Exercise 1. Let $H = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ be the upper half-plane in \mathbb{C} .

Recall that the biholomorphisms of H are the maps

$$z \mapsto \gamma(z) = \frac{az+b}{cz+d},$$

with the real matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ determined up to a scalar factor in \mathbb{R}^* and ad - bc > 0. Denote by $\operatorname{Aut}(H)$ the corresponding group, isomorphic to $\operatorname{PSL}_2(\mathbb{R}) = \operatorname{SL}_2(\mathbb{R})/\{\pm 1\}$ (the above transformations with ad - bc = 1).

a) If $\Gamma \subset SL_2(\mathbb{R})$ is a discrete subgroup, show that its image $\overline{\Gamma}$ in Aut(H) acts freely on H (i.e. with trivial stabilizers) if and only if it has no torsion (hint : use that the action is proper).

b) Show that if $A \in SL_2(\mathbb{Z})$ is of finite order n, then n divides 4 or 6, and that n = 2 only for A = -I.

c) The discrete subgroup $\Gamma(1) = \operatorname{SL}_2(\mathbb{Z}) \subset \operatorname{SL}_2(\mathbb{R})$ acts properly on H, which quotient Riemann surface denoted by $Y(1) = H/\overline{\Gamma}(1)$, and projection $p: H \to Y(1)$.

Determine the branch points of the map p in Y(1) (hint : find the orbits of points of H with non-trivial stabilizer in $\overline{\Gamma}(1)$).

d) For $N \ge 1$, let $\Gamma(N) \subset SL_2(\mathbb{Z})$ be kernel of the reduction modulo N morphism to $SL_2(\mathbb{Z}/N\mathbb{Z})$. Show that its image $\overline{\Gamma}(N)$ in Aut(H) has no torsion for $N \ge 2$.

Exercise 2. Let $H = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ be the upper half-plane in \mathbb{C} .

- a) Show that the group Aut(H) is generated by the following transformations
- the translations $z \mapsto z + t, t \in \mathbb{R}$
- the scalings $z \mapsto \lambda z, \lambda \in \mathbb{R}^*_+$
- the symmetry $z \mapsto -1/z$.

b) Show that the subgroup $B \subset \operatorname{Aut}(H)$ of affine transformations $z \mapsto az + b$, $a \in \mathbb{R}^*_+$, $b \in \mathbb{R}$ acts transitively on H with trivial stabilizers (it is "simply transitive" on H).

c) Determine the stabilizer of the point $i \in H$ in Aut(H), and its action on the tangent space T_iH .

d) Show that for all points $z_1, z_2 \in H$, there exists $g \in Aut(H)$ such that $g(z_1) = i$ and $g(z_2) = iy$ with $y \in [1, +\infty[$.

e) Check that the Riemannian metric

$$\eta = \frac{|dz|^2}{\mathrm{Im}(z)^2} = \frac{dx^2 + dy^2}{y^2}$$

is invariant by Aut(H). One calls (H, η) the Poincaré upper half-plane.

f) Show that the positive vertical axis is a minimizing geodesic in (H, η) , i.e. that intervals in it realize the minimal η -length of C^1 paths between their endpoints. Show that moreover they are the unique (non-parametrized) geodesic segments between their endpoints. Compute the Riemannian distance $d_{\eta}(iy_1, iy_2)$ for $y_1, y_2 \in \mathbb{R}^*_+$.

g) What is the image by $z \mapsto -1/z$ of the vertical half-line $1 + i\mathbb{R}^*_+$?

h) Deduce that the vertical half-lines and the half-circles centered on the real axis are minimizing geodesics in (H, η) , and that they represent all geodesics in (H, η) (you can use, or admit, that a geodesic segment is determined by one of its endpoint and its tangent direction there).

i) Consider the "ideal boundary" $\partial_{\infty} H = \mathbb{R} \cup \{\infty\} = P^1(\mathbb{R})$ of H, with the topology induced by its embedding in $P^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$, and note that $\operatorname{Aut}(H)$ is a subgroup of $\operatorname{Aut}(P^1(\mathbb{C}))$.

Show that $\operatorname{Aut}(H)$ acts transitively on $\partial_{\infty}H$, with stabilizer of the point ∞ equal to the affine subgroup B (question ??).

j) Show that $\operatorname{Aut}(H)$ acts transitively on the couples of distinct point of $\partial_{\infty}H$, with stabilizer of $(0, \infty)$ equal to the group of scalings (question ??).

k) Show that the oriented bi-infinite geodesics in H are uniquely determined by the ordered pair of their two "ideal" endpoints in $\partial_{\infty} H$. By the previous question, $\operatorname{Aut}(H)$ acts transitively on them.

1) Show that $\operatorname{Aut}(H)$ acts sharply 3-transitively on $\partial_{\infty}H$, i.e. transitively on 3-tuples of distinct points, with trivial stabilizers.

m) Associated to η is its (oriented) Riemannian area measure dA_{η} . Show that it equals $\frac{dx \wedge dy}{y^2}$. Also express it as a suitable multiple of $dz \wedge d\overline{z}$ for z = x + iy.

n) Compute the area of the "ideal" (geodesic) triangle $T = \{z \in H \mid -1 < \operatorname{Re}(z) < 1, |z| > 1\}$?

o) Deduce that all "ideal triangles" in H have the same area π .

p) Compute the area of the triangle $T' = \{z \in H \mid -1/2 < \text{Re}(z) < 1/2, |z| > 1\}.$