Corrigé de l'exercice 2.

Exercise 2.

Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function with only simple zeros.

a) Show that $X = \{(x, y) \in \mathbb{C}^2 \mid y^2 = f(x)\}$ is a (non-compact) Riemann surface. What happens if f has multiple zeros?

Let (x_0, y_0) be a point of X. Then either

(1) $y_0 = 0$, $f(x_0) = 0$ hence $f'(x_0) \neq 0$ since zeros are simple. Then there exists a (holomorphic) local inverse ϕ of f such that $\phi(0) = x_0$, and in a neighbourhood V of (x_0, y_0) , X is defined by the equation $x = \phi(y^2)$. Choose y as coordinate on $V \cap X$.

or

(2) $y_0 \neq 0$, then there exists locally a (holomorphic) square root g of f such that $g(x_0) = y_0$. In a neighbourhood U of (x_0, y_0) , X is defined by the equation y = g(x). Choose x as coordinate on $U \cap X$.

Then X is covered by local coordinate charts, with coordinates either x or y, and in the intersections the coordinate change are holomorphic, given by y = g(x), $x = \phi(y^2)$, or the identity.

This endows X with a structure of Riemann surface, such that the embedding $X \subset \mathbb{C}^2$ is holomorphic (both coordinates are holomorphic functions on X).

Alternatively, one could use the holomorphic local inversion theorem (see [1,chap. X], or [2, chap.4]) applied to $F(x,y) = f(x) - y^2$. The function $F : \mathbb{C}^2 \to \mathbb{C}$ is holomorphic (complex differentiable in two variables), and if $F(x_0, y_0) = 0$, $\partial_1 F(x_0, y_0) = f'(x_0)$, $\partial_2 F(x_0, y_0) = -2y_0$ are not both zero. Then near (x_0, y_0) , either (F(x, y), y) or (x, F(x, y)) is a local biholomorphism of \mathbb{C}^2 mapping X to one of the coordinate axes, making X a complex submanifold of \mathbb{C}^2 .

If f has multiple zeros, say $f(x) = c(x)(x-x_0)^m$ near x_0 with $c(x_0) \neq 0$, $m \geq 2$, $u = c(x)^{1/m}(x-x_0)$ is a local holomorphic coordinate on the x axis near x_0 . Then X has local equation $y^2 = u^m$, and neither x nor y is locally injective near the point (u, y) = (0, 0), so that X is not a smooth complex submanifold of \mathbb{C}^2 .

b) Show that $h: X \to \mathbb{C}$, defined by h(x, y) = x, is holomorphic, and proper.

This is clear from the previous discussion.

c) Show that the set of points $p \in X$ with ramification index $e_h(p) > 1$ is $f^{-1}(0) \times \{0\}$, and that $e_h(p) = 2$ for those points. What is the branch locus of h?

Let $p = (x_0, y_0)$ be a point of X. If $y_0 \neq 0$, h = x is a local coordinate on X near p so that $e_h(p) = 1$. If $y_0 = 0$, y is a local coordinate on X near p and $x = \phi(y^2)$ for ϕ a local inverse of f such that $\phi(0) = x_0$. Hence $e_h(p) = 2$, since f is a centered local coordinate on C near x_0 and $f \circ h = y^2$ near p (i.e. y = 0).

d) Assume from now on that f is a polynomial of degree $m \ge 1$, and consider $X_R = h^{-1}(\mathbb{C} \setminus D(0, R))$ for large R — a neighborhood of infinity in X.

Show that X_R is biholomorphic to $W = \{(u, v) \in U \times \mathbb{C}; v^2 = u^m\} \setminus \{(0, 0\} \text{ with } U \text{ a connected neighborhood of } 0 \text{ in } \mathbb{C} \text{ (start with coordinates } u_1 = 1/x, v = 1/y).$

Write $f(x) = f^*(1/x)x^m$, where f^* is the reciprocal polynomial of f, of degree $\leq m$ and with $f^*(0) \neq 0$. If R is large enough, one has $f^*(1/x) = a(1/x)^m$ for |x| > R and a holomorphic and non zero in a neighborhood of 0 in \mathbb{C} . Then $(x, y) \in X_R$ if and only if |x| > R and $y^2 = (a(1/x)x)^m$. Choosing u = 1/(xa(1/x)) and v = 1/y as coordinates near infinity in \mathbb{C} , one sees that X_R is

biholomorphic to W, where $U \setminus \{0\}$ is the image of $\{x; |x| > R\}$ by $x \mapsto 1/(xa(1/x))$ (a punctured disk).

e) Deduce that X_R is connected if m is odd, and disconnected if m is even.

