Corrigé de l'exercice 2

Exercise 2.

a) Show that the quotient Riemann surface \mathbb{C}/\mathbb{Z} (with \mathbb{Z} acting naturally by translations) is isomorphic to \mathbb{C}^* (hint : show that the map $\mathbf{e} : \mathbb{C} \to \mathbb{C}^*$, $\mathbf{e}(z) = \exp(2i\pi z)$ defines a biholomorphism $\mathbb{C}/\mathbb{Z} \to \mathbb{C}^*$).

The map **e** is holomorphic and surjective, and the preimages of points (its "fibers") are the orbits of the action of \mathbb{Z} on \mathbb{C} $(k, z) \mapsto k + z$, which is proper. So $\mathbf{e} = f \circ p$ with $p : \mathbb{C} \to \mathbb{C}/\mathbb{Z}$ the quotient map, and $f : \mathbb{C}/\mathbb{Z} \to \mathbb{C}^*$ a bijective holomorphic map of Riemann surfaces, hence a biholomorphism.

b) Let $H = \{z \in \mathbb{C}; \text{Im}(z) > 0\}$. Show that the quotient Riemann surface H/\mathbb{Z} (with \mathbb{Z} acting naturally by translations) is isomorphic to the punctured unit disc $\mathbb{D}^* = \{q \in \mathbb{C}^*; |q| < 1\}$.

The restriction $\mathbf{e}|_H$ is holomorphic and surjects to \mathbb{D}^* , with fibers the orbits of the action of \mathbb{Z} on H, which is proper (as in general the restriction of a proper action to an invariant subset). Hence as in the previous question, it defines a biholomorphism $H/\mathbb{Z} \to \mathbb{D}^*$.

c) Let $\mu_n \subset \mathbb{C}^*$ be the group of n-th roots of 1, acting on \mathbb{C} by multiplication. Show that the quotient Riemann surface \mathbb{C}/μ_n is isomorphic to \mathbb{C} .

Since μ_n is finite, its (continuous) action is proper. Consider the map $p_n : \mathbb{C} \to \mathbb{C}$ defined by $p_n(z) = z^n$. It is holomorphic and surjective, and its fibers are the orbits of μ_n on \mathbb{C} . Hence it defines a biholomorphism $\mathbb{C}/\mu_n \to \mathbb{C}$.

d) Show that the action of \mathbb{Z} on $P^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$ generated by $z \mapsto 2z$ is not proper. Show that it is proper on the complement of the fixed points. What is the corresponding quotient?

A proper action of a discrete group necessarily has finite stabilizers, but here 0 and ∞ have stabilizer \mathbb{Z} .

Restricting the action to $\mathbb{C}^* = \mathbb{P}^1(\mathbb{C}) \setminus \{0, \infty\}$, it becomes proper because two compact subsets of \mathbb{C}^* are both contained in an annulus $A_R = \{z \in \mathbb{C} | 1/R \leq |z| \leq R\}$, and $2^k A_R \cap A_R \neq \emptyset$ implies $2^{\pm k} \leq R^2$.

The target of the quotient map $p : \mathbb{C}^* \to \mathbb{C}^*/2^{\mathbb{Z}}$ is compact, since A_R maps surjectively to it for $R \ge \sqrt{2}$.

To exhibit the quotient as an elliptic curve, consider the lattice $\Lambda = \log(2)\mathbb{Z} + 2i\pi\mathbb{Z} \subset \mathbb{C}$. Then $p \circ \exp : \mathbb{C} \to \mathbb{C}^*/2^{\mathbb{Z}}$ is surjective with fibers the orbits of the (proper) action of Λ on \mathbb{C} (by addition), hence defines an isomorphism $\mathbb{C}/\Lambda \to \mathbb{C}^*/2^{\mathbb{Z}}$.

e) Same as the previous question, but for $z \mapsto z+1$ on $P^1(\mathbb{C})$.

Here the action of \mathbb{Z} fixes ∞ , hence is not proper. On the complement $\mathbb{C} = P^1(\mathbb{C}) \setminus \{\infty\}$, we already know that the action is proper, with quotient isomorphic to \mathbb{C}^* .

f) What about the action of μ_n (by multiplication) on $\mathrm{P}^1(\mathbb{C})$?

Since μ_n is finite, the action is proper, and the map $z \mapsto z^n$ from $P^1(\mathbb{C})$ to itself gives an isomorphism $P^1(\mathbb{C})/\mu_n \to P^1(\mathbb{C})$.

g) Consider the action of μ_N on the compact Fermat curve \widehat{X} of exercice 1, given on its affine part X by $\lambda \cdot (x, y) = (\lambda x, y), \ \lambda^N = 1, \ (x, y) \in X$. What is the quotient Riemann surface \widehat{X}/μ_N ? (wrong hint : consider the meromorphic function x^N on \widehat{X}).

