
COMPARING ELEMENTS IN K2 OF ELLIPTIC CURVES

FRANÇOIS BRUNAULT

In this appendix, we use results of Goncharov and Levin [5] to compare the Asakura element
and the Beilinson–Kato element in K2 of the elliptic curve X0(24). This comparison is used in
the proof of Theorem 5.2.

1. Describing K2 of elliptic curves

Goncharov and Levin gave an explicit description of K2 of an elliptic curve using the so-called
elliptic Bloch group. In this section we recall this construction and state the result needed later
to compare the two elements in K2 (see Theorem 5).

Let E be an elliptic curve defined over a number field k. To describe Quillen’s K-group
K2(E), our starting point is the localisation map K2(E) → K2(k(E)), where k(E) is the
function field of E. The group K2(k(E)) can be described using Matsumoto’s theorem: for
any field F , we have an isomorphism

K2(F ) ≅ F × ⊗Z F ×

⟨x⊗ (1 − x) ∶ x ∈ F ∖ {0,1}⟩
.

The class of x⊗ y in K2(F ) is denoted by {x, y} and is called a Milnor symbol. The relations
{x,1 − x} = 0 are called the Steinberg relations.

Let Z[E(k)] be the group algebra of E(k). Consider the Bloch map

β ∶ k(E)× × k(E)× Ð→ Z[E(k)]
(f, g)z→∑

i,j

minj(pi − qj),

where div(f) = ∑imi(pi) and div(g) = ∑j nj(qj) are the divisors of f and g. The map β is
bilinear, so it induces a map

k(E)× ⊗Z k(E)× Z[E(k)],

which we still denote by β.
Let I be the augmentation ideal of Z[E(k)]. The group P of principal divisors on E/k is

generated by the divisors

(p + q) − (p) − (q) + (0) = ((p) − (0)) ⋅ ((q) − (0)) with p, q ∈ E(k),

so we have P = I2 and I/I2 ≅ E(k). It follows that β takes values in I4, and the image of β
generates I4. Following Goncharov and Levin, we now define the elliptic Bloch group of E.

Definition 1. Let R∗

3(E/k) be the subgroup of Z[E(k)] generated by the divisors β(f,1 − f)
with f ∈ k(E), f ≠ 0,1. The elliptic Bloch group of E/k is

B∗

3 (E/k) = I4

R∗

3(E/k)
.

The elliptic Bloch group of E/k is

B∗

3 (E) = B∗

3 (E/k)Gal(k/k).
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By Matsumoto’s theorem and the definition of the elliptic Bloch group, the map β gives rise
to a commutative diagram

K2(k(E)) B∗

3 (E/k)

K2(k(E)) B∗

3 (E).
Goncharov and Levin [5] proved the following fundamental result.

Theorem 2. The composite map

K2(E)⊗Q K2(k(E))⊗Q B∗

3 (E)⊗Q

is injective.

In fact, Goncharov and Levin showed that modulo torsion, K2(E) is isomorphic to the kernel
of an explicit map

δ3 ∶ B∗

3 (E) (k× ⊗E(k))Gal(k/k)
.

Proof of Theorem 2. By Quillen’s localisation theorem, there is a long exact sequence

⋯ ⊕p∈EK2(k(p)) K2(E) K2(k(E)) ⊕p∈E k(p)× ⋯,∂

where p runs over the closed points of E; see the exact sequence in the proof of [7, Theorem
5.4], with i = 2 and p = 0. Tensoring with Q and using the fact that K2 of a number field is a
torsion group [4], we get an isomorphism K2(E)⊗Q ≅ ker(∂)⊗Q.

By [5, Theorem 3.8], the natural map K2(k(E))→ B∗

3 (E) induces an isomorphism

( H0(E,K2)
Tor(k×,E(k)) +K2(k)

)⊗Q ≅ ker(δ3)⊗Q,

where H0(E,K2) = ker(∂). Since Tor(k×,E(k)) is a torsion group [9, Proposition 3.1.2(a)] and
K2(k) is also torsion, we get the result. �

We will need to work with the full group of divisors Z[E(k)], using (a modification of) the
group B3(E) introduced in [5, Definition 3.1]. The difference is that we use the m-distribution
relations only for m = −1.

Definition 3. Let R3(E/k) be the subgroup of Z[E(k)] generated by the divisors β(f,1 − f)
with f ∈ k(E), f ≠ 0,1 as well as the divisors (p) + (−p) with p ∈ E(k). We define

B3(E/k) = Z[E(k)]
R3(E/k)

, and B3(E) = B3(E/k)Gal(k/k).