If m is even, W has two connected components given by $v = \pm u^{m/2}, u \in U \setminus \{0\}$.

If m is odd and $(u, v) \in W$, let z be a square root of u. Then $v^2 = z^{2m}$, hence $v = \pm z^m$. Changing z to -z if necessary, one has $u = z^2$ and $v = z^m$, and such a z is unique. Thus $z \mapsto (z^2, z^m)$ is a bijective holomorphic map

$$\psi: U' \smallsetminus \{0\} \to W$$

from a punctured neighborhood $U' \smallsetminus \{0\}$ of 0 in \mathbb{C} to W, where U' is the inverse image of U by $z \mapsto z^2$, hence still a punctured disk. In particular W is connected. Note that, being a holomorphic bijection between Riemann surfaces, ψ is a biholomorphism.

f) Conclude that X can be embedded in a compact Riemann surface \widehat{X} , with $\widehat{X} \setminus X$ consisting of one point if m is odd, and two points otherwise (if m is odd, show that for r > 0 small enough, $W' = W \cap \{|u| < r\}$ is biholomorphic to the punctured disc $D(0, \sqrt{r}) \setminus \{0\}$ via $z \mapsto (z^2, z^m)$).

- If the degree *m* of the polynomial *f* is even, we know that $X_R \simeq W$ is biholomorphic to the union of the two images by $\psi^{\pm} : u \mapsto (u, \pm u^{m/2})$ of the punctured disk $U \smallsetminus \{0\}$.

By adding two distinct points O^{\pm} to X and setting $\psi^{\pm}(0) = O^{\pm}$, $U^{\pm} = \psi^{\pm}(U)$ one defines a compact Riemann surface $\widehat{X} = X \sqcup \{O^+, O^-\}$, with $(\psi^{\pm})^{-1}$ as coordinates in U^{\pm} .

- If m is odd, W (hence X_R) is biholomorphic to the punctured disk $U' \setminus \{0\}$ by $\psi(z) = (z^2, z^m)$, and one can add a unique point O to X, and define $\psi(0) = O$ to obtain a compact Riemann surface $\widehat{X} = X \sqcup \{O\}$, with ψ^{-1} as holomorphic coordinate in $\psi(U')$.

The first coordinate map $h: X \to \mathbb{C}$ to the horizontal axis extends to a map $h: \widehat{X} \to P^1(\mathbb{C})$ in both case by sending the added point(s) to ∞ . It is a holomorphic map between compact connected Riemann surface.

Indeed if m is even h is given in coordinates $u = (\psi^{\pm})^{-1}$ in $U^{\pm} \subset \widehat{X}$ and u = 1/x in $\mathbb{P}^1(\mathbb{C})$ by the identity, and $e_h(O^{\pm}) = 1$. If m is odd, h is given by $u = z^2$, with $z = \psi^{-1}$ the above coordinate centered in O on X. Hence $e_h(O) = 2$ if m is odd.

In both cases, $h : \hat{X} \to P^1(\mathbb{C})$ is a map of degree 2, ramified in an even number of points (*m* or m+1), with branch locus $f^{-1}(0)$ if *m* is even and $f^{-1}(0) \cup \{\infty\}$ if *m* is odd. We will learn later that the compact Riemann surface \hat{X} is of genus m/2 - 1 resp. (m-1)/2. It is called a hyperelliptic (complex) curve.

[1] Jean Dieudonné, Eléments d'analyse, Tome 1, Editions Jacques Gabay, 1990.

[2] Henri Cartan, Calcul différentiel, Hermann, 1967.