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Summary. We show that any homomorphism between Jacobians of modular curves arises
from a linear combination of Hecke modular correspondences. The proof uses the adelic
language and is based on a study of the actions of GL2 and Galois on the étale cohomology
of the tower of modular curves. We also make this result explicit for Ribet’s twisting
operators on modular abelian varieties.

It is natural to ask whether the endomorphism algebra of the Jacobian of
a modular curve is generated by the Hecke operators. Ribet [6] showed that if
N is prime, the algebra (End J0(N))⊗Q is generated by the Hecke operators
Tn with n prime to N , answering positively a question of Shimura. Mazur [5]
subsequently showed an integral refinement of Ribet’s result, namely that
the algebra End J0(N) is generated by the Hecke operators Tp with p prime,
p ̸= N , and by the Atkin–Lehner involution wN .

For general N , the obvious generalisation of Ribet’s result does not
hold, since the Hecke operators commute with each other, while the alge-
bra End J0(N) is not commutative in general. The reason behind the non-
commutativity is the existence of certain degeneracy operators, giving rise
to old modular forms (which do not exist in the case of weight 2 and prime
level). For arbitrary N , Kani [3] showed that if Γ is a congruence subgroup
intermediate between Γ1(N) and Γ0(N), and JΓ is the Jacobian of the mod-
ular curve associated to Γ , then the algebra End(JΓ ) ⊗ Q is generated by
the Hecke operators together with explicit degeneracy operators.
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The purpose of this note is to develop an alternative approach to these
questions using the adelic language. We show that after tensoring with Q,
any homomorphism between Jacobians of modular curves arises from a lin-
ear combination of Hecke modular correspondences. The cost of our abstract
approach is that our results are less explicit in nature: the Hecke double coset
algebra is a complicated object whose structure is not known in general. On
the other hand, our results are stronger in that we consider homomorphisms
instead of endomorphisms (Theorem 1), and in that we allow for homomor-
phisms defined over abelian number fields (Theorem 2). I hope to convince
the reader that the adelic language provides a convenient point of view for
studying these questions.

Ribet [7] showed that the endomorphism algebra of a modular abelian
variety Af is generated over the Hecke field of f by a finite set of endomor-
phisms coming from the inner twists of f . In the last section of this paper,
we explain how to write these endomorphisms in terms of Hecke correspon-
dences, giving thus some substance to Theorem 2.

1. Statement of the main result. Let Af denote the ring of finite
adèles of Q, and let G = GL2(Af ). For any compact open subgroup K of G,
let MK denote the open modular curve over Q associated to K, and let MK

denote the compactification of MK . If MK is geometrically connected, we
denote by JK the Jacobian variety of MK .

Let K,K ′ be compact open subgroups of G. We denote by T̃K,K′ the free
abelian group Z[K\G/K ′] onK\G/K ′. In the caseMK andMK′ are geomet-
rically connected, we have a canonical map ρJ : T̃K,K′ → HomQ(JK , JK′)
(see Section 2).

Theorem 1. Let K,K ′ be compact open subgroups of G such that the
modular curves MK and MK′ are geometrically connected. Then

ρJ(T̃K,K′)⊗Q = HomQ(JK , JK′)⊗Q.

Remark 1. According to the Langlands correspondence, the Galois rep-
resentations associated to algebraic varieties are expected to be automorphic.
In fact, this conjectural correspondence should be functorial: not only the
Galois representations, but also the morphisms between them should have
an automorphic explanation. Theorem 1 can be seen as a very simple case
of this principle.

Remark 2. Let J be the Jacobian of a smooth projective curve X.
It is known that every endomorphism of J arises from an effective linear
combination of correspondences on X. If X is a modular curve, a general
correspondence on X could arise from a cover associated to a noncongruence
subgroup. Our result says that congruence subgroups are enough to generate
the endomorphism algebra.
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2. Modular curves in the adelic setting. Let K be a compact open
subgroup of G = GL2(Af ). The complex points of the modular curve MK

are given by
MK(C) = GL+

2 (Q)\(H×G)/K

where GL+
2 (Q) acts on H×G by γ · (τ, g) = (γ(τ), γg), and K acts on G by

right multiplication.
The set of connected components of MK(C) is in bijection with the quo-

tient Ẑ×/det(K). More precisely, let χ : Gal(Qab/Q)
∼=−→ Ẑ× denote the

cyclotomic character, and let F be the finite abelian extension of Q associ-
ated to χ−1(det(K)). Then the structural morphism MK → SpecQ factors
through SpecF , and the curve MK over SpecF is geometrically connected.
We refer to F as the base field of MK .