Goncharov and Levin proved the following result (compare [5, Proposition 3.19(a)]).

Proposition 4. The canonical map B∗

3 (E)⊗Q→ B3(E)⊗Q is injective.

Proof. It suffices to establish the result for E/k. Let D = ∑ni(pi) ∈ I4 be a divisor belonging
to R3(E/k). Write D =D′ +D′′ with D′ ∈ R∗

3(E/k) and D′′ = ∑jmj((qj) + (−qj)). The divisor
D′′ belongs to I4 and is invariant under the elliptic involution σ ∶ p → −p on E. Thus we can
write

2D′′ =D′′ + σ(D′′) = β(∑
`

(f` ⊗ g`) + σ∗(f` ⊗ g`))

for some rational functions f`, g`. By [5, Lemma 3.21], for any rational functions f, g on E/k,

we have σ∗{f, g} = −{f, g} in K2(k(E))/{k×, k(E)×}. It follows that (f ⊗ g) + σ∗(f ⊗ g) is a

linear combination of Steinberg relations and of elements λ ⊗ h with λ ∈ k× and h ∈ k(E)×.
Applying the map β and noting that β(λ⊗ h) = 0, we get 2D′′ ∈ R∗

3(E/k) as desired. �
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Putting together Theorem 2 and Proposition 4, we get the following result.

Theorem 5. The composite map

β ∶ K2(E)⊗Q K2(k(E))⊗Q B3(E)⊗Q,

sending an element ∑i{fi, gi} to the class of the divisor ∑i β(fi, gi), is injective.

Thanks to Theorem 5, any equality in K2(E)⊗Q can be proved by applying the map β and
comparing the divisors. Of course, the difficult part is to find the necessary Steinberg relations.
In the following sections, we use this strategy to compare an “elliptic” and a “modular” element
in K2 of the elliptic curve X0(24).

2. Special elements in K2 of X0(24)

2.1. The minimal model. The curve E4 in the Legendre family is given by the equation
y2 = x(1 − x)(1 + 3x). A minimal Weierstrass equation is

E ∶ Y 2 =X3 −X2 − 4X + 4,

obtained with the change of variables (X,Y ) = (1 − 3x,−3y). This is the curve 24a1 in the
Cremona database [3]. The Néron differential is (up to sign)

ωE = dX
2Y

= dx
2y
.

The torsion subgroup of E is isomorphic to Z/4Z×Z/2Z, generated by the points p1 = (0,2) of
order 4, and p2 = (1,0) of order 2.

2.2. The modular parametrisation. The curve E is in fact isomorphic to the modular curve
X0(24). We denote by

ϕ ∶X0(24)→ E

the modular parametrisation, normalised so that ϕ(∞) = 0 and ϕ∗(ωE) = ωf = 2πif(z)dz,
where f is the unique newform of weight 2 and level Γ0(24).

The modular curve X0(24) has 8 cusps: ∞,0, 12 ,
1
3 ,

1
4 ,

1
6 ,

1
8 ,

1
12 . They are all rational, and

therefore correspond via ϕ to the 8 rationals points on E. We now make explicit this bijection.
Let Λ ⊂ C be the lattice of periods of ωE = dX/(2Y ). We have a canonical isomorphism

γ ∶ C/Λ ≅Ð→ E(C)

such that γ∗(ωE) = dz (so that γ−1(p) = ∫
p

0 ωE). The idea is now the following: given a point
τ ∈ H ∪P1(Q), we have

ϕ(τ) = γ(∫
ϕ(τ)

0
ωE) = γ(∫

τ

∞

ωf).

The last integral, as well as the map γ, can be computed using Pari/GP [8]. Note that
although the computation is numerical, we know that if τ is a cusp, then ∫

τ

∞
ωf belongs to the

lattice 1
4Λ, hence its value can be ascertained.

We used the following Pari/GP code to compute the images of the cusps of X0(24) by ϕ.

