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Corrigé de l'exercice 2

Exercise 2.

a) Show that the quotient Riemann surface C/Z (with Z acting naturally by translations) is iso-
morphic to C∗ (hint : show that the map e : C → C∗, e(z) = exp(2iπz) de�nes a biholomorphism
C/Z→ C∗).
The map e is holomorphic and surjective, and the preimages of points (its "�bers") are the orbits
of the action of Z on C (k, z) 7→ k + z, which is proper. So e = f ◦ p with p : C→ C/Z the quotient
map, and f : C/Z→ C∗ a bijective holomorphic map of Riemann surfaces, hence a biholomorphism.

b) Let H = {z ∈ C; Im(z) > 0}. Show that the quotient Riemann surface H/Z (with Z acting
naturally by translations) is isomorphic to the punctured unit disc D∗ = {q ∈ C∗; |q| < 1}.
The restriction e|H is holomorphic and surjects to D∗, with �bers the orbits of the action of Z on
H, which is proper (as in general the restriction of a proper action to an invariant subset). Hence as
in the previous question, it de�nes a biholomorphism H/Z→ D∗.
c) Let µn ⊂ C∗ be the group of n-th roots of 1, acting on C by multiplication. Show that the quotient
Riemann surface C/µn is isomorphic to C.
Since µn is �nite, its (continuous) action is proper. Consider the map pn : C → C de�ned by
pn(z) = zn. It is holomorphic and surjective, and its �bers are the orbits of µn on C. Hence it de�nes
a biholomorphism C/µn → C.
d) Show that the action of Z on P1(C) = C ∪ {∞} generated by z 7→ 2z is not proper. Show that it
is proper on the complement of the �xed points. What is the corresponding quotient ?

A proper action of a discrete group necessarily has �nite stabilizers, but here 0 and∞ have stabilizer
Z.
Restricting the action to C∗ = P1(C) r {0,∞}, it becomes proper because two compact subsets of
C∗ are both contained in an annulus AR = {z ∈ C|1/R ≤ |z| ≤ R}, and 2kAR ∩ AR 6= ∅ implies
2±k ≤ R2.
The target of the quotient map p : C∗ → C∗/2Z is compact, since AR maps surjectively to it for
R ≥

√
2.

To exhibit the quotient as an elliptic curve, consider the lattice Λ = log(2)Z + 2iπZ ⊂ C. Then
p◦exp : C→ C∗/2Z is surjective with �bers the orbits of the (proper) action of Λ on C (by addition),
hence de�nes an isomorphism C/Λ→ C∗/2Z.

e) Same as the previous question, but for z 7→ z + 1 on P1(C).

Here the action of Z �xes∞, hence is not proper. On the complement C = P1(C)r{∞}, we already
know that the action is proper, with quotient isomorphic to C∗.
f) What about the action of µn (by multiplication) on P1(C) ?

Since µn is �nite, the action is proper, and the map z 7→ zn from P1(C) to itself gives an isomorphism
P1(C)/µn → P1(C).

g) Consider the action of µN on the compact Fermat curve X̂ of exercice 1, given on its a�ne part

X by λ · (x, y) = (λx, y), λN = 1, (x, y) ∈ X. What is the quotient Riemann surface X̂/µN ? (wrong

hint : consider the meromorphic function xN on X̂).

The curve X̂ is constructed by gluing X ⊂ C2 to X∗ = {(u, v) ∈ C2 | 1 + vN = uN} (viewed as
disjoint) with the biholomorphism ϕ : (x, y) 7→ (u, v) = (1/x, y/x) fromX∩(C∗×C) toX∗∩(C∗×C).

Formally, X̂ is the quotient of the disjoint union X tX∗ by the equivalence relation (x, y) ∼ ϕ(x, y).
The action λ · (x, y) = (λx, y) of µN on X matches via ϕ with the action λ · (u, v) = (u/λ, v/lambda)
on X∗. They are both holomorphic, as induced by complex linear actions of µN on C2.
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Hence µN acts holomorphically on X̂, and Since µN is �nite, this action is proper.
The second projection map y : X → C extends to a holomorphic map g : X̂ → P1(C) which on X∗

is given by (u, v) 7→ v/u. It has N simple poles in X̂, images of the points (0, v) of X∗ ∩ {0} × C,
solutions of vN = −1.
The �ber g−1(z) over z ∈ C is the set of points (x, z) ∈ X, solutions of xN = 1− zN . It is an orbit
of the action of µN . And g

−1(∞) is also an orbit of this action, since λ · (0, v) = (0, v/λ).

Hence g factorizes as the quotient map X̂ → X̂/µN followed by an isomorphism X̂/µN → P1(C).

h) For the same Fermat curve, consider the "diagonal" (better : coordinatewise) action of the group

µN × µN . What is X̂/(µN × µN) ?

The group is still �nite, hence any continuous action is proper.
We can now consider xN : X → C, which extends to h : X̂ → P1(C) of degree N2, with �bers the
orbits of µN × µN (this is easily veri�ed on X and extends to the N points "at in�nity"). Hence the
quotient is isomorphic to P1(C). Another proof would be to consider the action of the "second" µN

on the quotient by the action of the �rst µN (studied in the previous question). This makes sense
only because these two actions commute. And it exhibits X/(µN × µN) as the quotient of an action
of µN on P1(C), given by (λ, y) 7→ λy. Happily, we again �nd P1(C).

i) Let G be a discrete group, and G×X → X a continuous action of G on a locally compact Hausdor�
topological space. Show that if this action is proper, the stabilizers are �nite and the quotient space
X/G is Hausdor�.

Properness of the action is (by de�nition) properness of the map (g, x) 7→ (g.x, x), the "graph map"
ϕ : G×X → X ×X.
The stabilizers Gx (x ∈ X) are �nite, because ϕ−1((x, x)) = Gx × {x} is compact and G discrete.
To show that X/G is Hausdor� is to show that for any two distinct (hence disjoint) orbits G · x,
G · y in X there are (open if we wish so) neighbourhoods U of x and V of y in X such that their
"saturations" G · U and G · V are disjoint. Note that G · U = ∪gg · U is open if U is, and that it
equals p−1(p(U)) so that p(U) is an open subset of X/G containing p(x) (and similarly for G · V ).
The sets G · U , G · V are not disjoint if and only if there is g ∈ G with g · U ∩ V 6= ∅. But X
being locally compact, we can choose compact neighbourhoods U ′ ⊂ U of x, V ′ ⊂ V of y. Then by
properness there are only �nitely many g with g ·U ′ intersecting V ′, say g1, . . . , gn. We have gi ·x 6= y
for i = 1, . . . , n by assumption, and by Hausdor�ness of X we obtain smaller (open) neighbourhoods
U ′′i ⊂ U ′ of x, V ′′i ⊂ V ′ of y such that gi ·U ′′i ∩ V ′′i = ∅ for i = 1, . . . , n. Then U ′′ = ∩iU ′′i , V ′′ = ∩iV ′′i
verify G · U ′′ ∩G · V ′′ = ∅.


