Surfaces de Riemann Feuille de TD 1

Exercice 1

a) Soit $\underline{f}:U\to\mathbb{C}$ une fonction holomorphe dans un ouvert U de \mathbb{C} . Si U contient le disque fermé $D=\overline{D(a,r)}$, rappeler la formule de Cauchy exprimant f(w) pour $w\in D(a,r)$ comme une intégrale curviligne sur le cercle C(a,r), et la définition de cette intégrale curviligne. Comment peut-on démontrer cette formule?

- b) En déduire que f est développable en série entière convergente dans D(a, r).
- c) Montrer que si f n'est pas constante au voisinage de a, il existe un entier $m \ge 1$ et une fonction g holomorphe définie sur un voisinage V de a tels que $f(z) = f(a) + g(z)^m$ dans V et g(a) = 0, $g'(a) \ne 0$.
- d) En déduire que si U est connexe, toute fonction holomorphe non constante $f:U\to\mathbb{C}$ est ouverte : l'image de tout ouvert de U est un ouvert de \mathbb{C} .
- e) En déduire que si U est connexe et si l'une des fonctions |f|, Re(f) atteint son supremum en un point de U, elle est constante ("principe du maximum").
 - f) Montrer que si f'(a) = 0, f n'est pas injective au voisinage de a.
- g) En déduire que si f est injective, son inverse $f^{-1}: f(U) \to U$ est holomorphe (f est un "biholomorphisme", ou difféomorphisme holomorphe de U vers f(U)).
- h) Si on considère f comme application différentiable entre ouverts de $\mathbb{R}^2 \simeq \mathbb{C}$, que vaut det Df(a)?
- i) Montrer pour tout $b \in \mathbb{C}$ que l'ensemble $f^{-1}(b)$ est discret dans U ("principe des zéros isolés").

Exercice 2

- a) Soit $f: \mathbb{C} \to \mathbb{C}$ holomorphe telle que $|f(z)| \leq C(1+|z|)^n$, C > 0, $n \in \mathbb{N}$. Montrer que f est un polynôme complexe de degré au plus n.
- **b)** Déduire du cas n = 0 de la question précédente que tout polynôme complexe non constant a une racine ("théorème fondamental de l'algèbre").

Exercice 3

On rappelle le "principe des singularités inexistantes" : si $f:U\setminus\{a\}\to\mathbb{C}$ est holomorphe et bornée au voisinage de $a\in U$, elle se prolonge en une fonction holomorphe sur U.

- a) Soit $f: \mathbb{C} \to \mathbb{C}$ holomorphe et *propre*, i.e. telle que l'image réciproque de tout compact est compacte. Montrer que la fonction g(z) = 1/f(1/z) est holomorphe et bornée dans un disque épointé $D(0,r) \setminus \{0\}$, pour r > 0 assez petit.
 - **b)** En déduire que f est un polynôme complexe.
- c) En déduire que tout biholomorphisme $f: \mathbb{C} \to \mathbb{C}$ est de la forme $f(z) = az + b, a, b \in \mathbb{C}$, $a \neq 0$.

Exercice 4 On note \mathbb{D} le disque unité ouvert de \mathbb{C} .

- a) Soit $f: \mathbb{D} \to \mathbb{D}$ une application holomorphe telle que f(0) = 0. Montrer que l'on peut écrire f(z) = zg(z), pour une fonction holomorphe $g: \mathbb{D} \to \mathbb{C}$. Que vaut g(0)?
- **b)** En utilisant l'exercice 1, en déduire le *lemme de Schwarz* : on a $|f'(0)| \le 1$, et s'il y a égalité, $f(z) = \lambda z$ pour un nombre complexe λ de module 1.
- c) Soit a un point de \mathbb{D} . Vérifier que $z \mapsto (z-a)/(1-\overline{a}z)$ est une bijection holomorphe de $\mathbb{D} \to \mathbb{D}$, d'inverse holomorphe (un "biholomorphisme").
- **d)** En déduire que tout biholomorphisme $\varphi : \mathbb{D} \to \mathbb{D}$ est de la forme $\varphi(z) = \lambda(z-a)/(1-\overline{a}z)$, avec $|\lambda| = 1$ et $a \in \mathbb{D}$.
- e) Montrer que l'application $z \mapsto (z-i)/(z+i)$ définit un biholomorphisme du demi-plan supérieur $H = \{z \in \mathbb{C} \mid \text{Im} z > 0\}$ vers \mathbb{D} , et en déduire que les biholomorphismes de H vers lui-même sont les homographies $z \mapsto (az+b)/(cz+d)$ avec a,b,c,d réels et ad-bc=1.

Surfaces de Riemann Feuille de TD 1

Exercice 5 Soit \mathbb{S}^2 la sphère unité de \mathbb{R}^3 .

a) Exprimer la projection stéréographique φ_+ de $U_+ = \mathbb{S}^2 \setminus \{(0,0,1)\}$ vers le plan $x_3 = 0$, depuis le pôle $\{(0,0,1)\}$. Idem pour φ_- de $U_- = \mathbb{S}^2 \setminus \{(0,0,-1)\}$ vers le plan $x_3 = 0$. On identifie ce plan à \mathbb{C} par $x_1 + ix_2$.

- **b)** On considère les cartes $\psi_+ = \overline{\varphi_+} : U_+ \to \mathbb{C}$, $\psi_- = \varphi_- : U_- \to \mathbb{C}$. Vérifier que dans $U_+ \cap U_-$, le produit $\psi_+ \psi_-$ est constant égal à 1, et en déduire que le changement de carte $\psi_- \circ \psi_+^{-1} : \mathbb{C}^* \to \mathbb{C}^*$ est holomorphe. Ces cartes munissent \mathbb{S}^2 d'une structure de *surface de Riemann*, la "sphère de Riemann".
- c) On identifie \mathbb{S}^2 à $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, avec les coordonnées holomorphes z dans $\mathbb{C} = \widehat{\mathbb{C}} \setminus \{\infty\}$ et w = 1/z dans $\mathbb{C}^* \cup \{\infty\}$. Montrer que toute fonction holomorphe $\widehat{\mathbb{C}} \to \mathbb{C}$ est constante.
- **d)** Montrer que toute homographie $z \mapsto (az+b)/(cz+d)$, $a,b,c,d \in \mathbb{C}$, $ad-bc \neq 0$ définit un biholomorphisme de $\widehat{\mathbb{C}}$.
- e) Inversement, montrer que tout biholomorphisme de $\widehat{\mathbb{C}}$ est une telle homographie, et on peut supposer ad bc = 1 (considérer l'image de ∞).