Let K,K ′ be compact open subgroups of G, and let g ∈ G. We define a
correspondence T̃ (g) between MK and MK′ by the diagram

MK∩gK′g−1

MK MK′

α α′

T̃ (g)

given on the complex points by α([τ, h]) = [τ, h] and α′([τ, h]) = [τ, hg]. The
correspondence T̃ (g) extends to the compactifications and induces a map

T (g) = α′
∗ ◦ α∗ : Ω1(MK) → Ω1(MK′).

This map depends only on the double coset KgK ′. It gives rise to a map

ρΩ : T̃K,K′ → HomQ(Ω1(MK), Ω1(MK′))

sending KgK ′ to T (g). We let TK,K′ = ρΩ(T̃K,K′).
Assume that MK and MK′ are geometrically connected. For any g ∈ G,

we define similarly T (g) = α′
∗◦α∗ : JK → JK′ . Note that the homomorphism

T (g) is a priori defined over the base field of MK∩gK′g−1 , but its differen-
tial at the origin maps the tangent space Ω1(MK) into Ω1(MK′), hence
it is defined over Q. We therefore get a map ρJ : T̃K,K′ → Hom(JK , JK′).
Since Hom(JK , JK′) acts faithfully on the tangent spaces, the map ρJ factors
through TK,K′ . Summing up, we have a commutative diagram

T̃K,K′ TK,K′ Hom(JK , JK′) HomQ(Ω1(MK), Ω1(MK′))

ρΩ

ρJ λ

where λ denotes the differential at the origin.
In the case K = K ′, we define T̃K = T̃K,K and TK = TK,K . The

convolution product endows T̃K with the structure of a unitary ring. We
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refer to T̃K as the Hecke double coset algebra. Note that T̃K,K′ has the
structure of a (T̃K , T̃K′)-bimodule.

3. Proof of Theorem 1. Consider the space

Ω = lim−→
K

Ω1(MK)⊗Q,

where the direct limit is taken with respect to the pull-back maps. The space
Ω is endowed with an action of G and the subspace ΩK of K-invariants coin-
cides with Ω1(MK)⊗Q. According to the multiplicity 1 theorem, the space
Ω decomposes as a direct sum of distinct irreducible admissible representa-
tions of G:

Ω =
⊕
π∈Π

Ω(π).

Let Π(K) be the set of those representations π ∈ Π satisfying Ω(π)K ̸= 0.
We have a direct sum decomposition

Ω1(MK)⊗Q =
⊕

π∈Π(K)

Ω(π)K ,

and the spaces Ω(π)K are pairwise non-isomorphic simple TK ⊗Q-modules
[4, p. 393].

Lemma 1. The canonical map

ρK : TK ⊗Q →
∏

π∈Π(K)

EndQ(Ω(π)K)

is an isomorphism.

Proof. The map ρK is injective by definition of TK . The surjectivity
follows from Burnside’s Theorem [1, §5, N◦3, Cor. 1 of Prop. 4, p. 79].

Lemma 2. Let K,K ′ be compact open subgroups of G. For any π ∈ Π,
the bimodule TK,K′ maps Ω(π)K into Ω(π)K

′ . Let R = Π(K)∩Π(K ′). The
map

ρK,K′ : TK,K′ ⊗Q →
∏
π∈R

HomQ(Ω(π)K , Ω(π)K
′
)

is an isomorphism of (TK ,TK′)-bimodules.

Proof. The map ρK,K′ is injective by definition of TK,K′ . For the surjec-
tivity, let K ′′ be a compact open subgroup of G such that R ⊂ Π(K ′′). We
have a commutative diagram

TK,K′′ ⊗TK′′,K′ ⊗Q Hom(Ω(π)K , Ω(π)K
′′
)⊗Hom(Ω(π)K

′′
, Ω(π)K

′
)

TK,K′ ⊗Q Hom(Ω(π)K , Ω(π)K
′
)
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Since the right-hand map is surjective, it suffices to show that the maps
ρK,K′′ and ρK′′,K′ are surjective. Choosing K ′′ = K ∩ K ′, we are reduced
to showing the lemma in the cases K ′ ⊂ K and K ⊂ K ′. Moreover, since
TK,K′ is a (TK ,TK′)-bimodule, and thanks to Lemma 1, it suffices to show
that for any π ∈ R, the map

ρπ : TK,K′ ⊗Q → HomQ(Ω(π)K , Ω(π)K
′
)

is non-zero.
In the case K ′ ⊂ K, the image of the double coset K · 1 ·K ′ = K under

ρπ is the inclusion map of Ω(π)K into Ω(π)K
′ , which is non-zero.