E = ellinit("24a1");

mf = mfinit([24, 2]);

f = mfeigenbasis(mf)[1];

symb = mfsymbol(mf, f);

phiE(c) = ellztopoint(E, polcoef(mfsymboleval(symb, [oo, c])*2*Pi*I, 0));

apply(phiE, [oo, 0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12])
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The results are shown in the following table.

c ∞ 0 1
2

1
3

1
4

1
6

1
8

1
12

ϕ(c) 0 3p1 + p2 p1 + p2 3p1 2p1 + p2 p1 p2 2p1

(X,Y ) (0 ∶ 1 ∶ 0) (4,−6) (4,6) (0,−2) (−2,0) (0,2) (1,0) (2,0)
The sign of the functional equation of the L-function L(E, s) is +1, hence the Atkin-Lehner

involution W24 ∶ τ → −1/(24τ) satisfies W24(f) = −f . This implies that the map W24 ∶ E → E
has the form p→ p0 −p for some rational point p0 on E, and the table above gives p0 = 3p1 +p2.

2.3. The Beilinson–Kato element. Recall the definition of the Beilinson–Kato element zE
in K2(E)⊗Q (see [2, Définition 9.3]):

zE = ϕ∗(
1

2
{u24,W24(u24)}′),

where uN , for any integer N , is the following product of Siegel units

uN = ∏
a∈(Z/NZ)×

b∈Z/NZ

ga,b,

and the superscript ′ means addition of Milnor symbols {λ, v} with λ ∈ Q× and v ∈ O(Y0(24))×
in order to obtain an element of K2(X0(24))⊗Q. Since the symbols {λ, v} are killed by β, we
can safely ignore them in the computation.

We wish to compute the divisor of the modular unit u24. Let us work more generally with uN .
From the definition of Siegel units as infinite products, we know that the order of vanishing
of ga,b at the cusp ∞ of X(N) is equal to NB2({ a

N })/2, where B2(x) = x2 − x + 1/6 is the
second Bernoulli polynomial and {t} = t − ⌊t⌋ is the fractional part of t. Moreover, we have the
transformation formula ga,b ○ α = g(a,b)α in O(Y (N))× ⊗Q for any α ∈ SL2(Z). Using this, we
can compute the order of vanishing of ga,b at any cusp.

Since we are working with X0(N) instead of X(N), we need to take into account the widths
of the cusps of X0(N). The width of the cusp 1/d ∈X0(N) is

w(1/d) = N

d ⋅ gcd(d,N/d)
.

Since 1/d = ( 1 0
d 1 )∞, we have

ord1/d(uN) = ∑
a∈(Z/NZ)×

b∈Z/NZ

ord1/d(ga,b)

= ∑
a∈(Z/NZ)×

b∈Z/NZ

w(1/d)ord∞(ga+db,b)

= w(1/d)
2

∑
a∈(Z/NZ)×

b∈Z/NZ

B2({
a + db
N

})

= dϕ(N)
2 gcd(d,N/d)ϕ(d) ∑

a∈(Z/dZ)×
B2({

a

d
}).

Here we used the distribution relation for the periodic Bernoulli polynomials,

Bn({mt}) =mn−1
m−1

∑
k=0

Bn({t +
k

m
}) (m ≥ 1).

We deduce the order of vanishing of u24 at each cusp of X0(24), and therefore its divisor:

div(u24) =
1

6
(∞) + 2

3
(0) − 1

3
(1/2) − 2

3
(1/3) − 1

6
(1/4) + 1

3
(1/6) − 1

6
(1/8) + 1

6
(1/12).
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The fractions appearing here mean that u24 is only an element of O(Y0(24))× ⊗ Q, in other
words some power of u24 is a modular unit.

Applying the modular parametrisation ϕ, we get

(1) div(u24) =
1

6
((0) + 4(3p1 + p2) − 2(p1 + p2) − 4(3p1) + 2(p1) − (2p1 + p2) − (p2) + (2p1)).

Applying the Atkin-Lehner involution, we also have

(2) div(W24(u24)) =
1

6
((3p1 + p2)+ 4(0)− 2(2p1)− 4(p2)+ 2(2p1 + p2)− (p1)− (3p1)+ (p1 + p2)).

2.4. The Asakura element. It is defined by

(3) ξ = {f, g} ∈K2(E4)⊗Q, f = y − x + 1

y + x − 1
, g = −(x − 1)2

4x2
.

