \pi_1(Y, y_0)$ is in the conjugacy class defined by a large circle encircling all $f(a_i)$, $\rho(s)$ is a cycle of length n in S_n (thus re-proving the transitivity of G).

e) Conclude that $G = S_n$ (hint : show by suitable choice of y_0 and representative loops of s_1, \ldots, s_{n-1} , s that the product of s_1, \ldots, s_{n-1} in some order is equal to s; deduce that the transpositions $\rho(s_i)$ generate S_n from the lemma : if n-1 transpositions in S_n have a cycle of length n as product, they generate S_n)².

f) Show that the polynomial $f(X) = X^n - X$ verifies the hypotheses (is a "Morse polynomial").

g) Show that in the space \mathbb{C}^n of monic degree *n* polynomials $f = X^n + c_1 X^{n-1} + \cdots + c_n$, the subset of Morse polynomials is dense and open (hint : find a polynomial in the coefficients of *f* which vanishes if and only if *f* is not Morse).

Exercise 2. Consider the polynomial $P(T, X) = X^n - nTX + 1 \in \mathbb{C}[T, X]$.

^{1.} Here concatenation is denoted in the "compositional" order, which makes ρ a morphism $\rho(\gamma_2\gamma_1) = \rho(\gamma_2)\rho(\gamma_1)$ rather than an anti-morphism.

^{2.} In fact a better result holds : if $G \subset S_n$ is transitive and generated by transpositions, $G = S_n$, see J.-P. Serre "Topics in Galois theory", p. 40.

a) Show that $V = \{(t, x) \in \mathbb{C}^2 \mid P(t, x) = 0\}$ is a 1-dimensional complex submanifold of \mathbb{C}^2 , hence a (non-compact) Riemann surface.

b) Show that V is connected, and that the function $f: V \to \mathbb{C}$, f(t, x) = t is a ramified covering of degree n. Determine the set of its branching points $B \subset \mathbb{C}$

c) Show that around each branching point b ∈ B of f, the monodromy is a transposition.
d) Conclude that the monodromy ρ : π₁(C \ B, *) → S_n is surjective (as in the previous exercise).

Exercise 3. Let $f(X, Y) = Y^n - P(X) \in \mathbb{C}[X, Y]$, where P is a polynomial of degree $m \ge 1$ with simple roots.

a) Show that $V = \{(x, y) \in \mathbb{C}^2 \mid f(x, y) = 0\}$ is a Riemann surface, that the restriction of the first projection $p_1 : V \to \mathbb{C}$ a ramified covering of degree n, and determine its branching set $B \subset \mathbb{C}$.

b) Show that the monodromy $\rho : \pi_1(\mathbb{C} \setminus B, *) \to S_n$ has for image a cyclic group of order n (hint : consider the simply connected set $\Omega = \mathbb{C} \setminus (B + e^{i\alpha}\mathbb{R}_+)$ for a "generic" angle α and how the n determinations of $(P(x))^{1/n}$ on Ω behave along the cuts $b + e^{i\alpha}\mathbb{R}_+, b \in B$).

Exercise 4. Let $B = \{b_1, \ldots, b_r\} \subset P^1(\mathbb{C})$ be a finite subset, $n \geq 2$ an integer, and for each $i = 1, \ldots, r$ let $\sigma_i \in S_n$ be a permutation.

Assume chosen a basepoint $o \in P^1(\mathbb{C}) \setminus B$, and segments $\lambda_i \simeq [0, 1]$, $i = 1, \ldots, r$ from o to b_i , pairwise disjoint outside o and ordered by $1, 2, \ldots, r$ around o.

Denote by $s_i \in \pi_1(P^1(\mathbb{C}) \setminus B, o)$ the homotopy class of a loop first following λ_i , going once around b_i , and returning to o along $\overline{\lambda_i}$.

a) Show that if there exists a ramified covering $f: X \to P^1(\mathbb{C})$ with branching set B and monodromy $\rho: \pi_1(P^1(\mathbb{C}) \setminus B, o) \to S_n$ satisfying $\rho(s_i) = \sigma_i, i = 1, \ldots, r$, the product $\sigma_r \ldots \sigma_1$ is the identity in S_n .

Conversely, this condition is sufficient for the existence of (non-compact) surface X_0 and a covering map $f_0: X_0 \to Y_0 = P^1(\mathbb{C}) \setminus B$ with monodromy ρ , which amounts to say that the fundamental group of $P^1(\mathbb{C}) \setminus \{b_1, \ldots, b_r\}$ is generated by s_1, \ldots, s_r with the "only relation" $s_r \ldots s_1 = 1^3$.

The surface X_0 has a unique Riemann surface structure making the covering map f_0 holomorphic. The covering $f_0: X_0 \to Y_0 = P^1(\mathbb{C}) \setminus B$ restricted to the preimage of a small pointed disk D_i^* around $b_i \in B$ is determined by the decomposition of the permutation $\sigma_i = c_{i,1} \dots c_{i,m_i}$ as a product of disjoint cycles. Namely, $f_0^{-1}(D_i^*)$ is the disjoint union of punctured disks $D_{i,1}^*, \dots D_{i,m_i}^*$, with $f_0|_{D_{i,j}^*}$ modeled on $z \mapsto z^{\ell}$, where $\ell = \ell_{i,j}$ denotes the length of the cycle $c_{i,j}, j = 1, \dots, m_i$.

By "closing the puncture" of each $D_{i,j}^*$ and extending f by continuity to the added point one obtains a compact Riemann surface X and a ramified covering $f : X \to P^1(\mathbb{C})$ with the prescribed monodromy data.

b) Show that X is connected iff the subgroup G of S_n generated by $\sigma_1 \ldots, \sigma_r$ acts transitively on $\{1, \ldots, n\}$.

c) If X is connected, translate the Riemann-Hurwitz formula into a relation between the genus of X, the number r of permutations and m_1, \ldots, m_r of their cycles.

d) Check your formula on the polynomial exemples of previous exercices.

^{3.} this results from Van Kampen theorem in covering theory.