In the case K ⊂ K ′, the image of the double coset K · 1 ·K ′ = K ′ under
ρπ is the trace map from Ω(π)K to Ω(π)K

′ . Since the restriction of the trace
map to Ω(π)K

′ is multiplication by the index (K ′ : K), the trace map is
non-zero as required.

Now let us consider the direct limit of the étale cohomology groups
of MK :

H = lim−→
K

H1
ét(MK ⊗Q Q,Zℓ)⊗Qℓ.

The space H is endowed with two commuting actions of G and ΓQ =
Gal(Q/Q), and we have

HK = H1
ét(MK ⊗Q Q,Zℓ)⊗Qℓ.

We will now see how to “separate” these two actions. Let us fix an em-
bedding of Q into Qℓ.

Definition 3. For any π ∈ Π, let Vπ = HomG(Ω(π), H).

Note that Vπ is a Qℓ-vector space endowed with an action of ΓQ.

Lemma 4. The Galois representation Vπ is 2-dimensional, and we have
a G× ΓQ-equivariant isomorphism

H ∼=
⊕
π∈Π

Ω(π)⊗Q Vπ.

In particular, for any compact open subgroup K of G, we have a TK [ΓQ]-
equivariant isomorphism

HK ∼=
⊕

π∈Π(K)

Ω(π)K ⊗Q Vπ.

Proof. Let us fix an isomorphism Qℓ
∼= C. By the comparison theorem

between Betti and étale cohomology, we have

H ∼= lim−→
K

H1
B(MK(C),Qℓ).
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On the other hand, we have a C-linear isomorphism

Ω1(MK(C))⊕Ω1(MK(C))
∼=→ H1

B(MK(C),C),

(ω, ω′) 7→ [ω + c∗ω′],

where c denotes the complex conjugation on MK(C). It follows that H ∼=
(Ω ⊕Ω)⊗Qℓ. Since

HomG(Ω(π), Ω(π′)) =

{
Q if π = π′,

0 if π ̸= π′,

we deduce that Vπ has dimension 2. Finally, there is a canonical map Ω(π)⊗
Vπ → H, and the space H decomposes as the direct sum of the images of
these maps.

Remark 3. The isomorphisms in Lemma 4 have motivic origin: see [9,
2.2.4, 2.2.5].

The following lemma is well-known (see the proof of [7, Thm. 4.4]).

Lemma 5. The representation Vπ is irreducible, and we have

HomΓQ
(Vπ, Vπ′) =

{
Qℓ if π = π′,

0 if π ̸= π′.

Proof of the main theorem. Let K,K ′ be compact open subgroups of G
such that MK and MK′ are geometrically connected. Consider the composite
map

TK,K′ ⊗Qℓ Hom(JK , JK′)⊗Qℓ HomΓQ
(HK , HK′

)
ρJ⊗1

ρét

µ

Since these maps are injective, it suffices to show that ρét is surjective, and
for this it is enough to compare the dimensions. Let R = Π(K) ∩ Π(K ′).
By Lemma 2, we have

dimTK,K′ =
∑
π∈R

(dimΩ(π)K)(dimΩ(π)K
′
).

On the other hand, using Lemmas 4 and 5, we get

HomΓQ
(HK , HK′

) =
⊕
π∈R

Hom(Ω(π)K , Ω(π)K
′
)⊗Qℓ,

and thus dimHomΓQ
(HK , HK′

) = dimTK,K′ as desired.

4. Generalisation to abelian extensions. Let K be a compact open
subgroup of G, and let F be the base field of MK . Let F ′ be a finite abelian
extension of Q containing F , and let UF ′ be the subgroup of U = det(K)
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defined by UF ′ = χ(Gal(Qab/F ′)). Then we have a canonical isomorphism
MK ⊗F F

′ ∼=MKF ′ where KF ′ is the subgroup of K defined by

KF ′ = {g ∈ K : det(g) ∈ UF ′}.

Let K,K ′ be compact open subgroups of G such that the base fields of
MK and MK′ are equal to a fixed finite abelian extension F of Q.

Definition 6. Let T = (X,α, α′) be a finite correspondence between
MK and MK′ , seen as curves over Q. We say that T is defined over F if the
following diagram commutes:

X

MK MK′

SpecF

α α′

δ

T

δ′

Lemma 7. Let UF = χ(Gal(Qab/F )) and let g ∈ G. The correspondence
T̃ (g) = KgK ′ is defined over F if and only if det(g) ∈ Q>0 · UF .

