TD EXPONENTIELLE DE MATRICES

Exercice 1 — Soit
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Montrer que $e^{A+B} \neq e^A e^B$.

Exercice 2 —
$$Soit A = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}. Calculer e^{A}.$$

Exercice 3 —
$$\text{Soit } J = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix} \text{ le bloc de Jordan de taille } n \text{ associ\'e à } \lambda \in \mathbb{C}. \text{ Calculer } e^J.$$

Exercice 4 — Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
. Calculer e^A .

Exercice 5 —

- 1. Calculer la différentielle de l'application $\exp: M_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R})$ en 0.
- 2. Soit $p \geq 1$. On note $u_p \colon M_n(\mathbb{R}) \to M_n(\mathbb{R})$ l'application définie par $u_p(X) = X^p/p!$. Montrer que u_p est de classe \mathcal{C}^1 et que

$$Du_p(X)(H) = \frac{1}{p!} \Big(X^{p-1}H + X^{p-2}HX + \dots + HX^{p-1} \Big).$$

3. Pour $X \in M_n(\mathbb{R})$, on note $\operatorname{ad}(X) \colon M_n(\mathbb{R}) \to M_n(\mathbb{R})$ l'application linéaire définie par $H \mapsto XH - HX$. Démontrer par récurrence que pour tout $k \geq 1$, on a

$$\sum_{p+q=k} \frac{1}{q!} Du_p(X)(H) = \frac{1}{k!} (-\mathrm{ad}(X))^{k-1}(H).$$

4. En déduire que la différentielle de exp en $X \in M_n(\mathbb{R})$ est donnée par

$$D \exp(X)(H) = \exp X \cdot \left(\sum_{k=1}^{\infty} \frac{1}{k!} (-\operatorname{ad}(X))^{k-1}(H)\right).$$

Exercice 6 —

- 1. Montrer que pour tout $k \geq 1$, l'application $\mathrm{GL}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ définie par $M \mapsto M^k$ est surjective.
- 2. Est-ce vrai si l'on remplace $GL_n(\mathbb{C})$ par $M_n(\mathbb{C})$?

Exercice 7 — On note S_n l'espace des matrices symétriques réelles de taille n, et S_n^{++} l'ensemble des matrices symétriques réelles définies positives.

- 1. Montrer que exp: $S_n \to S_n^{++}$ est bien définie et est un homéomorphisme.
- 2. Montrer un analogue pour les matrices hermitiennes.

Exercice 8 — Soit $M \in M_n(\mathbb{C})$.

- 1. Montrer que M est diagonalisable si et seulement si $\exp(M)$ est diagonalisable.
- 2. Est-ce vrai dans $M_n(\mathbb{R})$?