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Abstract. We give two constructions of families of elliptic curves over cubic
or quartic fields with three, respectively four, ‘integral’ elements in the kernel

of the tame symbol on the curves. The fields are in general non-Abelian, and

the elements linearly independent. For the integrality of the elements we prove
a new criterion that does not ignore any torsion. We also verify Beilinson’s

conjecture numerically for just over 90 of the curves.

1. Introduction

Based on pioneering results by Borel [6] for number fields, and Bloch [5] for
certain elliptic curves over Q, Beilinson in [3] stated very far-reaching conjectures
on the relation between special values of L-functions and regulators of K-groups
of smooth projective varieties defined over number fields. These conjectures give
precise information on these K-groups (e.g., the maximum number of linearly in-
dependent elements in such a K-group) that is currently out of reach in general.

To verify the conjecture (theoretically or numerically) one usually constructs
as many linearly independent elements in the relevant K-group as the conjecture
predicts, computes their images under the Beilinson regulator map and relates those
to the corresponding L-value.

On the theoretical side, this has been carried out by Beilinson in the case of
modular curves [4]. Others have considered different situations (see, e.g., [36, 29,
11, 23, 7]), where the Beilinson regulator is usually expressed as an automorphic
integral and can sometimes be related to the relevant L-value. We refer to the
survey papers [14, 35] for a detailed exposition of Beilinson’s conjecture and for
older (and by now classical) results along those lines. Numerically, checks of the
Beilinson conjecture for curves were carried out in, e.g., [47, 13, 16, 1].

In this article, we study elliptic curves E over certain number fields F of fixed
degree, themselves varying in a family. In our setting the relevant K-group, which
we denote by KT

2 (E)int, is the subgroup of K2 of the function field of E consisting
of elements having trivial tame symbol at every point of E, and satisfying a certain
integrality condition; see [32, §1] for the necessary definitions and [16, §3] for more
background. Beilinson’s conjecture predicts that the Z-rank1 of this K-group is
equal to the degree of F ; this is currently not known for a single elliptic curve. In
fact, we are not aware of any examples in the literature of elliptic curves E over
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non-Abelian F for which it is known that KT
2 (E)int has at least that many linearly

independent elements.
The main focus in this paper is to give two constructions of families of elliptic

curves over (mostly non-Abelian) cubic or quartic fields with 3 and 4 linearly inde-
pendent elements in KT

2 (E)int respectively, thus matching the ranks predicted by
the conjecture in an entirely new situation.

We first construct elements in the kernel KT
2 (E) of the tame symbol using a

method of Bloch, taking as input functions with divisors in a finite subgroup of E
(see Section 4.1). Doing this for the universal families Et of elliptic curves having
a point of order N = 7, 8 or 10, we find potentially linearly independent elements
S1, . . . , Sd in KT

2 (Et), with d = 3, 3 or 4 respectively, and where we can specialise
the parameter t to values in number fields. In order to investigate the integrality
of the resulting elements we present in Section 3 a new criterion (not ignoring any
torsion) for the integrality of certain elements ofKT

2 (C) for a curve C over a number
field (see Corollary 3.2). Applying it to the above universal families, we find that
the elements Si are integral when the parameter t satisfies certain conditions akin to
the unit equation in number fields. These conditions are satisfied for some explicitly
described t that belong to certain degree d number fields, themselves parametrised
by an integer a.

To establish the linear independence of the elements S1, . . . , Sd, we compute the
limit behaviour of the Beilinson regulator of these elements when |a| goes to infinity.
In the case of the universal elliptic curves above, this amounts to understand the
behaviour of the regulator near the cusps of the modular curve.

Let us here state a sample of our main result for N = 7, where d = 3.

Theorem 1.1. Let fa(X) be one the following polynomials

X3 + aX2 − (a+ 3)X + 1 (a ∈ Z, a ̸= −8),(1.2)

X3 + aX2 − (a+ 1)X + 1 (a ∈ Z).(1.3)

Let F = Q(t) be the cubic field generated by a root t of fa. Consider the elliptic
curve E over F defined by

E : y2 + (1− g)xy − fy = x3 − fx2

with f = t3 − t2 and g = t2 − t. Then S1, S2 and S3 are in KT
2 (E)int, and they are

Z-linearly independent for |a| ≫ 0.

The family (1.2) is the family of simplest cubic fields introduced by Shanks [41].
By contrast, the family (1.3) defines non-Abelian cubic fields.

The results for N = 8, where d = 3, are similar. For N = 10, where d = 4, we
find many families of the corresponding quartic number fields, most of which are
non-Abelian. For the precise statements we refer the reader to Theorem 4.13.

The other construction, using methods that are independent of the rest of the
paper, is given in Section 6, where we consider other families of elliptic curves E
defined over the same cubic fields as in the first construction. Using non-torsion
points on the elliptic curves, we construct 3 elements in KT

2 (E)int that are linearly
independent when the parameter is large enough.

The second part of Beilinson’s conjecture predicts that the Beilinson regulator
of the elements in KT

2 (E)int is a non-zero rational multiple of the leading coeffi-
cient L∗(E, 0) in the Taylor expansion of L(E, s) at s = 0. For elliptic curves over
general number fields, there are very few results in this direction. Although we are



K2 OF ELLIPTIC CURVES OVER NON-ABELIAN FIELDS 3

not able to link the regulator with L∗(E, 0) theoretically, we check this numerically
in a number of cases for both constructions.

Our results are of a different nature than Beilinson’s theorem [4], which relates
regulators for modular curves to L-values of modular forms. For elliptic curves
E over Q, this theorem leads to inexplicit elements in KT

2 (E)int (see [40, Theo-
rem 7.3.1]), whose regulators are related to L∗(E, 0). This can be extended to
strongly modular elliptic curves defined over Abelian fields [8]. By contrast, our
elements in KT

2 (E)int are explicit, and our elliptic curves are in general defined over
non-Abelian fields.

The structure of this paper is as follows. In Section 2 we recall Beilinson’s
conjecture in the form that we shall use in this paper. In Section 3 we prove our
new integrality criterion. This section is independent of the rest of the paper,
and its results apply to more general curves and more general bases than rings
of algebraic integers. In Section 4 we give our construction of elements based
on a point of order N on the curve. We then discuss how our new integrality
condition as formulated in Corollary 3.2(2) leads us, for N = 7, 8 or 10, to consider
specific cubic and quartic fields. These fields are given explicitly in Lemma 4.8. We
then formulate our main result on this construction in Theorem 4.13. The linear
independence part in this theorem is achieved by computing the limit behaviour
of the Beilinson regulator in our families. As this is more involved, it is given in
Section 5. In Section 6 we give a much simpler construction of families of elliptic
curves with three integral elements, over the same cubic families as in Theorem 1.1,
and prove their linear independence (except for finitely many curves), again by
computing a limit result for their Beilinson regulator. As mentioned above, this
section is almost independent of the rest of the paper. Finally, in Section 7 we
verify Beilinson’s conjecture numerically for 93 of the curves in Theorem 4.13 and
Section 6, sometimes finding large prime factors in the numerator of the resulting
rational number.

2. Beilinson’s conjecture

In this section, we make precise the relation that Beilinson’s conjecture pre-
dicts between the L-function L(E, s) of an elliptic curve E over a number field F ,
and KT

2 (E)int. We shall follow [16, Remark 3.14], which also deals with more
general curves.

First, let E be an elliptic curve over C, and let α =
∑

j{fj , gj} be in KT
2 (E).

For γ in H1(E(C),Z), the regulator pairing between γ and α is (well-)defined by

(2.1) ⟨γ, α⟩ = 1

2π

∫
γ

∑
j

η(fj , gj)

with η(f, g) = log |f |d arg(g)− log |g|d arg(f) for non-zero functions f and g on E,
where we use a representative of γ that avoids all zeroes and poles of the functions
involved.

Now let E be an elliptic curve defined over a number field F of degree m. Let X
be the Riemann surface consisting of all C-valued points of E, using all embeddings
of F into C. It is a disjoint union of the complex points of m elliptic curves Eσ, ob-
tained by applying each embedding σ of F into C to the coefficients of E. Complex
conjugation acts on X through its action on C. If σ is a real embedding this action
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is the usual action on Eσ(C), with Eσ defined over R. If σ and σ̄ are two conju-
gate non-real embeddings of F , then the action will interchange Eσ(C) and Eσ̄(C).
From this one sees that H1(X,Z)−, the subgroup of H1(X,Z) on which complex
conjugation acts as multiplication by −1, is free of rank m. In fact, a Z-basis of
it can be found by combining Z-bases of H1(E

σ(C),Z)− for all real embeddings σ
with Z-bases of

H1(E
σ(C)∐Eσ̄(C),Z)− =

(
H1(E

σ(C),Z)⊕H1(E
σ̄(C),Z)

)− ≃ H1(E
σ(C),Z)

for all pairs σ, σ̄ of conjugate non-real embeddings.
We define a pairing

H1(X,Z)×KT
2 (E) → R
(γ, α) 7→ ⟨γ, α⟩X

as follows. One has γ = (γσ)σ in H1(X,Z) = ⊕σH1(E
σ(C),Z). For each em-

bedding σ we pull back α to Eσ, obtaining an element ασ in KT
2 (E

σ). Note this
means ασ is obtained from α by applying σ to the coefficients of the functions in α.
Then ⟨γ, α⟩X =

∑
σ⟨γσ, ασ⟩ with each pairing in the sum defined by (2.1).

Now let

Λ(E, s) = As/2(2π)−smΓ(s)mL(E, s)

with Γ(s) the Gamma-function and A = NF/Q(fE)d
2
F , where fE is the conductor

of E/F , and dF the discriminant of F . We assume Λ(E, s) can be analytically
continued to the complex plane and satisfies a functional equation Λ(E, 2 − s) =
wΛ(E, s) with w = ±1, as stated in the Hasse-Weil conjecture (see [21, §16.3]).
Then L(E, s) has a zero of orderm at s = 0, and we let L∗(E, 0) = (m!)−1L(m)(E, 0)
be the first non-vanishing coefficient in its Taylor expansion in s at 0.

Let γ1, . . . , γm and α1, . . . , αm form Z-bases of H1(X,Z)− and KT
2 (E)int modulo

torsion respectively, where the latter is supposed to be free of rank m by the part
of the conjectures mentioned in the introduction. Then Beilinson expects that

(2.2) L∗(E, 0) = Q · |det(⟨γi, αj⟩X)i,j |

for some non-zero rational number Q. We call R = |det(⟨γi, αj⟩X)i,j | the Beilinson
regulator of the elements αj . In particular, this implies that the pairing ⟨ , ⟩X
betweenH1(X,Z)−, andKT

2 (E)int modulo torsion, is non-degenerate. The absolute
value of the determinant is independent of the Z-bases used, making Q well-defined
(with sign matching that of L∗(E, 0)).

3. A new integrality criterion

For the elements in KT
2 (E) that we shall construct in Section 4.1 for certain

elliptic curves E, based on a rational point P on E of finite order, we want to
have a description of the ‘integrality condition’ that does not ignore any torsion.
We achieve this in the case that will be of interest to us, where, on the minimal
regular model of the elliptic curve over the ring of algebraic integers OF of the
number field F , the multiples of P hit at most two irreducible components in each
fibre. We formulate our result for a general regular, geometrically connected and
projective curve C over a number field F , with regular, flat and proper model
over OF , but the proof works over various other bases too.