We denote by TK,K′;F the subgroup of TK,K′ generated by those corre-
spondences T (g) which are defined over F . Note that we have a canonical
map ρJ : TK,K′;F → HomF (JK , JK′) where JK (resp. JK′) denotes the
Jacobian variety of MK (resp. MK′) over F .

Theorem 2. Let K,K ′ be compact open subgroups of GL2(Af ), and
let F be a finite abelian extension of Q containing the base fields of MK

and MK′ . Then the canonical map

ρJ : TKF ,K′
F ;F ⊗Q → HomF (JK , JK′)⊗Q

is an isomorphism.

Proof. By the above discussion, it is sufficient to prove the theorem in the
case when the base fields ofMK andMK′ are equal to F . Let Γ = Gal(F/Q).
For any γ ∈ Γ , let TK,K′;γ denote the subgroup of TK,K′ generated by those
correspondences T (g) satisfying det(g) ∈ Q>0 · (γ̂UF ), where γ̂ ∈ Ẑ× is any
element satisfying χ−1(γ̂)|F = γ. Since the elements of TK,K′;γ are γ-linear,
we have a direct sum decomposition

TK,K′ =
⊕
γ∈Γ

TK,K′;γ .

By the proof of Theorem 1, we have an isomorphism

(1) ρét : TK,K′ ⊗Qℓ

∼=−→ HomΓQ
(HK , HK′

).
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We now wish to identify those elements of HomΓQ
(HK , HK′

) which come
from TK,K′;γ . Let Σ denote the set of embeddings of F into Q. We have

MK ⊗Q Q =
⊔
σ∈Σ

MK ⊗F,σ Q,

inducing a direct sum decomposition HK =
⊕

σ∈Σ H
K
σ with

HK
σ = H1

ét(MK ⊗F,σ Q,Zℓ)⊗Qℓ.

Note that the action of ΓQ on HK permutes the components HK
σ according

to the rule γ · HK
σ = HK

γσ for any γ ∈ ΓQ. Fixing an element σ0 ∈ Σ, we
have an isomorphism

Ind
ΓQ

ΓF
HK

σ0
∼= HK

where ΓF = Gal(Q/F ). By Frobenius reciprocity, we have

(2) HomΓQ
(HK , HK′

) ∼= HomΓF
(HK

σ0
, HK′

).

Moreover, TK,K′;γ maps HK
σ into HK′

σγ . Combining the isomorphisms (1) and
(2), we get

TK,K′;γ ⊗Qℓ
∼= HomΓF

(HK
σ0
, HK′

σ0γ) (γ ∈ G).

Taking γ = 1, we get a commutative diagram

TK,K′;F ⊗Qℓ HomF (JK , JK′)⊗Qℓ HomΓF
(HK

σ0
, HK′

σ0
)

ρJ⊗1

ρét

µ

where ρét is an isomorphism. We conclude as in the proof of Theorem 1.

We now give some consequences for modular abelian varieties. The fol-
lowing corollary shows that every endomorphism of a modular abelian vari-
ety defined over an abelian number field arises from the Hecke double coset
algebra.

Corollary 1. Let K be a compact open subgroup of G. Let F be a finite
abelian extension of Q containing the base field of MK .

(1) Let A/F be an abelian subvariety of JK/F . Define

TA = {T ∈ TKF ;F : ρJ(T ) leaves A stable}.
Then the canonical map TA ⊗Q → EndF (A)⊗Q is surjective.

(2) Let A/F be an abelian variety which is a quotient of JK/F . Define

TA = {T ∈ TKF ;F : ρJ(T ) factors through A}.
Then the canonical map TA ⊗Q → EndF (A)⊗Q is surjective.

Proof. Let us prove (1). Let ι : A → JK denote the inclusion map. Let
p : JK → A be a homomorphism such that p ◦ ι = [n]A for some integer
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n ̸= 0. Let ϕ ∈ EndF (A). Define ψ = ι ◦ ϕ ◦ p ∈ EndF (JK). By Theorem 2,
there exists T ∈ TKF ;F ⊗ Q such that ρJ(T ) = ψ. Note that ψ leaves A
stable, so that T ∈ TA ⊗Q, and we have ψ|A = [n]ϕ.

The proof of (2) is similar.

We emphasise that Corollary 1 is true even for elliptic curves with com-
plex multiplication, as long as the endomorphisms we consider are defined
over an abelian extension of Q. For example, the elliptic curve E = X0(32)
has complex multiplication by Z[i] defined over Q(i). Let

K = K0(32)Q(i) =

{(
a b

c d

)
∈ GL2(Ẑ) : c ≡ 0 (32), ad ≡ 1 (4)

}
.