The curve \widehat{X} is constructed by gluing $X \subset \mathbb{C}^2$ to $X^* = \{(u, v) \in \mathbb{C}^2 \mid 1 + v^N = u^N\}$ (viewed as *disjoint*) with the biholomorphism $\varphi : (x, y) \mapsto (u, v) = (1/x, y/x)$ from $X \cap (\mathbb{C}^* \times \mathbb{C})$ to $X^* \cap (\mathbb{C}^* \times \mathbb{C})$. Formally, \widehat{X} is the quotient of the disjoint union $X \sqcup X^*$ by the equivalence relation $(x, y) \sim \varphi(x, y)$.

The action $\lambda \cdot (x, y) = (\lambda x, y)$ of μ_N on X matches via φ with the action $\lambda \cdot (u, v) = (u/\lambda, v/lambda)$ on X^* . They are both holomorphic, as induced by complex linear actions of μ_N on \mathbb{C}^2 .

Hence μ_N acts holomorphically on \widehat{X} , and Since μ_N is finite, this action is proper.

The second projection map $y: X \to \mathbb{C}$ extends to a holomorphic map $g: \hat{X} \to P^1(\mathbb{C})$ which on X^* is given by $(u, v) \mapsto v/u$. It has N simple poles in \hat{X} , images of the points (0, v) of $X^* \cap \{0\} \times \mathbb{C}$, solutions of $v^N = -1$.

The fiber $g^{-1}(z)$ over $z \in \mathbb{C}$ is the set of points $(x, z) \in X$, solutions of $x^N = 1 - z^N$. It is an orbit of the action of μ_N . And $g^{-1}(\infty)$ is also an orbit of this action, since $\lambda \cdot (0, v) = (0, v/\lambda)$.

Hence g factorizes as the quotient map $\widehat{X} \to \widehat{X}/\mu_N$ followed by an isomorphism $\widehat{X}/\mu_N \to P^1(\mathbb{C})$.

h) For the same Fermat curve, consider the "diagonal" (better : coordinatewise) action of the group $\mu_N \times \mu_N$. What is $\widehat{X}/(\mu_N \times \mu_N)$?

The group is still finite, hence any continuous action is proper.

We can now consider $x^N : X \to \mathbb{C}$, which extends to $h : \widehat{X} \to P^1(\mathbb{C})$ of degree N^2 , with fibers the orbits of $\mu_N \times \mu_N$ (this is easily verified on X and extends to the N points "at infinity"). Hence the quotient is isomorphic to $P^1(\mathbb{C})$. Another proof would be to consider the action of the "second" μ_N on the quotient by the action of the first μ_N (studied in the previous question). This makes sense only because these two actions *commute*. And it exhibits $X/(\mu_N \times \mu_N)$ as the quotient of an action of μ_N on $P^1(\mathbb{C})$, given by $(\lambda, y) \mapsto \lambda y$. Happily, we again find $P^1(\mathbb{C})$.

i) Let G be a discrete group, and $G \times X \to X$ a continuous action of G on a locally compact Hausdorff topological space. Show that if this action is proper, the stabilizers are finite and the quotient space X/G is Hausdorff.

Properness of the action is (by definition) properness of the map $(g, x) \mapsto (g.x, x)$, the "graph map" $\varphi: G \times X \to X \times X$.

The stabilizers G_x ($x \in X$) are finite, because $\varphi^{-1}((x,x)) = G_x \times \{x\}$ is compact and G discrete.

To show that X/G is Hausdorff is to show that for any two distinct (hence disjoint) orbits $G \cdot x$, $G \cdot y$ in X there are (open if we wish so) neighbourhoods U of x and V of y in X such that their "saturations" $G \cdot U$ and $G \cdot V$ are disjoint. Note that $G \cdot U = \bigcup_g g \cdot U$ is open if U is, and that it equals $p^{-1}(p(U))$ so that p(U) is an open subset of X/G containing p(x) (and similarly for $G \cdot V$).

The sets $G \cdot U$, $G \cdot V$ are not disjoint if and only if there is $g \in G$ with $g \cdot U \cap V \neq \emptyset$. But X being locally compact, we can choose compact neighbourhoods $U' \subset U$ of $x, V' \subset V$ of y. Then by properness there are only finitely many g with $g \cdot U'$ intersecting V', say g_1, \ldots, g_n . We have $g_i \cdot x \neq y$ for $i = 1, \ldots, n$ by assumption, and by Hausdorffness of X we obtain smaller (open) neighbourhoods $U'_i \subset U'$ of $x, V''_i \subset V'$ of y such that $g_i \cdot U''_i \cap V''_i = \emptyset$ for $i = 1, \ldots, n$. Then $U'' = \bigcap_i U''_i, V'' = \bigcap_i V''_i$ verify $G \cdot U'' \cap G \cdot V'' = \emptyset$.