We recall from [32, §1] the subgroupKT
2 (C) inK2(F (C)), defined using the tame

symbol on C, with its subgroup KT
2 (C)int of integral elements in KT

2 (C), defined
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using the tame symbol on a regular proper model C over OF of C, with KT
2 (C)int

independent of the model [32, Proposition 4.1].
Here we shall assume C is also flat over OF , which places us in the context of [33,

Chapter 9]. Because of the regularity of C, this only excludes connected components
contained in closed fibres, which do not influence the definition of KT

2 (C)int.
For an element of KT

2 (C), the obstruction to its integrality at the fibre CP of C
at P is in a finitely generated Abelian group, and is trivial except for finitely
many P. So if for some α in KT

2 (C) this obstruction is torsion at all fibres,
then Mαα is in KT

2 (C)int for some positive integer Mα that depends on α and
over which we have no control. But because the obstruction at a regular fibre CP is
always an element of (OF /P)×, by [34, Corollary 16.2] one can find βα in K2(F ),
unique up to adding an element in the finite group K2(OF ), such that the ob-
struction of α + βα is trivial for all regular fibres, and unchanged for the finitely
many singular fibres. Its obstruction to integrality is now in a finitely generated
Abelian group, and because we assumed it was torsion, there is a positive inte-
ger M , depending only on C, such that Mα+Mβα is in KT

2 (C)int. Its image under
the regulator map is M times that of α, as opposed to Mα times it above. Thus,
using K2(F ) can help to find a larger subgroup of KT

2 (C)int.
For computing the tame symbol on C for any element of KT

2 (C), we may consider
one fibre F = CP at P at a time. For this we may and do replace OF with its
localisation at P and P with the resulting maximal ideal. Let π be a uniformising
parameter for P and k the residue field.

In order to compute the tame symbol TD(α) at every irreducible component D
of F , i.e., a curve in F that is irreducible over k, we may consider the divisor (f)
on C for each of the functions (f) involved in α. Then (f) = (f)h + (f)v with (f)h
the ‘horizontal part’, consisting of the divisor of f on C with the closed points of C
giving irreducible curves on C (with F -rational points corresponding to sections
of C), and (f)v the ‘vertical part’, a sum over the irreducible components of F
with integer coefficients. The properties of the intersection product on C (see [33,
Corollary 8.3.6(b), Theorem 9.1.23]) ensure (f)h determines (f)v uniquely up to a
multiple of [F ] = (π) =

∑
D mD[D], where the sum runs through all the irreducible

components of F and the mD are positive integers. Because f is determined by (f)h
up to multiplication by F×, and by (f) up to multiplication by O×

F , such a com-
putation can in general determine TD(α) only up to multiplication by the image
of O×

F on D. More information is needed for a more precise result.
The following (detailed) result, which seems the first general result not ignoring

any torsion, covers the situation needed in the proof of Theorem 4.7. Its proof is
based on the fact that for at least one of the functions f , g and h = −g/f , the
points in its divisor hit only one irreducible component of F . Because k× is finite,
the obstruction to integrality for the element α below is always of finite exponent,
but for an elliptic curve we get a more precise result in Corollary 3.2(2).

Proposition 3.1. Let F , OF , k, C, C and F be as above. Suppose we have
non-zero functions f and g on C, distinct F -rational points O,P and Q on C,
and a positive integer N , such that (f) = N(P ) − N(O), (g) = N(Q) − N(O),
and f(Q) = g(P ) = 1. Then α = {f, g} is in KT

2 (C), the function h = −g/f is
defined at O, and h(O) is an N th root of unity ε in O×

F .
Let Ō be the point in the intersection of F and O, and similarly for P and Q.

If Ō, P̄ and Q̄ are on at most two irreducible components of F , then TD(α) is a
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constant function on D for every irreducible component D of F . In fact, with M
the order of the image ε̄ of ε in k×, the following hold.

(1) If Ō, P̄ and Q̄ are on one irreducible component, then TD(α) = 1 for all D.
(2) Suppose that Ō, P̄ and Q̄ lie on two irreducible components A ≠ B of F ,

with Ō on A. Let Ao be the connected part of ∪D≠BD that contains A, and Bo the
connected part of ∪D≠AD that contains B.

• If one of P̄ and Q̄ is on A but the other one on B, then TD(α) = 1 for all D
equal to A or contained in Bo. Moreover, if the two points on A coincide
then TD(α) = 1 for all D in F .

• If P̄ and Q̄ are on B then M is an exponent for TD(α) for all D equal to
B or contained in Ao. Moreover, if P̄ = Q̄ then this holds for all D in F .

Proof. The product formula implies that α is in KT
2 (C). Then (h) = N(Q)−N(P ),

so h is defined at O, and from α = {f, g} = {f, h} we find 1 = TO(α) = h(O)N .
(1) Note that F is connected by [33, Corollary 8.3.6(b)]. We treat various cases.

• Ō, P̄ and Q̄ distinct. Because f is regular and non-zero at Q̄, we see that (f)v = 0.
Similarly (g)v = 0 as well, hence TD(α) = 1 for all D in F .
• P̄ ̸= Q̄ but Ō = P̄ or Ō = Q̄. By anti-symmetry of α, we may assume Ō = P̄ ̸= Q̄.
Then (f)v = 0, and f|F = 1 because its poles and zeroes cancel at Ō = P̄ , f(Q̄) = 1,
and F is connected. Therefore TD(α) = 1 for every D in F .
• Ō distinct from P̄ = Q̄. We write α = {f, h}. Now (h)v = 0, and as in the first
case we find from P̄ = Q̄ and h(Ō) = ε̄ that h|F = ε̄. Note that f is uniquely

determined by its divisor on C and f(Q) = 1. We can construct it as follows. Let f̃

in F (C)× be such that (f̃)h = N(P )−N(O). Note that mA = 1 in [F ] because A is

hit by a section, so multiplying f̃ with a suitable power of π, we may assume that (f̃)

does not contain [A]. Then (f̃) = N(P )−N(O). Because the model is regular at P̄ ,

the local ring there is a unique factorisation domain, so in it we can write f̃ = uzN

with z a local equation of P and u a unit. Then f = u(Q)−1z(Q)−N f̃ , with u(Q)
in O×

F . Hence (f)v = −N(z(Q)), and TD(α) = 1 for every D in F because ε̄N = 1.
• Ō = P̄ = Q̄. We blow up this point, obtaining a new regular model with one extra
irreducible component in the new fibre, a copy of P1

k, which contains the new Ō, P̄
and Q̄. If all coincide, we blow up this new point. After finitely many steps (cf. the
proof of [33, Theorem 9.2.26]) we find a chain of new irreducible components, such
that in the last irreducible component of the chain the three points Ō, P̄ and Q̄ do
not all coincide. Then TD(α) = 1 for all irreducible components D of the new fibre
by the earlier cases, among which are those of the original fibre F .

(2) By anti-symmetry of α for P and Q, we may assume Q̄ is on B.
• Ō and P̄ distinct on A. From f(Q) = 1 we find that (f)v = 0, so that f restricts
to a constant function on every D ≠ A, and f|Bo = 1. Therefore TD(α) is a constant

function for every D ̸= A in F . From g(P ) = 1 and P̄ ̸= Ō we see that [A] in (g)v
has coefficient 0. Hence TD(α) = 1 if D = A or contained in Bo.
• Ō = P̄ on A. From f(Q) = 1 we find (f)v = 0 and f|F = 1. Hence TD(α) = 1
for every D in F .
• P̄ and Q̄ distinct on B. We write α = {f, h} with (h)v = 0. From h(O) = ε
we find that (h)v = 0, so that h restricts to a constant function on every D ̸= B,
and h|Ao = ε. Therefore TD(α) is a constant function for every D ≠ B in F , and M

an exponent for it if D is contained in A0. From f(Q) = 1 and Q̄ ̸= P̄ we see
that [B] in (f)v has coefficient 0, so that TB(α) = 1.
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• P̄ = Q̄ on B. Here we have α = {f, h} with (h)v = 0, and h|F = ε̄. Therefore M
is an exponent for TD(α) for all D in F . □

Corollary 3.2. Suppose that C is a regular, geometrically connected and projective
curve over a number field F , with F -rational points O, P and Q and positive
integer N as in Proposition 3.1. Suppose that for some regular, flat and proper
model C over OF of C, for each maximal ideal P of OF , O, P and Q hit at most
two irreducible components in the fibre of C over P. Let f , g, h = −g/f and α be
as in the proposition. Let M ′ be the order of h(O) in O×

F , which divides both N
and the number of roots of unity in F . Then the following hold.

(1) If for every P the sections corresponding to O, P and Q hit the same
irreducible component in the fibre over P, then α is in KT

2 (C)int.
(2) If the curve is an elliptic curve E, then M ′α is in KT

2 (E)int.

Proof. (1) This is immediate from Proposition 3.1 (1).
(2) For an elliptic curve E there is a minimal flat, regular, proper model E , and

every other flat, regular proper model maps to it. On E also at most two irreducible
components can be hit by the sections given by O, P and Q. Moreover, from the
list of possible fibres F [33, p.486], one sees that F = A ∪ Bo = Ao ∪ B for all
geometrically irreducible components A ≠ B of multiplicity 1 (which are those that
can be hit by a section). So for E , every irreducible component D in any fibre over
some P is covered by Proposition 3.1, and TD(M

′α) = 1 always. □

Remark 3.3. Note that in part (2) of the corollary, one only needs to multiply
by the least common multiple M ′′ of the order of those M = MP for the P where
part (2) of the proposition is required. If all such P have the same residue charac-
teristic p, then M ′′ is obtained from M ′ by dividing out all its factors p.

The next example shows that in the situation of Proposition 3.1(2) there does not
always exist β in K2(F ) with TD(α) = TD(β) for all D in F . In the example TD(α)
depends on D, but [F ] = [A] + [B], so TA(β) = TB(β) for any β in K2(F ).

Example 3.4. On the elliptic curve over Q defined by y2 = x3+1, we let P = (2, 3)
and Q = −P = (2,−3). Then (y + 1) = 3(−2P ) − 3(O) with −2P = (0,−1),
and (y − 2x+ 1) = 2(P ) + (−2P )− 3(O), so we can take, with N = 6,

f =
1

108

(y − 2x+ 1)3

y + 1
g=

1

108

(−y − 2x+ 1)3

−y + 1
.

Then h = −g/f = (−y−2x+1)3

(y−2x+1)3
y+1
y−1 satisfies h(O) = −1. The reduction of the

curve at p = 3 is of type IV, so has only irreducible components A and B, with
−[A] · [A] = −[B] · [B] = [A] · [B] = 2. One has P̄ ̸= Q̄ but both are on B.
On the flat minimal regular model over Z(3) one has (f) = 6(P ) − 6(O) − 3A
and (g) = 6(Q)− 6(O)− 3A, so TA({f, g}) = −1 and TB({f, g}) = 1.

Remark 3.5. One can employ the techniques used to prove Proposition 3.1 also in
other ways. As an example, suppose that P is an F -rational point of prime order p
on an elliptic curve E over a number field F , and that P hits the 0-component in
every fibre of the minimal regular model E of E over OF . For a maximal ideal P
of OF , the reduction P̄ of P in the (non-singular part of the) fibre FP of E has
order 1 or p. If the order is p, then O,P, . . . , (p− 1)P all have different reductions
at P. If the order is 1, then translation by P on the genus one curve E induces
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an automorphism of E of order p that maps Ō to P̄ = Ō. Hence it induces an
automorphism of order p of the blowup of E at the closed point Ō in FP. Because
of the action of this automorphism, the reductions of O,P, . . . , (p− 1)P in the new
fibre above P are either all different (but in the same irreducible component) or
all the same. If they are the same, we repeat the procedure, obtaining from the
automorphism of the blowup an automorphism of order p of the second blowup.
Repeating this as necessary for all P with P̄ = Ō in FP, we find a regular, flat and
proper model E ′ of E such that in every fibre F ′

P the reductions of O,P, . . . , (p−1)P
are distinct but in the same irreducible component.

For a subset Z of closed points of E, let us say that an element of K2(F (E))
is supported in Z if it can be written using symbols with as entries functions with
divisors supported in Z. We want to describe the subgroup W of KT

2 (E) supported
in O,P, . . . , (p − 1)P as well as its intersection Wint with KT

2 (E)int. For this, we
assume p ⩾ 5, and introduce some notation.

