Riemann surfaces
 Partial examination (duration : 2 hours)

Exercise 1

Let us consider the map

$$
\begin{aligned}
f: \mathbf{P}^{1}(\mathbf{C}) & \rightarrow \mathbf{P}^{1}(\mathbf{C}) \\
(x: y) & \mapsto\left(x^{3}(x-y)^{2}: y^{5}\right) .
\end{aligned}
$$

(1) Show that f is well-defined and holomorphic.
(2) Compute the ramification points of f and the associated ramification indices. What is the degree of f ?

Exercise 2

Let X be a compact connected Riemann surface, and let S be a finite subset of X.
(1) Let $f: X \backslash S \rightarrow \mathbf{C}$ be a bounded holomorphic function. Show that f is constant.

Let Y be a compact connected Riemann surface, and let $f: X \backslash S \rightarrow Y$ be a non-constant holomorphic map.
(2) Show that the image of f comes arbitrarily close to every point $Q \in Y$.

You may admit the following fact : there exists a non-constant meromorphic function g on Y whose only pole is at Q.
(3) Does f necessarily extend to a holomorphic map $\hat{f}: X \rightarrow Y$?
(4) Let S^{\prime} be a finite subset of Y. Prove that any biholomorphic map $f: X \backslash S \rightarrow Y \backslash S^{\prime}$ extends to a biholomorphic map $\hat{f}: X \rightarrow Y$.

Exercise 3

Let X be a compact connected Riemann surface. For any divisor $D=\sum_{P \in X} n_{P}[P]$ on X, we denote by $\operatorname{Supp}(D)=\left\{P \in X: n_{P} \neq 0\right\}$ the support of D.

For any nonzero meromorphic function $f \in \mathcal{M}(X)^{\times}$such that $\operatorname{div}(f)$ and D have disjoint supports, we define

$$
f(D):=\prod_{P \in \operatorname{Supp}(D)} f(P)^{n_{P}} \in \mathbf{C}^{\times} .
$$

The aim of this exercise is to prove Weil's reciprocity law : for any nonzero meromorphic functions $f, g \in \mathcal{M}(X)^{\times}$such that $\operatorname{div}(f)$ and $\operatorname{div}(g)$ have disjoint supports, we have

$$
f(\operatorname{div}(g))=g(\operatorname{div}(f))
$$

(1) Prove Weil's reciprocity law when f or g is a constant function.
(2) Assume $X=\mathbf{P}^{1}(\mathbf{C})$. Let a, b, c, d be four distinct points of \mathbf{C}. Verify Weil's reciprocity law when $f(z)=(z-a) /(z-b)$ and $g(z)=(z-c) /(z-d)$.
(3) Prove Weil's reciprocity law in the case $X=\mathbf{P}^{1}(\mathbf{C})$.

Let $\varphi: X \rightarrow Y$ be a non-constant holomorphic map between compact connected Riemann surfaces. We define $\varphi^{*}: \operatorname{Div}(Y) \rightarrow \operatorname{Div}(X)$ to be the unique Z-linear map satisfying

$$
\varphi^{*}[Q]=\sum_{P \in \varphi^{-1}(Q)} e_{\varphi}(P)[P] \quad(Q \in Y) .
$$

(4) Show that $\varphi^{*}(\operatorname{div} h)=\operatorname{div}\left(\varphi^{*} h\right)$ for all $h \in \mathcal{M}(Y)^{\times}$.

We define $\varphi_{*}: \operatorname{Div}(X) \rightarrow \operatorname{Div}(Y)$ to be the unique Z-linear map satisfying $\varphi_{*}([P])=[\varphi(P)]$ for all $P \in X$. We further define $\varphi_{*}: \mathcal{M}(X)^{\times} \rightarrow \mathcal{M}(Y)^{\times}$to be the norm map associated to the field extension $\varphi^{*}: \mathcal{M}(Y) \rightarrow \mathcal{M}(X)$. We admit the following formulas

$$
\begin{aligned}
\varphi_{*}(\operatorname{div} f) & =\operatorname{div}\left(\varphi_{*} f\right) \\
f\left(\varphi^{*} D\right) & =\left(\varphi_{*} f\right)(D)
\end{aligned}
$$

for $f \in \mathcal{M}(X)^{\times}$and $D \in \operatorname{Div}(Y)$ where both sides are defined.
(5) Prove Weil's reciprocity law for arbitrary X by using the map $\hat{g}: X \rightarrow \mathbf{P}^{1}(\mathbf{C})$ to reduce to (3).

