Exercise 1

a) Determine the ramification points, ramification indices and branch points of the maps $P^1(\mathbb{C}) \to P^1(\mathbb{C})$ given by

$$z \mapsto z^2 + 1$$
, $z \mapsto z + \frac{1}{z}$, $z \mapsto z^3/(1 - z^2)$.

b) Considering these as meromorphic functions on $P^1(\mathbb{C})$, determine their zeroes and poles, and the values of ord_p there.

c) Let Λ be a lattice in \mathbb{C} , and \wp the associated Weierstrass function, considered as a meromorphic function $\wp : \mathbb{C}/\Lambda = E \to P^1(\mathbb{C})$. Determine the ramification points, ramification indices and branch locus of \wp (the set of branch points).

d) Construct an entire function $f : \mathbb{C} \to \mathbb{C}$ such that its branch locus is not closed in \mathbb{C} (hint : perturb $\cos(z)$ and compose with another function).

Exercise 2 (from previous session)

Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function with only simple zeros.

a) Show that $X = \{(x, y) \in \mathbb{C}^2 \mid y^2 = f(x)\}$ is a (non-compact) Riemann surface. What happens if f has multiple zeros?

b) Show that $h: X \to \mathbb{C}$, defined by h(x, y) = x, is holomorphic, and proper.

c) Show that the set of points $p \in X$ with ramification index $e_h(p) > 1$ is $f^{-1}(0) \times \{0\}$, and that $e_h(p) = 2$ for those points. What is the branch locus of h?

d) Assume from now on that f is a polynomial of degree $m \ge 1$, and consider $X_R = h^{-1}(\mathbb{C} \setminus D(0, R))$ for large R — a neighborhood of infinity in X.

Show that X_R is biholomorphic to $W = \{(u, v) \in U \times \mathbb{C}; v^2 = u^m\} \setminus \{(0, 0)\}$ with U a connected neighborhood of 0 in \mathbb{C} (start with coordinates $u_1 = 1/x, v = 1/y$).

e) Deduce that X_R is connected if m is odd, and disconnected if m is even.

f) Conclude that X can be embedded in a compact Riemann surface \widehat{X} , with $\widehat{X} \setminus X$ consisting of one point if m is odd, and two points otherwise (if m is odd, show that for r > 0 small enough, $W' = W \cap \{|u| < r\}$ is biholomorphic to the punctured disc $D(0, \sqrt{r}) \setminus \{0\}$ via $z \mapsto (z^2, z^m)$).

Exercise 3

a) Let $f: P^1(\mathbb{C}) \to P^1(\mathbb{C})$ be a polynomial function of degree d > 0. Show that

$$\sum_{p \in P^1(\mathbb{C})} (e_f(p) - 1) = 2d - 2.$$

b) Let X, Y, Z be compact connected Riemann surfaces, and $f: X \to Y, g: Y \to Z$ non constant holomorphic maps. show that for $p \in X$, $e_{g \circ f}(p) = e_g(f(p))e_f(p)$. In particular if g is biholomorphic $e_{g \circ f} = e_f$.

c) Let $f : P^1(\mathbb{C}) \to P^1(\mathbb{C})$ be given by a non-constant irreducible rational fraction f(z) = P(z)/Q(z), for complex polynomials P, Q. Let $d = \max(\deg P, \deg Q)$ be the degree of f.

Assuming that $\deg P \neq \deg Q$, show that

$$\sum_{p \in P^1(\mathbb{C})} (e_f(p) - 1) = 2d - 2.$$

d) Deduce the same equality if deg $P = \deg Q$ (hint : compose with a translation, and use b)).