TD QUOTIENTS, DUALITÉ

Dans toute cette feuille, les espaces vectoriels considérés sont sur un corps fixé k.

Exercice 1 — Soit E un espace vectoriel et F un sous-espace de E. On note $\pi \colon E \to E/F$ l'application canonique. Soit S un sous-espace vectoriel de E. Monter que S est un supplémentaire de F dans E si et seulement si $\pi|_S \colon S \to E/F$ est un isomorphisme.

Exercice 2 — Soient F_1 , F_2 des sous-espaces d'un espace vectoriel E. Montrer que $F_1 + F_2$ est naturellement isomorphe à un quotient de $F_1 \times F_2$, et expliciter le sous-espace par lequel on quotiente.

Exercice 3 — Soient E et E' des espaces vectoriels, et soit F un sous-espace vectoriel de E. On note $\pi \colon E \to E/F$ l'application canonique.

1. Montrer que l'application linéaire

$$\operatorname{Hom}(E/F, E') \to \operatorname{Hom}(E, E')$$

 $f \mapsto f \circ \pi$

est injective, et décrire son image.

2. En déduire une description du dual de E/F.

Exercice 4 — Le but de cet exercice est de déterminer le groupe $\text{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$, où $m, n \ge 1$ sont des entiers.

- 1. Montrer que le groupe $\operatorname{Hom}(\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.
- 2. Montrer que $\text{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ s'identifie au groupe $\{x \in \mathbb{Z}/n\mathbb{Z} : mx = 0\}$.
- 3. En déduire que $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ s'identifie à $\mathbb{Z}/d\mathbb{Z}$ avec $d = \operatorname{pgcd}(m, n)$.

Exercice 5 — Sous-groupes d'un quotient —

Soit G un goupe, et N un sous-groupe distingué de G.

- 1. Construire une bijection entre l'ensemble des sous-groupes de G/N, et l'ensemble des sous-groupes de G contenant N.
- 2. Montrer que cette bijection préserve l'inclusion ainsi que le caractère distingué.

Exercice 6 — Quotients abéliens du groupe symétrique —

Soit G un groupe abélien, supposé isomorphe à un quotient \mathfrak{S}_n/N , où N est un sousgroupe distingué de \mathfrak{S}_n .

- 1. Montrer que tout élément g de G vérifie $g^2 = 1$.
- 2. Montrer que G est trivial ou isomorphe à $\mathbb{Z}/2\mathbb{Z}$.

Exercice 7 — On note T le sous-groupe de $SL_2(k)$ défini par $T = \{\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in k\}$.

- 1. Montrer que l'application $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (c, d)$ induit une bijection entre $T \backslash \mathrm{SL}_2(k)$ et $k^2 \backslash \{(0,0)\}$.
- 2. Ce résultat est-il valable si on remplace k par un anneau R? On rappelle que $SL_2(R) = \{M \in M_2(R) : \det M = 1\}.$

Exercice 8 —

- 1. Soient λ et μ des formes linéaires non nulles sur E. Montrer qu'elles ont même noyau si et seulement si elles sont proportionnelles.
- 2. Montrer que tout hyperplan de E est le noyau d'une forme linéaire sur E.

Exercice 9 — Soit E un espace vectoriel, et λ, μ des formes linéaires non nulles sur E. Montrer qu'il existe $x \in E$ tel que $\lambda(x)\mu(x) \neq 0$.

Exercice 10 — Déterminer des équations indépendantes pour le sous-espace vectoriel F de \mathbb{R}^4 défini par F = Vect((1, 3, -2, 2), (1, -1, 0, 1)).

Exercice 11 — Soit E un espace vectoriel de dimension n. On considère l'application $\iota \colon E \to E^{**}$ définie par $\iota(x) = (\lambda \mapsto \lambda(x))$.

- 1. Montrer que ι est un isomorphisme.
- 2. Soit $f \in \text{End}(E)$. Montrer que f^{**} s'identifie à f, via l'isomorphisme ι .
- 3. Soit F un sous-espace de E. Montrer que $F^{\perp \perp}$ s'identifie à F, via l'isomorphisme ι .

Exercice 12 — Soient E, F des espaces vectoriels de dimension finie, et $u: E \to F$ une application linéaire.

1. Soit \mathbf{e} une base de E, et \mathbf{f} une base de F. Montrer :

$$\operatorname{Mat}_{\mathbf{f}^*, \mathbf{e}^*}(u^*) = {}^{\operatorname{t}} \operatorname{Mat}_{\mathbf{e}, \mathbf{f}}(u).$$

2. Montrer les égalités :

$$\ker(u^*) = \operatorname{im}(u)^{\perp} \qquad \operatorname{im}(u^*) = \ker(u)^{\perp}.$$

3. Montrer que u est injective (resp. surjective) si et seulement si u^* est surjective (resp. injective).

Exercice 13 — Exprimer la transposée d'une composition d'applications linéaires.

Exercice 14 — Soit E un espace vectoriel de dimension finie, et F un sous-espace de E. On note $i: F \to E$ l'inclusion, et $\pi: E \to E/F$ l'application canonique.

- 1. Montrer que i^* induit un isomorphisme $E^*/F^{\perp} \cong F^*$.
- 2. En déduire dim $F + \dim F^{\perp} = \dim E$.
- 3. Soit $f \in \text{End}(E)$. Montrer que F est stable par f si et seulement si F^{\perp} est stable par f^* .
- 4. Si f est diagonalisable (respectivement, trigonalisable), en est-il de même pour f^* ? Peut-on expliciter une base de diagonalisation ou de trigonalisation pour f^* ?
- 5. Montrer que f et f^* ont même polynôme caractéristique. En déduire que si f admet la valeur propre $a \in k$, alors f^* aussi.

Exercice 15 — Soit E un espace vectoriel de dimension finie, et $\phi \colon E \times E \to k$ une forme bilinéaire symétrique. On définit

$$N = \ker(L_{\phi}) = \{x \in E : \forall y \in E, \, \phi(x, y) = 0\}.$$

- 1. Montrer qu'il existe une unique forme bilinéaire symétrique $\bar{\phi}$ sur E/N telle que pour tout $x,y\in E$, on ait $\bar{\phi}(\bar{x},\bar{y})=\phi(x,y)$.
- 2. Montrer que $\bar{\phi}$ est non dégénérée.

Exercice 16 —

1. Montrer que l'application

$$\langle \cdot, \cdot \rangle \colon M_n(k) \times M_n(k) \to k$$

définie par $\langle M, M' \rangle = \text{Tr}(MM')$, est un accouplement non dégénéré.

2. On suppose k de caractéristique $\neq 2$. Soit S_n (resp. A_n) le sous-espace de $M_n(k)$ formé des matrices symétriques (resp. antisymétriques). Montrer que $S_n^{\perp} = A_n$ et $A_n^{\perp} = S_n$.