The matrix γ =
(
1 0
8 1

)
normalises K, and the canonical map

TK;Q(i) → EndQ(i)E ∼= Z[i]

maps the coset KγK = Kγ to the element −i. Indeed, if f32 ∈ S2(Γ0(32)) is
the newform corresponding to E, we have f32|γ = −if32 [2, p. 141]. Hence
TK;Q(i)

∼= EndQ(i)E.
To conclude this section, let me mention some open questions.

Questions.

(1) Do Theorems 1 and 2 hold integrally?
(2) Do Theorems 1 and 2 hold for modular curves in positive characteristic?
(3) The analogue of JK in weight k > 2 is the (Chow) motive associated

to the space of cusp forms of weight k and level K [8]. Do the results
presented here extend to these motives? Do they extend to automorphic
forms on more general groups?

5. Comparison with Ribet’s result. Let f =
∑

n≥1 anq
n be a new-

form of weight 2 on Γ1(N), and let Af/Q be the modular abelian variety
associated to f . The abelian variety Af is simple over Q and the algebra
EndQ(Af )⊗Q is isomorphic to the Hecke field Kf of f . Ribet [7] determined
the structure of the endomorphism algebra EndQ(Af )⊗Q. In particular, he
proved that this algebra is generated over Kf by finitely many endomor-
phisms coming from the inner twists of f . Our goal in this section is to write
these endomorphisms of Af in terms of Hecke correspondences, thus making
Corollary 1 explicit for these endomorphisms.

Let us first recall Ribet’s construction [7, §5]. We assume that f does
not have complex multiplication. Let Γ denote the set of automorphisms γ
of Kf such that fγ = f ⊗ χγ for some Dirichlet character χγ . Let m denote
the least common multiple of N and the conductors of the characters χγ .
Then h :=

∑
(n,N)=1 anq

n is an eigenform on the group Γ0(m
2) ∩ Γ1(m).

Let J denote the Jacobian variety of the modular curve associated to this



10 F. Brunault

group. By Shimura’s construction [7, §2], there exists an optimal quotient
ν : J → Ah associated to h. The abelian varieties Af and Ah are isogenous.
In particular, their endomorphism algebras are isomorphic.

For every γ ∈ Γ , Ribet constructs an endomorphism ηγ of Ah as follows.
Write fγ = f ⊗ χ. Let r denote the conductor of χ. For every u ∈ Z,
there is an endomorphism αu/r of J acting on the space of cusp forms as
g 7→ g(z + u/r). Define

η̃γ =
∑

u∈Z/rZ

χ−1(u) ◦ ν ◦ αu/r ∈ Hom(J,Ah)⊗Q

where χ−1(u) ∈ Kf is seen as an element of EndQ(Ah)⊗Q. Then η̃γ factors
through ν and induces an endomorphism ηγ of Ah. Since αu/r is defined over
Q(ζr), we have ηγ ∈ EndQ(ζr)(Ah)⊗Q.

Let us now turn to the adelic language. Consider the group

K = K0(m
2) ∩K1(m) =

{(
a b

c d

)
∈ GL2(Ẑ) : c ≡ 0 (m2), d ≡ 1 (m)

}
and its subgroup K ′ = KQ(ζr). The modular curve MK′ and its Jacobian
J ′ = JK′ are defined over the field Q(ζr), and we have a canonical isomor-
phism J ′ ∼= JQ(ζr).

Since the elements χ−1(u) belong to Kf , they certainly come from the
Hecke algebra of K. Therefore, there exist elements λu in TK′;Q(ζr)⊗Q such
that ρJ ′(λu) factors through Ah and induces χ−1(u) on Ah.

Lemma 8. For every u ∈ Z, we have αu/r = ρJ ′
(
T
(
1 u/r
0 1

))
.

Proof. By Lemma 7, the correspondence T̃
(
1 u/r
0 1

)
is defined over Q(ζr).

Moreover,
(
1 u/r
0 1

)
normalises K ′, so that T

(
1 u/r
0 1

)
acts on Ω1(MK′) by

sending a cusp form g to g(z + u/r). It follows that α∗
u/r = ρΩ

(
T̃
(
1 u/r
0 1

))
,

proving the lemma.

We now define

Xγ =

r−1∑
u=0

λu · T
(
1 u/r

0 1

)
∈ TK′;Q(ζr) ⊗Q.

Proposition 9. The endomorphism ρJ ′(Xγ) factors through Ah and
induces the endomorphism ηγ on Ah.

Proof. This follows from the definition of λu and Lemma 8.
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