For a = 1, . . . , p− 1, let La be the subgroup of elements in K2(F (E)) supported
in O,P, 2P, . . . , aP , so that W consists of the elements of Lp−1 with trivial symbol
at all multiples of P . For b ̸= c in {2, . . . , p− 1}, let fb,c in F (E)× be the function
with divisor (bP ) − b(P ) + (b − 1)(O) on E, and fb,c(cP ) = 1. Because of the
way the sections given by O,P, . . . , (p − 1)P lie on our model, its divisor on E ′ is
also (bP ) − b(P ) + (b − 1)(O). For b = 2, . . . , p − 1 we let gb in F (E)× be the
function with divisor p(P ) − p(O) on E, and gb(bP ) = 1. Then its divisor on E ′

is also p(P )− p(O). The tame symbol of each {fb,c, fc,b} or {fb,c, gb} is trivial for
every irreducible curve D in E ′ except possibly if D is the section given by P or O.
From the divisors of the functions on E ′, we see that the values there are in O×

F .
For b = 2, . . . , p− 1, a function in F (E)× with divisor supported in O,P, . . . , bP

is a product of a power of fb,d for some fixed d ̸= b and a function with divisor
supported in O,P, . . . , (b − 1)P . So if α is in Lb, then modulo Lb−1 it can be
written as {fb,d, h} with (h) supported in O,P, . . . , (b− 1)P . Therefore TbP (α) = 1

is equivalent to h(bP ) = 1, which means that h is a product of the f±1
c,b with

2 ⩽ c < b as well as gb. Because fb,d scales to each fb,c, we see that α modulo Lb−1

is a sum of terms αb of ±{fb,c, fc,b}, with 2 ⩽ c < b, and ±{fb,c, gb}.
If we start with α in Lp−1 and with trivial tame symbol at 2P, . . . , (p − 1)P ,

then α − αp−1 is in Lp−2, and again has trivial tame symbol at 2P, . . . , (p − 1)P .
Continuing this way, we can write α = αp−1 + αp−2 + · · · + α2 + α′ with αb for
b = 2, . . . , p− 1 as above, and α′ in L1. Then α′ = {g2, u}+ γ with u in F× and γ
in K2(F ), and α is in W if and only if TP (α2 + · · · + αp−1) = up. But TP (αj)
for j = 2, . . . , p − 1 is in O×

F , so that u must then be in O×
F . From the divisor

of g2 on E ′, we see that then α2 + · · ·+ αp−1 + {g2, u} is in W ∩KT
2 (E)int = Wint,

so that W = Wint + K2(F ), and α is in Wint if and only if γ is in K2(OF ). It
also follows that the obstruction to completing any sum β of terms ±{fb,c, fc,b}
and ±{fb,c, gb} to an element of KT

2 (E)int by adding an element of L1 to it lies in
in O×

F /(O
×
F )

p. If this is possible, then the β + {g2, u}+ γ with up = TP (β) in O×
F

and γ in K2(OF ) are all such completions to an element of KT
2 (E)int, and this way

we obtain all elements of Wint. In particular, with ub,c = TP ({fb,c, fc,b}) in O×
F ,

the element βP,b,c = p{fb,c, fc,b}+ {g2, ub,c} is in Wint ⊆ KT
2 (E)int.
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4. K2 of families of elliptic curves with 7, 8 and 10-torsion points

In this section, we give our main construction of families of elliptic curves E
over (in general non-Abelian) cubic and quartic fields, with respectively three and
four elements in KT

2 (E)int that are, in general, linearly independent, as stated in
Theorem 4.13. (See Section 6 for a simpler construction and proof for cubic fields.)

Our starting point is Bloch’s construction of elements inKT
2 (E) using the torsion

subgroup of E, which we recall and refine in Section 4.1. To obtain elements
in KT

2 of curves in this way, it is natural to consider elliptic curves with a large
enough rational torsion subgroup. For example, Liu and de Jeu [32, Proposition
6.9] construct families of elliptic curves over quadratic fields containing a subgroup
isomorphic to Z/2Z × Z/4Z, with two elements in KT

2 (E)int that are in general
linearly independent.

In Section 4.2 we apply Bloch’s construction to the universal elliptic curve E1(N)
over the modular curve Y1(N). This is the universal family of elliptic curves with a
point P of order N . The definitions of Y1(N) and E1(N) are reviewed in Section 4.2.
We focus here on the cases N = 7, 8, 10, for which the modular curve X1(N) has
genus 0. In particular, we work out the equations of these families over Q(t), where t
is a Hauptmodul of X1(N) expressed in terms of the Weierstraß ℘-function.

In fact, one can show for any N that the element SP,s we construct in KT
2 of a

given fibre E1(N)t of E1(N) is, after tensoring with Q, a non-zero rational multiple
of Beilinson’s Eisenstein symbol associated to the point sP [4, 14, 17].

In Section 4.3, we find sufficient conditions on the parameter t, belonging to a
given number field, so that the elements from Bloch’s construction are in KT

2 (E)int.
This uses the new integrality criterion from Section 3. The conditions found lead
naturally to the construction of our cubic and quartic fields in Lemma 4.8.

The main theorem of this section is then formulated in Section 4.4. That the
elements we constructed are in KT

2 (E)int has by then already been established, but
not yet their linear independence. This independence follows from a stronger result
on the limit behaviour of the Beilinson regulator (see the definition in Section 2).
The proof of this is somewhat involved, and is given in Section 5.

4.1. Bloch’s construction of elements in KT
2 . We revisit and refine this con-

struction from [5, Section 10.1]. Let E be an elliptic curve defined over a field F ,
and P an F -rational point on E of order N . For 1 ⩽ s ⩽ N − 1, let fP,s in F (E)×

be a function with divisor (fP,s) = N(sP ) − N(O). Then for s ̸= t, the sym-
bol TP,s,t = {fP,s/fP,s(tP ), fP,t/fP,t(sP )} is in KT

2 (E) and independent of the
choice of the functions (cf. [16, Construction 4.1]). For 1 ⩽ s ⩽ N − 1 we let

SP,s =
∑N−1

t=1,t̸=s TP,s,t. Adding the trivial symbol {fP,s,−fP,s} we see that, mod-

ulo symbols with (at least) one function in F×, we have SP,s ≡ {fP,s, gP } for

some gP in F (E)× with (gP ) =
∑N−1

t=1 N(tP )−N(N − 1)(O).
For an integer a with gcd(a,N) = 1, aP also has order N , and TaP,s,t = TP,as,at

because the elements are uniquely determined by the divisors of the functions in-
volved. We may consider s and t as elements of Z/NZ, which gives

SaP,s =
∑

t̸=0,s∈Z/NZ

TaP,s,t =
∑

t ̸=0,s∈Z/NZ

TP,as,at = SP,as

as multiplication by a permutes Z/NZ. So the set {SP,1, . . . , SP,N−1} depends only
the subgroup generated by P and not on the choice of a generator.
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We recall that the action of the correspondences on E × E on KT
2 (E)/K2(F )

implies that pulling back along multiplication by −1 on E induces multiplication
by −1 on KT

2 (E)/K2(F ). Therefore, the SP,s with 1 ⩽ 2s ⩽ N − 1 will generate
the same subgroup of KT

2 (E) modulo K2(F ) as all SP,s.

4.2. Families of elliptic curves with torsion. We first review the definition of
the modular curve Y1(N) over Q. For N ⩾ 4, we consider the functor sending
a Q-scheme S to the set of isomorphism classes of pairs (E,P ) where E is an
elliptic curve over S, and P ∈ E(S) is a point of exact order N . This functor is
representable by a Q-scheme which we denote by Y1(N) (see [15, Theorem 8.2.2]).
Moreover, there is a universal elliptic curve E1(N) over Y1(N), equipped with a
section of order N .

We shall need a description of the complex points of Y1(N) and E1(N). Let H
denote the upper half-plane. By [22, Sections 1 and 2], there is an isomorphism of
Riemann surfaces

ν : Γ1(N)\H → Y1(N)(C)

τ 7→
(
C/(Z+ τZ),

[ 1
N

])
,

where

Γ1(N) =
{
A ∈ SL2(Z) : A ≡

(
1 ∗
0 1

)
mod N

}
acts on H by ( a b

c d ) · τ = aτ+b
cτ+d . Moreover, the fibre of E1(N)(C) over the point

ν(τ) can be identified with C/(Z + τZ). In fact, E1(N)(C) can be described as a
quotient of H×C by the semi-direct product Γ1(N)⋊Z2 [17, 7.1.1]. For any z ∈ C,
we denote by [τ, z] the point of E1(N)(C) corresponding to z ∈ C/(Z+ τZ). From
the moduli description, we deduce that for a matrix A = ( s t

u v ) in Γ1(N), we have
[Aτ, z] = [τ, (uτ + v)z].

In this article, we shall use an alternative description of Y1(N)(C). Let WN be
the Atkin-Lehner involution on Γ1(N)\H, induced by WN (τ) = − 1

Nτ . Consider
the composite isomorphism

ν′ = ν ◦WN : Γ1(N)\H → Y1(N)(C).

For τ ∈ H, we have

ν′(τ) = ν(WN (τ)) =
( C
Z+WN (τ)Z

,
[ 1
N

])
∼=
( C
Z+NτZ

, [τ ]
)
,

where the last isomorphism is induced by multiplication by Nτ . In this way, the
fibre of E1(N)(C) over ν′(τ) can be identified with the elliptic curve C/(Z+NτZ).

Remark 4.1. This unusual description of Y1(N)(C) with the map ν′ is related
to considering another model of the modular curve, obtained by formulating the
moduli problem using embeddings µN → E, where µN is the Q-scheme of N -th
roots of unity [15, 8.2.2]. In this article, we stick with the usual model of Y1(N)
over Q defined at the beginning of the section, but work with ν′ to describe its
complex points. One advantage of this description is that a modular function
t ∈ C(Y1(N)) is defined over a subfield K ⊂ C if and only if the Fourier expansion
of t ◦ ν′ at the cusp i∞ has coefficients in K [45, Remark 2.15].

Under the isomorphism ν : Γ1(N)\H → Y1(N)(C), the complex conjugation on
Y1(N)(C) corresponds to the standard complex conjugation on Γ1(N)\H induced



K2 OF ELLIPTIC CURVES OVER NON-ABELIAN FIELDS 11

N f g ∆

7 t3 − t2 t2 − t t7(t− 1)7(t3 − 8t2 + 5t+ 1)

8 2t2 − 3t+ 1 2t2−3t+1
t t−4(t− 1)8(2t− 1)4(8t2 − 8t+ 1)

10 2t5−3t4+t3

(t2−3t+1)2
−2t3+3t2−t
t2−3t+1 t10(t− 1)10(2t− 1)5(t2 − 3t+ 1)−10(4t2 − 2t− 1)

Table 1. Tate normal form in (4.2) for N = 7, 8, 10.

by c(τ) = −τ̄ . This follows from the algebraic description of the elliptic curve

C/(Z+ τZ) using the Weierstraß parametrisation, and the identity ℘τ (z) = ℘−τ̄ (z̄)
for the Weierstraß ℘-function. For the same reason, the complex conjugation
on E1(N)(C) sends [τ, z] to [−τ̄ , z̄]. Moreover, since WN ◦ c = c ◦ WN on H,
the isomorphism ν′ is also compatible with complex conjugation.