Using Magma [1], we can find the divisors of f and g. Here is the code:

A2<x,y> := AffinePlane(Rationals());

C := Curve(A2, y^2-x*(1-x)*(1+3*x));

Cbar := ProjectiveClosure(C);

E, phi := EllipticCurve(Cbar);

Emin, psi := MinimalModel(E);

F<x,y> := FunctionField(Cbar);

f := (y-x+1)/(y+x-1);

g := -(x-1)^2/(4*x^2);

div_f := Decomposition(Divisor(f));

div_g := Decomposition(Divisor(g));

print "div(f) =", [<p[2], psi(phi(RepresentativePoint(p[1])))> : p in div_f];

print "div(g) =", [<p[2], psi(phi(RepresentativePoint(p[1])))> : p in div_g];

We obtain

div(f) = −(3p1) + (p1) − (3p1 + p2) + (p1 + p2)(4)

div(g) = 4(2p1 + p2) − 4(p2).

3. Comparing the divisors

We are now going to apply β to the two elements in K2(E)⊗Q, and compare the results.
For the Beilinson–Kato element, we find using (1) and (2) that

β(u24,W24(u24)) =
1

36
(8(0) − 8(p2) + 28(p1) − 28(p1 + p2)

+ 8(2p1) − 8(2p1 + p2) − 44(3p1) + 44(3p1 + p2)).
In the group B3(E)⊗Q, we have the relation (p)+ (−p) = 0 for any point p, hence (p) = 0 if

p is 2-torsion. So we can remove the 2-torsion points from the above divisor. In fact, we can
express everything in terms of p1 and p1 + p2 alone. We find

β({u24,W24(u24)}) = 2(p1) − 2(p1 + p2),
and thus

(5) β(zE) = (p1) − (p1 + p2).
We proceed similarly for the Asakura element. Using (4), we compute

β(f, g) = −8(p1) − 8(p1 + p2) + 8(3p1) + 8(3p1 + p2),
which gives

(6) β(ξ) = −16(p1) − 16(p1 + p2).
The divisors β(zE) and β(ξ) are not proportional, which suggests that there should be a

non-trivial relation involving p1 and p1 +p2. We can determine it experimentally by computing
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the elliptic dilogarithm of these points. Let us denote by DE ∶ E(C) → R the Bloch elliptic
dilogarithm. Using Pari/GP, we find numerically

(7) 5DE(p1) + 3DE(p1 + p2) ≈ 0.

This means that we should have 5(p1) + 3(p1 + p2) = 0 in the group B3(E)⊗Q. We will prove
that this is indeed the case, by exhibiting a Steinberg relation.

We search for a rational function h on E such that the zeros and poles of both h and 1 − h
are among the 8 torsion points of E. To do this, we use Mellit’s technique of incident lines [6];
see also [5, Proof of Lemma 3.29].

We view E as a non-singular plane cubic. We generate all the lines passing only through the
8 torsion points of E. Say we have found three distinct lines `1, `2, `3 satisfying this condition
and which, moreover, meet at a point p0 of P2. We may choose equations f1, f2, f3 for these
lines satisfying f1 + f2 = f3. Then h = f1/f3 has the property that the divisors of h and 1 − h
are supported at the torsion points. In particular β(h,1 − h) is also supported at the torsion
points, which gives a relation in B3(E)⊗Q.

If the intersection point p0 lies on the curve, then the above relation is trivial: it is a linear
combination of divisors of the form (p) + (−p). If, however, p0 does not lie on the curve, then
we usually get something interesting. It turns out that this method of incident lines works
remarkably well in practice.

Using a computer, it is possible to search for all incident lines, and determine the associated
Steinberg relations. In the present situation, we find the lines `1, `2 defined by the equations

f1 = −
1

4
(X + Y − 2) f2 =

1

4
(X + Y + 2).

We have f1 + f2 = 1, so that the lines are parallel (taking `3 to be the line at infinity, the lines
`1, `2, `3 are incident, so this is a particular case of the situation above). The divisors of these
functions are given by

div(f1) = 2(p1) + (2p1) − 3(0)
div(f2) = (3p1) + (2p1 + p2) + (3p1 + p2) − 3(0)

and the associated Steinberg relation is

β(f1, f2) = 9(0) + (p2) − 9(p1) − 3(p1 + p2) − (2p1) − (2p1 + p2) + (3p1) + 3(3p1 + p2)
≡ −10(p1) − 6(p1 + p2) in B3(E)⊗Q.

This shows that indeed 5(p1) + 3(p1 + p2) = 0 in B3(E)⊗Q. Thus (5) and (6) simplify:

β(zE) = (p1) +
5

3
(p1) =

8

3
(p1)

and

β(ξ) = −16(p1) − 16 × −5

3
(p1) =

32

3
(p1).

Using Theorem 5, we deduce that ξ = 4zE in K2(E)⊗Q.
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