We now discuss families of elliptic curves with torsion, and their complex-analytic
parametrisations. Let F be a field and N ⩾ 4 an integer. Every pair (E,P )
consisting of an elliptic curve E over F and an F -rational point P of order N
admits a unique Weierstraß model

(4.2) E : y2 + (1− g)xy − fy = x3 − fx2

with f in F×, g in F , and where P = (0, 0). This is called the Tate normal form
of E [2, Lemma 2.6]. By our construction in Section 4.1, we have elements SP,s

in KT
2 (E) for s = 1, . . . , ⌊N−1

2 ⌋.
In particular, consider the universal elliptic curve E1(N) over the function field

F = Q(X1(N)) of the smooth compactification X1(N) of Y1(N). It has a Tate
normal form (4.2), where P = (0, 0) is the universal section of order N . For certain
values of N , one can give an explicit parametrisation of E1(N)(C) in terms of elliptic
functions using a method of Lecacheux (see [10, Section 3] in the case N = 8).
Recall that the fibre of E1(N)(C) over ν′(τ) with τ ∈ H, is canonically isomorphic
to C/(Z+NτZ). Then the Tate normal form of E1(N)(C) has a parametrisation

x = u(τ)2℘Nτ (z) + r(τ)

y = u(τ)3
(℘′

Nτ (z)

2

)
+ u(τ)2s(τ)℘Nτ (z) + v(τ)

(4.3)

with u(τ) ∈ C×, r(τ), s(τ), v(τ) ∈ C, and where ℘Nτ denotes the Weierstraß ℘-
function on C/(Z+NτZ).

From now on, we assume that N = 7, 8 or 10, in which cases the modular curve
X1(N) has genus 0. For these values of N , the Tate normal form of E1(N) and its
discriminant ∆ are given in Table 1, where t stands for a generator of F = Q(X1(N))
(see [2, Section 2.3] for how to derive these equations).

In the case N = 7, we have

2P = (t2(t− 1), t3(t− 1)2), 3P = (t(t− 1), t(t− 1)2),

which, using (4.3), gives the parametrisation

(4.4) t =
x(2P )− x(P )

x(3P )− x(P )
t ◦ ν′(τ) = ℘7τ (2τ)− ℘7τ (τ)

℘7τ (3τ)− ℘7τ (τ)
.
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Cusps i∞ 1
2

3
7

1
3

2
7 0

t ◦ ν′ 1 7.295 . . . ∞ −0.158 . . . 0 0.862 . . .

Table 2. The cusps for N = 7

Similarly, in the case N = 8, we compute the coordinates of 2P and 3P in terms
of t. This results in the parametrisation

t ◦ ν′(τ) = ℘8τ (2τ)− ℘8τ (τ)

℘8τ (3τ)− ℘8τ (τ)
,

Finally, in the case N = 10, the computation of 2P and 4P gives

t ◦ ν′(τ) = ℘10τ (2τ)− ℘10τ (τ)

℘10τ (4τ)− ℘10τ (τ)

We note that for N = 7, 8, 10, the function t ◦ ν′ is defined and non-vanishing
on H, since ℘τ (z) = ℘τ (z

′) only for z = ±z′. Moreover, [43, Theorem 6.2(a)] shows
that the Fourier expansion of t◦ν′ has coefficients in Q. By Remark 4.1, this means
that t is a modular unit on Y1(N), that is, belongs to O(Y1(N))×.

We shall need the values of t ◦ ν′ at the cusps for the proof of the main theorem
in Section 5.3. Especially relevant here are the cusps lying on the real locus of
Γ1(N)\(H ∪ Q ∪ {i∞}), by which we mean the fixed points under the complex
conjugation c(τ) = −τ̄ defined above. This real locus is completely determined by
Snowden in [44, Section 6.4], for any N .

Let us first deal with the cusp i∞. Write, as usual, q = e2πiτ . Using the Fourier
expansion of the Weierstrass ℘ function [43, Theorem 6.2(a)], we obtain

(4.5) t ◦ ν′(τ) = 1− q +O(q2) (N = 7, 8, 10).

In particular, t ◦ ν′ takes the value 1 at the cusp i∞. The values at the other cusps
are given by the poles of j(E) ∈ Q(t), since the cusps of X1(N) lie over the cusp
i∞ of X1(1). Moreover, the map t ◦ ν′ is compatible with complex conjugation,
thus induces a homeomorphism between the real locus of Γ1(N)\(H ∪ Q ∪ {i∞})
and P1(R). Actually, all the cusps are real for these values of N .

Take for example N = 7. We find that the images of the cusps under t ◦ ν′ are
0, 1,∞ and the three real roots of t3 − 8t2 + 5t + 1. By [44, Section 6.4], the real
locus of Γ1(7)\(H ∪ Q ∪ {i∞}) is the hyperbolic hexagon whose vertices are the
cusps i∞, 1

2 ,
3
7 ,

1
3 ,

2
7 , 0 in that order. We already know that t ◦ ν′(i∞) = 1, and

more precisely t ◦ ν′(iy) → 1− when y → +∞. Since t ◦ ν′ preserves the cyclic
order, this is sufficient to get the images of all these cusps. The correspondence is
given in Table 2.

Similarly, for N = 8, the real locus of Γ1(8)\(H ∪ Q ∪ {i∞}) is the hyperbolic
hexagon whose vertices are the cusps i∞, 1

2 ,
3
8 ,

1
3 ,

1
4 , 0 in that order. The images

of these cusps under t ◦ ν′ are given in Table 3. Finally, for N = 10, the real locus
of Γ1(10)\(H ∪ Q ∪ {i∞}) is the hyperbolic octagon whose vertices are the cusps
i∞, 1

2 ,
2
5 ,

1
3 ,

3
10 ,

1
4 ,

1
5 , 0 in that order. The images of these cusps under t ◦ ν′ are

given in Table 4.

Remark 4.6. For N = 7, let t′ = 1/(1−t). We have an isomorphism from Et to Et′

given by mapping (x, y) to
(
(t− 1)−4(x− t2+ t), (t− 1)−6(y− (t2− 2t)x− t3+ t2)

)
.
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Cusps i∞ 1
2

3
8

1
3

1
4 0

t ◦ ν′ 1 ∞ 0 2−
√
2

4
1
2

2+
√
2

4

Table 3. The cusps for N = 8

Cusps i∞ 1
2

2
5

1
3

3
10

1
4

1
5 0

t ◦ ν′ 1 3+
√
5

2 ∞ 1−
√
5

4 0 3−
√
5

2
1
2

1+
√
5

4

Table 4. The cusps for N = 10

With P ′ = (0, 0) on Et′ , it is easy to check this maps P = (0, 0) on Et to 2P ′.
Similarly, Et is also isomorphic to Et′ for t

′ = 1− 1
t , with P mapping to 3P ′.

Also, for N = 8, t and t′ = 1 − t give isomorphic elliptic curves, and the same
holds for N = 10 for t and t′ = t−1

2t−1 , with P mapping to 3P ′ in both cases.

Because under these isomorphisms, P is mapped to aP ′ for an integer a with
gcd(a,N) = 1, so SP,s corresponds to SaP ′,s. By what we saw in Section 4.1,
the SP,s for s = 1, . . . , N − 1 on Et and the SP ′,s for s = 1, . . . , N − 1 on Et′

correspond, in some order.

4.3. Integrality of the elements. We can now, under suitable assumptions, re-
late the elements SP,s, as mentioned after (4.2) for N = 7, 8 and 10, to KT

2 (E)int.
It will be easier to use those in Section 5 instead of the TP,s,t (but see Remark 7.3).

Theorem 4.7. Let N = 7, 8 or 10, and let F be a number field. For a fixed t in F
such that ∆(t) = ∆N (t) in Table 1 is defined and non-zero, let E be the elliptic
curve over F given by the corresponding Tate normal form (4.2), and P = (0, 0).
Then, under the following assumptions, 2P hits the 0-component in each fibre of
the minimal regular model of E over OF .

(1) t, 1− t are in O×
F , for N = 7.

(2) 1
t − 1, 1

t − 2 are in O×
F , for N = 8.

(3) 1
t − 1, 1− 2t are in O×

F , for N = 10.

Moreover, under those assumptions, the following hold for s = 1, . . . , N − 1.

• For N = 7, SP,s is in KT
2 (E)int.

• For N = 8 and 10, N ′SP,s is in KT
2 (E)int, where N

′ is the greatest common
divisor of N and the number of roots of unity in F .

Proof. Below, we shall show that 2P always hits the 0-component, so that every
multiple of P hits either that component or the component hit by P . Note that
it follows that only the 0-component is hit if N is odd. We constructed SP,s in
Section 4.1 as a sum of elements Ts,t, to which part (1) of Corollary 3.2 applies if N
is odd, and part (2) if N is even, and the same holds for their sum. Therefore our
statement about KT

2 (E)int follows from our claim on 2P .
We shall prove it by showing that, for everyP, for a minimal Weierstraß equation

of E at P the point P or 2P reduces to a regular point for it modulo P. We do
this separately for the cases N = 7, 8 or 10.
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(1) It is straightforward to calculate the invariants c4 and ∆ of E (see [2])

c4 = (t2 − t+ 1)(t6 − 11t5 + 30t4 − 15t3 − 10t2 + 5t+ 1),

∆ = t7(t− 1)7(t3 − 8t2 + 5t+ 1).

Since t and 1− t are in O×
F , we only consider places P with P | (t3 − 8t2 + 5t+ 1).

By Lemma 3.1 of [2] with r = 1 and s = 0, there are µ, ν in OF such that
µc4 + ν∆ = 72. If P ∤ 7 then P ∤ c4, and the Weierstraß equation (4.2) is minimal
atP. The derivative with respect to y at the reduction of P = (0, 0) is the reduction
of f , which is non-zero.

If P | 7, we transform the equation into

y2 = x3 − 27c4x− 54c6

where P is transformed into (3(1 − g)2 − 12f,−108f) (see [42, Ch III, Section 1]
for the transformation). If the equation is minimal, this point reduces to a regular
point since P ∤ 108 and f is in O×

F . If the equation is not minimal, we can transform
it into a minimal Weierstraß equation

y2 = x3 − 27
c4
u4

x− 54
c6
u6

for certain u with vP(u) > 0 and P is transformed into
(

3(1−g)2−12f
u2 ,− 108f

u3

)
which

is reduced to the point at infinity.
(2) By assumption, t′ = 1

t is in OF . Under the change of variables x 7→ t2x, y 7→
t3y the elliptic curve E is isomorphic to

E′ : y2 + (−t′2 + 4t′ − 2)xy − t′(t′ − 1)(t′ − 2)y = x3 − (t′ − 1)(t′ − 2)x2

with invariants

c4 = t′8 − 16t′7 + 96t′6 − 288t′5 + 480t′4 − 448t′3 + 224t′2 − 64t′ + 16,

∆ = (t′ − 2)4(t′ − 1)8t′2(t′2 − 8t′ + 8),

with t′ − 2 and t′ − 1 in O×
F by assumption. So at a place P with vP(t′) > 0, we

have vP(2) = 0, hence vP(c4) = 0. Therefore the given Weierstraß equation of E′

is minimal at P. The Weierstraß equation has reduction y2 − 2xy = x3 − 2x2, and
the point 2P = ((t′−1)(t′−2), (t′−1)2(t′−2)2) reduces to the regular point (2, 4).

At a place P with vP(t′2 − 8t′ + 8) > 0, we also have vP(2) = 0 because
vP(t′−2) = 0. By Lemma 3.1 of [2], there exist µ, ν in OF such that µc4+ν∆ = 24.
It follows that vP(c4) = 0, so that the above Weierstraß equation is minimal at P.
In this case vP(t′) = 0 as well, and P = (0, 0) reduces to a regular point on the
curve defined by the reduction of the Weierstraß equation.

(3) By assumption, t′ = 1
t is in OF , and t′ − 1 as well as 1 − 2t′−1 = t′−2

t′ are

in O×
F . Under the change of variables x 7→ x

t′2(t′2−3t′+1)2 , y 7→ y
t′3(t′2−3t′+1)3 the

elliptic curve E is isomorphic to E′, defined by

y2+(t′3−2t′2−2t′+2)xy+t′2(t′−1)(2−t′)(t′2−3t′+1)y = x3+t′(t′−1)(2−t′)x2,
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with invariants

c4 = t′12 − 8t′11 + 16t′10 + 40t′9 − 240t′8 + 432t′7 − 256t′6 − 288t′5 + 720t′4

− 720t′3 + 416t′2 − 128t′ + 16,

∆ =

(
t′ − 2

t′

)5

(t′ − 1)10t′10(t′2 + 2t′ − 4)(t′2 − 3t′ + 1)2.

Suppose P|∆. We consider the two cases P|2 and P ∤ 2.
Case 1: P|2.
First assume P|t′. We have vP(t′) = vP(t′ − 2) because t′−2

t′ is in O×
F , so that

vP(t′) ⩽ vP(2). Consider the change of variables x 7→ t′2x and y 7→ t′3y from E′ to

E′′ : y2+
t′3 − 2t′2 − 2t′ + 2

t′
xy+(t′−1)

2− t′

t′
(t′2−3t′+1)y = x3+(t′−1)

2− t′

t′
x2,

where the coefficients are in OF . The reduction of this equation modulo P is

y2 + (v + 1)xy + vy = x3 + vx2 with v ̸= 0 the reduction of t′−2
t′ .

If vP(t′) = vP(2), then v(c4(E
′′)) = vP(c4/t

′4) = 0. Thus the Weierstraß
equation of E′′ above is minimal at P. The point P = (0, 0) does not reduce
to a singular point. On the other hand, if vP(t′) < vP(2), then vP(∆(E′′)) =
vP(∆(E′)/t′12) = 0 because vP(∆(E′) = vP(t′10) + vP(t′2 + 2t′ − 4) = vP(t′12).
Thus E′′ is minimal and has good reduction at P.

If P|(t′2 + 2t′ − 4), then we have P|t′, which is already dealt with.
If P|(t′2 − 3t′ + 1), then vP(t′) = 0, hence vP(c4) = 0 also, and the equation

of E′ is minimal at P. The reduction of 2P = (t′(t′−1)(t′−2),−t′(t′−1)2(t′−2)2)
on the curve defined by the reduction of the Weierstraß equation is regular because
the partial derivative with respect to y there is equal to the reduction of −t′.

Case 2: P ∤ 2.
Here we cannot have P|t′ or P|(t′ − 2) because t′−2

t′ is in O×
F .

If P|(t′2 +2t′ − 4) and P ∤ (t′2 − 3t′ +1), then P ∤ 5. By Lemma 3.1 of [2], there
exist µ, ν in OF such that µc4 + ν∆ = 245. It follows that vP(c4) = 0, so that the
above Weierstraß equation of E′ is minimal at P. The point P = (0, 0) does not
reduce to a singular point.

If P|(t′2 − 3t′ + 1) and P ∤ (t′2 + 2t′ − 4), then the Weierstraß equation of E′ is
minimal at P as above. The reduction of 2P = (t′(t′−1)(t′−2),−t′(t′−1)2(t′−2)2)
is regular.

Finally, if P|(t′2 − 3t′ +1) and P|(t′2 +2t′ − 4), then P|5 and P|(t′ +1). By the
transformation in [42, Ch III, Section 1], E′ is isomorphic to the curve defined by

y2 = x3 − 27c4x− 54c6

with 2P corresponding to (3(t6 − 4t5 +20t3 − 28t2 +8t+4),−108t(t− 1)2(t− 2)2).
Then one shows as when P|7 in (1) that 2P does not reduce to a singular point. □

We now describe all cubic fields F generated by an element u such that both u
and 1 − u are in O×

F (i.e., u is an exceptional unit of OF ). Note that this is the
exact condition on u = t in part (1) of Theorem 4.7 and on u = 1

t − 1 in part (2).
We also describe all quartic fields F generated by an element u such that both u
and u−1

u+1 are in O×
F , which applies to part (3) for u = 1− 2t.

Lemma 4.8. (1) For every integer a, and all ε, ε′ in {±1}, the polynomial fa(X) =
X3 + aX2 − (a + ε + ε′ + 1)X + ε is irreducible in Q[X]. A cubic field F has an
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Table 5. The coefficients b, c, ε and the Galois groups Gal of the
splitting fields of X4 + aX3 + bX2 + cX + ε for general a.

b c ε Gal b c ε Gal
−2 −a± 1 1 S4 0 −a± 1 −1 S4

−2 −a± 2 1 S4 0 −a± 2 −1 S4

−2 −a± 4 1 S4 0 −a± 4 −1 D4

−2 −a± 8, 2|a 1 S4 0 −a± 8, 2|a −1 S4

−2 −a± 16, 4|a 1 S4 0 −a± 16, a ≡ 2 (mod 4) −1 S4

−2± 1 −a 1 D4 ±1 −a −1 S4

−2± 2 −a 1 D4 ±2 −a −1 S4

2 −a 1 C2 × C2 ±4 −a −1 S4

−6 −a 1 C4

−2± 8 −a, 2|a 1 D4 ±8 −a, 2|a −1 S4

−2± 16 −a, 4|a 1 D4 ±16 −a, a ≡ 2 (mod 4) −1 S4

element u such that F = Q(u) and both u and 1 − u are in O×
F precisely when u

is a root of some fa(X). Moreover, F/Q is cyclic if and only if ε = ε′ = 1
or |2a− ε+ ε′ + 3| = 7.

(2) For each of the 40 families indexed by b, c and ε as listed in Table 5, with a
an arbitrary integer unless a condition on it is given in the column for c, the poly-
nomial fa(X) = X4+ aX3+ bX2+ cX + ε is irreducible in Q[X], except for the 28
polynomials that only have X2 + 1, X2 ±X − 1, X2 ± 2X − 1, or X2 ± 4X − 1 as
factors. For each family, with the possibility of finitely many exceptions, the Galois
group of the splitting field of the polynomial is as listed in the table.

A quartic field F has an element u such that F = Q(u) and both u and u−1
u+1 are

in O×
F precisely when u is a root of one of the irreducible fa(X).

Moreover, for F = Q(u) with u a root of an fa(X) in any of the families in (1)
and (2), the number of roots of unity in F is 2, 4, 6, 8 or 12, and F is totally real
for |a| ≫ 0.

Proof. (1) If both u and 1 − u, or, equivalently, u − 1, are in O×
F with F a cubic

field then u is a root of a polynomial f(X) = X3 + aX2 + bX + ε for integers a
and b with ε = ±1, and u − 1 of g(X) = f(X + 1). Because u ̸= ±1, F = Q(u),
so f(X) is irreducible in Q[X], hence the same holds for g(X). With u− 1 in O×

F ,
it follows that a + b + ε = f(1) = g(0) = −ε′ for some ε′ = ±1, so that f(X) is
of the required shape. Conversely, from reducing its coefficients modulo 2 one sees
any such f(X) is irreducible, and the conditions on its coefficients imply that, for
a root u of f(X), we have F = Q(u) of degree 3 over Q with u and u− 1 in O×

F .
The discriminant of f(X) is M2 + 8((ε+ 1)(ε′ + 1)− 4) with

M = a2 + (−ε+ ε′ + 3)a+ (ε+ 2)(2ε′ + 1) .

So this discriminant equals M2 if ε = ε′ = 1. In the other cases it equals M2 − 32,
which is not a square whenever M > 16, and for M ⩽ 16 it can be checked directly.

If F = Q(u) with u a root of any of the fa(X), then F is cubic, hence has
only two roots of unity. From the discriminant it follows that F is totally real
for |a| ≫ 0. For later use we observe that, in fact, the holomorphic implicit function
theorem implies that for |a| ≫ 0, the roots of the polynomial a−1fa(X) are given
by u0 = εa−1−ε(ε′+1)a−2+ . . . , u1 = 1+ε′a−1+(ε−2)ε′a−2+ . . . , and hence also
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u∞ = −a−u0−u1, giving the three embeddings of F . Note that log|u0| ∼ − log|a|,
log|u1 − 1| ∼ − log|a| and log|u∞| ∼ log|a|.

(2) If both u and u−1
u+1 are units in OF with F a quartic field, then u is a root of

some f(X) = X4+aX3+bX2+cX+ε for integers a, b and c, with ε = ±1. Then u−1
u+1

is a root of g(X) = (1−X)4f( 1+X
1−X ), which has leading coefficient −a+ b− c+ε+1

and constant term a + b + c + ε + 1. If f(X), hence g(X), is irreducible, then
u−1
u+1 is a unit of OF if and only if g(X) scales to a monic polynomial in Z[X] with
constant term ±1. Comparing leading coefficient and constant term, we see that
either a+ c = 0, in which case g(X) equals

(b+ ε+1)X4 +4(−a− ε+1)X3 +2(−b+3ε+3)X2 +4(a− ε+1)X + (b+ ε+1),

or b+ ε+ 1 = 0, so that it equals

(−a− c)X4 + 2(−a+ c− 2ε+ 2)X3 + 8(ε+ 1)X2 + 2(a− c− 2ε+ 2)X + (a+ c).

Demanding that all coefficients are divisible by the leading one now gives the
listed 40 families of polynomials f(X) with the desired scaling of g(X).

If f(X) is reducible then it can satisfy the scaling condition imposed of the
associated g(X) in only 28 cases. To see this, note that f(X) cannot have a
factor X ± 1 as it would lead to g(X) being of degree 3 or having constant term 0.
If f(X) = q1(X)q2(X) with the qi(X) in Z[X] monic, quadratic, and with constant
term ±1, then each (1−X)2qi(

1+X
1−X ) must scale to such a quadratic. It is easy to

check this holds for precisely the 7 quadratic factors as listed in the lemma.
We sketch how the Galois group for each of the 40 families was determined

using [12, Corollary 4.3]. The discriminant of f = fa is in Z[a] of degree 6 with
leading coefficient 4. So if it is not a square in Z[a] then its value is not a square
for all |a| ≫ 0. It is a square in Z[a] only when b = 2 and ε = 1.

The cubic resultant R3(Y ) of fa in Z[Y, a] defines an affine part of an elliptic
curve for 28 families (not including the case b = 2 and ε = 1). So, in each of those
families, it has integer zeroes for only finitely many a by Siegel’s theorem, and for
all other a the Galois group is S4. For the remaining 12 families it splits into three
linear factors in Z[Y, a] only for b = 2 and ε = 1, i.e., the case of C2 × C2. For the
other 11 cases it is the product of a linear factor and of a quadratic Y 2+BY −a2+C
for integers B and C, or Y 2 + (2 ± a)Y + 8. In all cases this quadratic remains
irreducible for almost all a in Z as its discriminant is 4a2+B2−4C or a2±4a−28.

The remaining checks in those 11 cases to determine if the Galois group is C4

or D4 come down to verifying if an element of Z[a] of degree 8 with leading coeffi-
cient 1 or 4 evaluates to a square for an integer a. This is again the case infinitely
often only when the expression is a square in Z[a] already, which happens for both
checks involved only for b = −6 and ε = 1.

Because a−1fa(X) is of the form a−1X4+X3+a−1bX2+(−1+a−1c′)X+a−1ε,
for |a| ≫ 0 it has real roots u−1 = −1 − 1

2 (b − c′ + ε + 1)a−1 + . . . , u0 = εa−1 +

εc′a−2 + . . . and u1 = 1 − 1
2 (b + c′ + ε + 1)a−1 + . . . , and together with the

root u∞ = −a− u−1 − u0 − u1 this gives four real embeddings of F . For later use
we note that the coefficient of a−1 in u−1, u0 and u1 is non-zero for each of the 40
families of Table 5.

Using the criteria for the roots of a quartic equation [38], for each family we can
find an explicit lower bound on |a| for which all roots of fa(X) are real. Direct
calculation for the remaining irreducible fa(X) then gives the following exceptional
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cases in which the number of roots of unity ω in F is greater than 2:

X4 + aX3 − aX + 1, a = ±2 (ω = 4), 0 (ω = 8);

X4 + aX3 + 2X2 − aX + 1, a = ±3 (ω = 6), ±2 (ω = 12), ±1 (ω = 6);

X4 + aX3 + 6X2 − aX + 1, a = ±4 (ω = 4), 0 (ω = 8);

X4 + aX3 −X2 − aX + 1, a = ±1 (ω = 6), 0 (ω = 12).

The cases where the polynomial is reducible are easily done directly. □

Remark 4.9. It is interesting to note that the family X3 + aX2 − (a+3)X +1 in
(1) defines the simplest cubic fields as in [41], and the family X4 + aX3 − 6X2 −
aX + 1 in (2), which is irreducible precisely when a ̸= 0,±3, defines the simplest
quartic fields as in [19]. The class groups and unit groups of these fields are well
studied [41, 19, 46, 25]. Mahler measures of polynomials over these fields will be
considered in [9].

Remark 4.10. For a given integer a, Hoshi and Miyake [20, Corollary 5.6] proved
that, for given a in Z, there are only finitely many b in Z such that the splitting
fields of X3 + aX2 − (a+ 3)X + 1 and of X3 + bX2 − (b+ 3)X + 1 coincide. So in
this family we have infinitely many different fields. One can prove similar results
for the other families of fields in Lemma 4.8 using the method of loc. cit.

Remark 4.11. In Lemma 4.8(1), if u and 1−u are inO×
F , then v and 1−v are inO×

F

for v in the orbit of u under the dihedral subgroup of order 6 of PGL2(Z) generated
by (−1 1

0 1 ) and ( 0 1
1 0 ). So v equals u±1, 1 − u±1 or (1 − u±1)−1, and F = Q(v).

Therefore we get isomorphic F from the polynomials in several ways.
If ε = ε′ = 1, then fa(X) = X3 + aX2 − (a+ 3)X + 1 satisfies

fa(X) = −X3fa(1−X−1) = (X − 1)3fa(1/(1−X)),

and the maps u 7→ 1− u−1 and u 7→ (1− u)−1 give the non-trivial elements in the
Galois group of F . We also have X3fa(X) = f−a−3(X), so all fields are obtained
for a ⩾ −1. Denoting the remaining three families of polynomials by fa(X) (again),
ga(X) and ha(X), we have

fa(X) = X3 + aX2 − (a+ 1)X + 1

ga(X) = X3 + aX2 − (a+ 1)X − 1 = −f−a−3(1−X)

ha(X) = X3 + aX2 − (a− 1)X − 1 = X3f−a−2(1−X−1)

as well as the identity fa(X) = X3f−a−1(X
−1), so all non-cyclic fields are obtained

from fa(X) for a ⩾ 0. But if we let t be obtained from u by the formulae just
before Lemma 4.8 and consider the resulting curves in Theorem 4.7 (as we shall
do in Theorem 4.13 below) then these identities do not always give corresponding
symmetries for the curves.

For N = 7 we have t = u and j(u) = j(1− u−1) = j((1− u)−1), the other three
possibilities for v all giving the same different rational function in u. For N = 8
we have t = (u + 1)−1, and viewing the j-invariant as a function of u, the six v
pair up to give three different rational functions in u. One has j(u) = j(u−1), and
transforming u into u−1 corresponds to transforming t into 1−t. So these identities
match the discussion for N = 7 and 8 in Remark 4.6 . For N = 10 we have that if
u and u−1

u+1 are both in O×
F , then the same applies to v and v−1

v+1 if we take v equal
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to ±u±1 or ±
(
u−1
u+1

)±1
. These v form the orbit of u under the action of the dihedral

subgroup of order 8 of PGL2(Q) generated by ( 1 −1
1 1 ) and (−1 0

0 1 ). With t = 1−u
2

we again view the j-invariant as a function j(u) of u. Letting the dihedral group
act, we find that the j(v) pair up to give four different rational functions of u. The
identities include j(u) = j(−u−1), and because mapping u to −u−1 corresponds to
mapping t to t−1

2t−1 , this again matches Remark 4.6.
We did not fully investigate the identifications among the 40 families of fields

listed in Table 5 (let alone the identifications among the resulting families of curves)
under this dihedral group. But every such family is mapped to itself by at least
one element of order 2, limiting the number of identifications. The family of a
polynomial f(X) = X4 + aX3 + bX2 + cX + ε is determined by a + c, b and ε.
If ε = 1 then X4f(X−1) is in the same family, and if ε = −1 then this holds
for f(−X) if a+ c = 0, or −X4f(−X−1) if b = 0.

Remark 4.12. We use N = 7, 8 and 10 because then we can easily give F -
rational points on the modular curve X1(N), which has genus 0. For smaller N the
construction of Section 4.1 gives at most two linearly independent elements. For
the remaining cases N = 9 or 12 where X1(N) has genus 0, the situation is a little
different from the cases we treat in this paper.

4.4. The main result. We can now formulate our main result for our families on
the elements SP,s of Section 4.1. (See Remark 7.3 for a variation involving other
elements.) In particular, in the next theorem, for |a| ≫ 0, we have constructed
as many linearly independent elements in KT

2 (E)int for the resulting curve E as
predicted by Beilinson’s conjecture. Note that by what we saw in Section 4.1, and
since K2 of a number field is a torsion group, we only need to consider the SP,s

with 1 ⩽ 2s ⩽ N − 1. We recall from Lemma 4.8 that the field F is non-Abelian
for |a| ≫ 0 in 3 of the cubic families and 38 of the quartic families.

Theorem 4.13. Consider the following fields F with element t, parametrised by
an integer a, and integers N .

(1) For fixed ε, ε′ in {±1}, let fa(X) = X3 + aX2 − (a + ε + ε′ + 1)X + ε be
as in Lemma 4.8(1), let u be a root of fa(X), and let F = Q(u). Then put
t = u and N = 7, or t = 1/(u+ 1) and N = 8.

(2) Let fa(X) be in one of the families in Lemma 4.8(2), as listed in Table 5,
let u be a root of fa(X), and let F = Q(u). Then put t = 1−u

2 and N = 10.

For such F , t and N , if ∆N (t) in Table 1 is defined and non-zero, let E/F be the
elliptic curve defined by the corresponding Tate normal form (4.2) with f = fN (t)
and g = gN (t). Then, with P = (0, 0):

• the elements gcd(2, N) · SP,s for s = 1, . . . , N − 1 are in KT
2 (E)int;

• the SP,s with s = 1, . . . , ⌊N−1
2 ⌋ are linearly independent for |a| ≫ 0, and in

fact, their Beilinson regulator R = R(a) satisfies

lim
|a|→∞

R(a)

log⌊
N−1

2 ⌋|a|
= CN ·

∣∣∣∣∣det
(
N4

3
B3

({
st

N

})
1⩽s,t⩽⌊N−1

2 ⌋

)∣∣∣∣∣ ,
where B3(X) = X3 − 3

2X
2 + 1

2X is the third Bernoulli polynomial, {x}
denotes the fractional part of x ∈ R, and C7 = 1, C8 = C10 = 4.

Proof. The statement about integrality follows from Theorem 4.7 and the result
on the number of roots of unity in Lemma 4.8. The proof of the statement on the
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limit behaviour of the Beilinson regulator is involved and will be given in Section 5.
It implies the claimed linear independence because the above determinant is non-
zero. □

Remark 4.14. (1) In the theorem, the condition that ∆N (t) is defined and non-
zero fails for precisely the following N and u defined in (1) and (2) of the theorem.
For N = 7, if u is a root of X3 − 8X2 + 5X + 1. For N = 10, if u is a root
of X2 + 4X − 1 or of X2 −X − 1.

(2) We allow reducible fa(X) in (2) in the theorem because, according to the
Beilinson conjectures, on the elliptic curve over the resulting quadratic field F the
elements SP,1 through SP,4 should satisfy linear dependencies. Verifying this (which
we did not try) may provide interesting evidence for the conjectures.

Remark 4.15. Lecacheux has constructed units in number fields using modular
curves [26, 27, 28]. Consider the Abelian covering X1(N) → X0(N). For several
values of N such that X0(N) has genus 0, she constructed functions t on X1(N)
such that t and t−1 are both integral over Z[a], where a is a certain Hauptmodul
for Γ0(N). Specialising a to suitable integers, we get number fields F , each with a
distinguished unit of OF . It would be interesting to study the group KT

2 of elliptic
curves with points of order 13, 16 or 25 over the fields constructed by Lecacheux
in those papers.

5. Linear independence of the elements

In this section, we prove the linear independence of the elements SP,s as stated
in Theorem 4.13. The proof is analytical, and requires formulae for the regulator
pairing (2.1) in terms of the elliptic dilogarithm, which we recall in Section 5.1.
We note that historically, these formulae were important in the development of the
conjectures on special values of L-functions. We also need a careful analysis of the
action of complex conjugation on the fibres of the universal elliptic curve E1(N),
which we do in Section 5.2. The proof of linear independence is carried out in
Section 5.3, by finding the limit behaviour of the regulator pairing (2.1) associated
to the elements SP,s when |a| goes to infinity.

5.1. The elliptic dilogarithm. Let E be an elliptic curve defined over C, and
choose an isomorphism E(C) ∼= C/(Z + τZ), where τ is in the upper half-plane.
The exponential map u ∈ C 7→ e(u) = exp(2πiu) identifies C/(Z+τZ) with C×/qZ,
where q = e2πiτ .

The Bloch-Wigner dilogarithm D : P1(C) → R is the unique continuous function
satisfying D(z) = Im(

∑∞
n=1 z

n/n2) + Arg(1 − z) log|z| for 0 < |z| ⩽ 1, z ̸= 1,
and D(1/z) = −D(z) for every z. It satisfies D(z̄) = −D(z). Bloch’s elliptic
dilogarithm Dq is then defined by averaging D over qZ as

Dq : C×/qZ → R, z 7→
∑
n∈Z

D(zqn).

Similarly, we define J(z) = log|z| log|1− z| and Jq : C×/qZ → R by

Jq(z) =

∞∑
n=0

J(zqn)−
∞∑

n=1

J(z−1qn) +
1

3
log2|q|B3

(
log|z|
log|q|

)
,

whereB3(X) is the third Bernoulli polynomial. Using thatB3(X+1) = −B3(−X) =
B3(X) + 3X2, one easily verifies that Jq(qz) = Jq(z) and Jq(z

−1) = −Jq(z). Then
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we define the function Rq : C×/qZ → C as Rq = Dq − iJq. From the above we have

that Rq(z
−1) = −Rq(z) and Rq(z) = −Rq̄(z̄).

It will be convenient to view the function Rq as defined on the additive group
C/(Z+ τZ), by means of the isomorphism e: C/(Z+ τZ) → C×/qZ introduced at
the beginning of the section. We denote by Rτ = Dτ − iJτ : C/(Z + τZ) → C the

resulting function. It is then clear that Rτ (−u) = −Rτ (u), Rτ (u) = R−τ (u), and
Rτ+n(u) = Rτ (u) for any integer n.

The regulator pairing (2.1) can be computed using Rτ [24, Corollary 3.2], as we
shall now explain. (In fact, this computation by Bloch in [5] preceded Beilinson’s
more general definition of the regulator map.) Let f and g be non-zero rational
functions on E with divisors

(f) =
∑

mi(ai), (g) =
∑

nj(bj).

We define the diamond operator by

(f) ⋄ (g) =
∑

minj(ai − bj) ∈ Z[E(C)]−,

where Z[E(C)]− denotes the quotient of Z[E(C)] by the subgroup generated by
[P ]+[−P ] for all P in E(C). The diamond operator induces a group homomorphism

C(E)× ⊗Z C(E)× → Z[E(C)]−.

We extend Rτ to a function on Z[E(C)] by setting Rτ (
∑

mi(ai)) =
∑

miRτ (ai).
Since Rτ as an odd function on E(C), it induces a map Rτ : Z[E(C)]− → C.

Now let γ0 be the path from 0 to 1 in E(C) ∼= C/(Z + τZ). Then for any
γ ∈ H1(E(C),Z) and any non-zero holomorphic 1-form ω on E, with associated
periods Ωγ0

=
∫
γ0

ω and Ωγ =
∫
γ
ω, we have, if α =

∑
j{fj , gj},

(5.1) ⟨γ, α⟩ = − 1

2π
Im
( Ωγ

yτΩγ0

∑
j

Rτ ((fj) ⋄ (gj))
)

(yτ = Im(τ)).

For fixed γ, the quotient Ωγ/Ωγ0
is determined by the parametrisation. But it

determines how Dτ and −iJτ (which behave differently) contribute to (5.1).
We shall use (5.1) for α = SP,s and γ = γ0. From the description of SP,s we find

the element

(5.2)
(N(sP )−N(O)) ⋄

(N−1∑
t=0

N(tP )−N2(O)
)
= (N(sP )−N(O)) ⋄ (−N2(O))

= −N3(sP ) +N3(O)

in Z[E(C)]−, so that

(5.3) ⟨γ0, SP,s⟩ =
N3

2πyτ
Im(Rτ (sP )) = − N3

2πyτ
Jτ (sP ).

Finally, we recall the Fourier expansion of Rτ (u) with respect to τ from [18,
Section 3] as we shall use it in the proof of Theorem 4.13. Assume that u = a+ bτ
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with 0 ⩽ a, b < 1, and write τ = x+ iy with x ∈ R and y > 0. Then

Dτ (u) = − i

2

∑
m−b,n∈Z

n ̸=0

e(na)e(mnx)e−2π|mn|y
(
2πy

n|m|
|n|2

+
n

|n|3

)
,

Jτ (u) =
4π2y2

3
B3(b)− πy

∑
m,n+b∈Z
m,n ̸=0

e(−ma)e(mnx)
n

|m|
e−2π|mn|y.

(5.4)

5.2. Complex conjugation on the universal elliptic curve. Recall from Sec-
tion 4.2 that the isomorphism ν′ : Γ1(N)\H → Y1(N)(C) is compatible with com-
plex conjugation, where the complex conjugation on Γ1(N)\H is induced by c(τ) =
−τ̄ . Moreover, in the notations of Section 4.2, the complex conjugation on E1(N)(C)
sends [τ, z] to [−τ̄ , z̄].

We now describe the complex conjugation on the fibres of E1(N)(C).

Lemma 5.5. Let τ in H be such that ν′(τ) ∈ Y1(N)(R). Write c(τ) = Aτ with
A = ( s t

u v ) ∈ Γ1(N). Identifying the fibre of E1(N)(C) over ν′(τ) with C/(Z+NτZ)
as in Section 4.2, the complex conjugation on this fibre is given by z 7→ −(uτ +v)z̄.

Proof. Note that c(WN (τ)) = WN (Aτ) = A′WN (τ) with A′ = ( v −u/N
−Nt s

) in

Γ1(N). Let z ∈ C/(Z+NτZ), corresponding to the point [WN (τ), z
Nτ ] in E1(N)(C).

Its complex conjugate is[
A′WN (τ),

z̄

Nτ̄

]
=
[
WN (τ),

( t
τ
+ s
) z̄

Nτ̄

]
,

corresponding to the point (sτ + t) z̄τ̄ in C/(Z+NτZ). We conclude by noting that
c(τ) = (sτ + t)/(uτ + v). □

We shall need the following lemma about the real points of X1(N). For a com-
plete description of X1(N)(R), see [44]. For any α, β in Q∪{i∞}, α ̸= β, we denote
by {α, β} the open geodesic from α to β in H.

Lemma 5.6. Let N ⩾ 4, and α ̸= β in Q ∪ {i∞} such that {α, β} is contained in
the real locus of Γ1(N)\H. Choose a matrix B ∈ SL2(Z) such that Nα = B · ∞,
and write Nτ = B · µ with µ ∈ H. Then for τ ∈ {α, β}, we have Re(µ) ∈ 1

2Z.

Proof. By [44, Theorem 3.1.1], there exists A = ( s t
u v ) in Γ1(N) such that c(τ) = Aτ

for every τ ∈ {α, β}. Then c(Nτ) = A′(Nτ) with A′ = ( s Nt
u/N v ) ∈ SL2(Z). Let

C = ( 1 0
0 −1 ). For τ ∈ {α, β}, we have

c(µ) = c(B−1 ·Nτ) = CB−1C · c(Nτ) = B0µ

with B0 = CB−1CA′B in SL2(Z). Note that µ approaches i∞ when τ approaches
α. Taking the limit when µ → i∞, we get B0 · i∞ = i∞, so that B0 must be of the
form ±( 1 k

0 1 ) with k ∈ Z. This shows that c(µ) = µ+ k, hence the result. □

Under the assumptions of Lemma 5.6, for τ ∈ {α, β}, there is an isomorphism
C/(Z +NτZ) ∼= C/(Z + µZ). We now make explicit the action of complex conju-
gation on C/(Z+ µZ) under this isomorphism.

Lemma 5.7. Let N ⩾ 4, and α, β in Q ∪ {i∞} with β ̸= α, i∞, such that the
geodesic {α, β} is contained in the real locus of Γ1(N)\H. On this geodesic, write
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c(τ) = Aτ with A = ( s t
u v ) ∈ Γ1(N). Under the isomorphism C/(Z + NτZ) ∼=

C/(Z+ µZ), the complex conjugation on C/(Z+ µZ) is given by z 7→ εz̄, where

ε =


−1 if α = i∞,

−1 if α ̸= i∞ and (β − α)u > 0,

1 otherwise.

Proof. Keeping the notations of Lemma 5.6, write Nτ = B · µ with B = ( a0 b0
c0 d0

).
We fix the isomorphism

ϕB : C/(Z+NτZ) → C/(Z+ µZ)
z 7→ (c0µ+ d0)z.

(5.8)

Note that the complex conjugation on C/(Z + µZ) is an antiholomorphic isomor-
phism fixing 0, hence must be of the form z 7→ ±z̄ for Im(µ) ≫ 0. By continuity,
this is true for any µ, and the sign is independent of τ ∈ {α, β}. Using Lemma 5.5
and (5.8), we compute that the complex conjugation on C/(Z+ µZ) is given by

(5.9) z 7→ −
( u

N

a0µ+ b0
c0µ+ d0

+ v
)c0µ+ d0
c0µ̄+ d0

z̄.

To determine the sign, it suffices to let µ → i∞. Noting that µ/µ̄ → −1, we obtain
in the case c0 ̸= 0 (equivalently, α ̸= i∞):

ε =
ua0
Nc0

+ v = αu+ v.

Furthermore, the equation c(τ) = Aτ can be solved explicitly: for s ̸= v there is
no solution, while for s = v, this locus is a semi-circle passing through the points
(−s ± 1)/u. It follows that αu + v = (−s ± 1 + v) = ±1, and the sign can be
determined according to the relative positions of α, β and the sign of u. Finally, in
the case α = i∞, we have B = I2, and the equation c(τ) = Aτ implies u = 0 and
v = 1, so that (5.9) simplifies to z 7→ −z̄. □

5.3. End of the proof of Theorem 4.13. In all cases, we shall determine the
limit behaviour of the Beilinson regulator in (2.2) for the elements SP,s as |a| → ∞.
This implies the desired linear independence.

Let Et denote the elliptic curve associated to the parameter a ∈ Z, defined over
the corresponding number field F = Q(t). We make explicit the Beilinson regula-
tor R = R(a) in (2.2) for the elements gcd(2, N) · SP,j with j = 1, . . . , ⌊N−1

2 ⌋. As
stated in Lemma 4.8, the field F is totally real for |a| ≫ 0, and its embeddings
correspond to the (real) roots u of the polynomial fa(X) defining F . The asymp-
totics of these roots as |a| → ∞ are also given in the proof of that lemma. We
shall indicate which embedding is considered by adding the limit of the root u as
subscript.

The required homology group Ht = H1(Et(C),Z)− in Section 2 is then the direct
sum of the groups Hi = H1(Ei(C),Z)−, with i running over the limits of u. We
find an explicit generator γi of Hi by combining the tools from Section 5.2 with
an explicit description of X1(N)(R) due to Snowden [44]. The Beilinson regulator
R(a) equals gcd(2, N)[F :Q] · |det(⟨γi, SP,j⟩X)i,j |, where i runs through the values of

the limits of u, and j = 1, . . . , ⌊N−1
2 ⌋, and all entries in the determinant depend

on a. As explained in Section 2, these entries are computed by pulling back SP,s

to Ei, and pairing the result with γi under the regulator pairing (2.1) on Ei. We
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emphasise that we compute the regulator with respect to a Z-basis of Ht, not
just a Q-basis of Ht ⊗ Q. In all cases, the condition |a| → ∞ corresponds to
the modular parameter τ in H approaching suitable cusps along the real locus of
Γ1(N)\H. Using Sections 5.1 and 5.2, we determine the corresponding behaviour
of the function Rτ , to get the desired limit behaviour of the regulator pairing.

(1) We let u0, u1 and u∞ for |a| ≫ 0 be as in the proof of Lemma 4.8(1).
We begin with the case N = 7. Let 1 ⩽ s ⩽ 3. We denote by t0 = u0, t1 = u1

and t∞ = u∞ the corresponding embedded values of t. When |a| → ∞, we have
t0 → 0, t1 → 1 and t∞ → ∞. By Table 2, this corresponds to τ approaching the
cusps 2

7 , i∞, 3
7 respectively, along the real locus of Γ1(7)\H.

In what follows, we use the notations of Lemmas 5.6 and 5.7.
• τ → i∞. We have B = I2, 7τ = µ and by Lemma 5.7, the complex conjugation
on Et1

∼= C/(Z+7τZ) = C/(Z+µZ) is given by z 7→ −z̄. Therefore a generator γ1
of H1(Et1 ,Z)− corresponds to the loop from 0 to 1. The regulator pairing of SP,s

and γ1 is then computed using (5.3) with the parametrisation Et1
∼= C/(Z + µZ),

under which the point P corresponds to µ/7. We get

⟨γ1, SP,s⟩ = − 73

2πyµ
Jµ

(sµ
7

)
.

The Fourier expansion (5.4) of Jτ provides the asymptotics

Jµ
(sµ
7

)
∼|a|→∞

4π2

3
y2µB3

({s
7

})
.

Therefore

⟨γ1, SP,s⟩ ∼|a|→∞ −2π
73

3
yµB3

({s
7

})
.

It remains to find the asymptotics of yµ in terms of |a|. By (4.5), we have the
q-expansion t ◦ ν′ = 1− q +O(q2), where q = e2πiτ , τ → i∞. Recall also from the
proof of Lemma 4.8(1) that t1 = 1 + ε′a−1 + O(a−2). Comparing these, we have

q ∼ −ε′a−1, which implies yτ ∼ log |a|
2π and thus yµ ∼ 7 log |a|

2π . Finally, we have

(5.10) ⟨γ1, SP,s⟩ ∼|a|→∞ −74

3
B3

({s
7

})
log |a|.

• τ → 3
7 . We write 7τ = Bµ with B = ( 3 −1

1 0 ) and µ → i∞. The isomorphism
ϕB : C/(Z + 7τZ) → C/(Z + µZ) from (5.8) sends P = τ to µτ = (3µ − 1)/7.
We determine the complex conjugation on C/(Z + µZ) using Lemma 5.7. In the
notations of this lemma, we have A = (−13 6

28 −13 ) on the geodesic { 3
7 ,

1
2}, and A =

( 8 −3
−21 8 ) on { 3

7 ,
1
3}. By Lemma 5.7, on each side of the cusp 3

7 , the complex
conjugation on C/(Z + µZ) is given by z 7→ −z̄, so that, again, a generator γ∞ of
H1(Et∞ ,Z)− corresponds to the loop from 0 to 1. As above, we get

⟨γ∞, SP,s⟩ = − 73

2πyµ
Jµ

(s(3µ− 1)

7

)
.

which leads to

⟨γ∞, SP,s⟩ ∼|a|→∞ −2π
73

3
yµB3

({3s
7

})
.

We now estimate yµ in terms of |a|. We use the modularity property of the
Weierstraß ℘-function for SL2(Z), which follows from the definition of ℘:

℘B0µ

( z

c0µ+ d0

)
= (c0µ+ d0)

2℘µ(z)
(
B0 = ( a0 b0

c0 d0
) ∈ SL2(Z)

)
.
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Using this with B0 = B and z = kτ , 1 ⩽ k ⩽ 6, we obtain

℘7τ (kτ) = ℘Bµ

(k
7
· 3µ− 1

µ

)
= µ2℘µ

(3kµ− k

7

)
.

The Fourier expansion of this expression with respect to q1/7 = e2πiµ/7 can be
computed with [43, Theorem 6.2(a)]. Substituting into (4.4), we get

t ◦ ν′(τ) = ℘7τ (2τ)− ℘7τ (τ)

℘7τ (3τ)− ℘7τ (τ)
= ζ57q

−1/7 +Oµ→i∞(1)

with ζN := e2πi/N . Combining this with the asymptotic t∞ = −a + O(1) in the

proof of Lemma 4.8(1), we get yµ ∼ 7 log |a|
2π . Finally, we have

(5.11) ⟨γ∞, SP,s⟩ ∼|a|→∞ −74

3
B3

({3s
7

})
log |a|.

• τ → 2
7 . This case is similar to the case τ → 3

7 , using the matrices B = ( 2 −1
1 0 ),

A = (−13 4
42 −13 ) on the geodesic { 2

7 ,
1
3}, and A = ( 1 0

−7 1 ) on { 2
7 , 0}. This results in

(5.12) ⟨γ0, SP,s⟩ ∼|a|→∞ −74

3
B3

({2s
7

})
log |a|,

where γ0 denotes a generator of H1(Et0 ,Z)−.
Combining (5.10), (5.11) and (5.12), we obtain the desired limit behaviour for

the regulator of SP,1, SP,2 and SP,3. The linear independence of these elements for
|a| ≫ 0 boils down to the invertibility of the matrix

(
B3({ st

7 })
)
1⩽s,t⩽3

, which can

be checked directly.
We now tackle the case N = 8, using the same method. Let 1 ⩽ s ⩽ 3. This

time t = 1
u+1 , and we denote by t0, t1 and t∞ the values associated to u0, u1 and

u∞. When |a| → ∞, we have t0 → 1, t1 → 1
2 and t∞ → 0. By Table 3, this

corresponds to τ approaching the cusps i∞, 1
4 ,

3
8 respectively, along the real locus

of Γ1(8)\H.
• τ → i∞. This case is similar to the case N = 7 and τ → i∞. We get

(5.13) ⟨γ0, SP,s⟩ ∼|a|→∞ −84

3
B3

({s
8

})
log |a|,

where γ0 denotes a generator of H1(Et0 ,Z)−.
• τ → 3

8 . This case is similar to the case N = 7 and τ → 3
7 , using the matrices

B = ( 3 −1
1 0 ), A = (−7 3

16 −7 ) on the geodesic { 3
8 ,

1
2}, and A = ( 17 −6

−48 17 ) on { 3
8 ,

1
3}. By

Lemma 5.7, the complex conjugation on C/(Z + µZ) is given by z 7→ −z̄ in both
cases, so a generator γ∞ of H1(Et∞ ,Z)− is the loop from 0 to 1. This leads to

(5.14) ⟨γ∞, SP,s⟩ ∼|a|→∞ −84

3
B3

({3s
8

})
log |a|.

• τ → 1
4 . This case is similar to the previous one, using the matrices B = ( 2 −1

1 0 ),

A = (−7 2
24 −7 ) on the geodesic { 1

4 ,
1
3}, and A = ( 1 0

−8 1 ) on { 1
4 , 0}. This yields

(5.15) ⟨γ1, SP,s⟩ ∼|a|→∞ −84

6
B3

({s
4

})
log |a|,

where γ1 denotes a generator of H1(Et1 ,Z)−. Note that in this case yµ ∼ 4 log |a|
2π ,

while yµ ∼ 8 log |a|
2π in the other two cases. This is due to the fact that the width of

the cusp 1
4 is 2, while the other two cusps have width 1.
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From (5.13), (5.14) and (5.15), we get the limit formula for the regulator of 2SP,1,
2SP,2 and 2SP,3. The linear independence of these elements for |a| ≫ 0 follows from
the fact that the determinant of the matrix

(
B3({ st

8 })
)
1⩽s,t⩽3

is non-zero.

(2) We move on to the quartic case, corresponding to N = 10. Let 1 ⩽ s ⩽ 4.
Now t = 1−u

2 , and we denote by t−1, t0, t1 and t∞ the values associated to u−1,
u0, u1 and u∞ as in the proof of Lemma 4.8(2) for |a| ≫ 0. When |a| → ∞,
we have t−1 → 1, t0 → 1

2 , t1 → 0 and t∞ → ∞. By Table 4, this corresponds

to τ approaching the cusps i∞, 1
5 ,

3
10 and 2

5 respectively, along the real locus of
Γ1(10)\H.
• τ → i∞. As in the cases N = 7 and N = 8, we find

(5.16) ⟨γ−1, SP,s⟩ ∼|a|→∞ −2π
103

3
yµB3

({ s

10

})
,

where γ−1 denotes a generator of H1(Et−1
,Z)−.

• τ → 2
5 . We have B = ( 4 −1

1 0 ) and ϕB : C/(Z + 10τZ) → C/(Z + µZ) sends

P = τ to (4µ− 1)/10. Moreover, we have A = (−9 4
20 −9 ) on the geodesic { 2

5 ,
1
2}, and

A = ( 11 −4
−30 11 ) on { 2

5 ,
1
3}. By Lemma 5.7, it follows that the complex conjugation

on C/(Z+ µZ) is given by z 7→ −z̄, and a similar computation as above gives

(5.17) ⟨γ∞, SP,s⟩ ∼|a|→∞ −2π
103

3
yµB3

({2s
5

})
,

where γ∞ denotes a generator of H1(Et∞ ,Z)−.
• τ → 3

10 . We have B = ( 3 −1
1 0 ), A = (−19 6

60 −19 ) on the geodesic { 3
10 ,

1
3}, and

A = ( 11 −3
−40 11 ) on { 3

10 ,
1
4}. This gives

(5.18) ⟨γ1, SP,s⟩ ∼|a|→∞ −2π
103

3
yµB3

({3s
10

})
,

where γ1 denotes a generator of H1(Et∞ ,Z)−.
• τ → 1

5 . We haveB = ( 2 −1
1 0 ), A = (−9 2

40 −9 ) for the geodesic { 1
5 ,

1
4}, andA = ( 1 0

−0 1 )

for { 1
5 , 0}. This gives

(5.19) ⟨γ0, SP,s⟩ ∼|a|→∞ −2π
103

3
yµB3

({s
5

})
,

where γ0 denotes a generator of H1(Et0 ,Z)−.
We find the limit behaviour of yµ in each of these cases using the expansions of the

roots of fa(X) in the proof of Lemma 4.8(2), together with the Fourier expansion

of t ◦ ν′ when τ approaches the cusp under consideration. We find yµ ∼ 10 log |a|
2π

when τ → 1
10 ,

3
10 and yµ ∼ 5 log |a|

2π when τ → 1
5 ,

2
5 . Combining this with (5.16),

(5.17), (5.18) and (5.19), we have the limit formula for the regulator of 2SP,1, 2SP,2,
2SP,3 and 2SP,4. The linear independence of these elements follows, noting that
the determinant of

(
B3({ st

10})
)
1⩽s,t⩽4

is non-zero.

The proof of Theorem 4.13 is now complete.

6. KT
2 of families of elliptic curves over cubic fields

In this section, we construct other families of elliptic curves E over cubic fields
with three elements in KT

2 (E)int. As mentioned in the introduction, the results in
this section are mostly independent of the rest of the paper, being based directly
on Lemma 4.8(1) and the regulator pairing (2.1).
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Proposition 6.1. Let F be a field of characteristic other than 2, with p ̸= 0,−1
in F . Let A = p2+ p+1, B = p2(p+1)2, λ = 1, 2, 3 or 4, and t = 4B

λA3 . If 27t ̸= 4,
then, with h(x) = Ax+B, the normalisation of the curve defined by

(6.2) y2 +
(
2x3 + λh(x)2

)
y + x6 = 0

is an elliptic curve E. With C1 = 6, C2 = 4, C3 = 3, and C4 = 2, the four elements

M =

{
− y

x3
,
h(x)

h(0)

}
Mq = Cλ

{
− y

x3
, q−2x+ 1

}
(q = p, p+ 1, p(p+ 1))

are in KT
2 (E) and satisfy 2CλM =

∑
q Mq. If p2 + p+ 1 = 0 then M = 0.

Proof. For any λ ̸= 0, completing the square and letting h̃(x) = x3 + λ
2h(x)

2,

x′ = Ax
B and y′ = 2(y+h̃(x))

λBh(x) leads to an equation

(6.3) y′2 = tx′3 + (x′ + 1)2.

The conditions on p and t in the proposition are such that the right-hand side is a
cubic without multiple roots, so this equation defines an elliptic curve.

However, in order to check thatM and theMq are inKT
2 (E) it is more convenient

to work with (6.2), which we view as defining a cover C of P1
F of degree 2 by

combining it with a part given by

(6.4) (ỹ + 1)2 + λx̃(Bx̃+A)2ỹ = 0

with x = 1/x̃ and y = ỹ/x̃3. This adds one point (x̃, ỹ) = (0,−1) at infinity. We
view E as the normalisation of C.

The divisors of the functions in M involve only points on E lying above (x0, y0)
on C with x0 = 0 or h(x0) = 0, as well as the point at infinity. We shall show that
at such points on C, at least one of the functions in M is regular with value 1. The
same then holds at the points on E above them, so that M is in KT

2 (E).
If x0 = 0 then h(x)/h(0) is regular with value 1 at (x0, y0). If h(x0) = 0

then from (6.2) we find y0 + x3
0 = 0, so that −y/x3 is regular with value 1

at (x0, y0) because x0 ̸= 0 by our conditions on p. At the point at infinity, the
function −y/x3 = −ỹ is regular with value 1.

We use the same strategy for Mq =
{
(−y/x3)Cλ , q−2x+ 1

}
, where the relevant

points (x0, y0) on C are those with x0 = 0, x0 = −q2, and the point at infinity.
The argument at this last point is the same as that used for M , and for x0 = 0
the function q−2x + 1 is regular with value 1 at (x0, y0). Now in the remaining
points x0 = −q2 ̸= 0, and (−y/x3)Cλ is regular. From the polynomial identity

(6.5) x3 + h(x)2 = (x+ p2)(x+ (p+ 1)2)(x+ p2(p+ 1)2)

together with (6.2) we obtain y20 + (2 − λ)x3
0y0 + x6

0 = 0. Hence the function has
value (−y0/x

3
0)

Cλ = 1 by our choice of λ and Cλ.
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Note that if p2 + p+1 = 0 then h(x) = h(0), and M = 0. So it remains to show
that

∑
q Mq = 2CλM . For this, we see from (6.5) and h(0) =

∏
q q that

∑
q

{
− y

x3
, q−2x+ 1

}
− 2M =

{
− y

x3
,
x3 + h(x)2

h(x)2

}

=

{
− y

x3
,
y2 + (2− λ)x3y + x6

(y + x3)2

}
=

{
− y

x3
,
(y2 + (2− λ)x3y + x6)

y2

}
=

{
1

a
, 1 + (λ− 2)a+ a2

} (
−x3

y
= a

)
,

where we used (y+ x3)2 = −λh(x)2y and y2 + (2− λ)x3y+ x6 = −λ(x3 + h(x)2)y,
and the identity {y/x3, y + x3} = {−y/x3, y} + {−1, y + x3} was obtained using
the Steinberg relation 0 = {y/(y + x3), x3/(y + x3)}. The last displayed element
is Cλ-torsion by our choice of λ and Cλ, so that

∑
q Mq = 2CλM . □

Remark 6.6. The substitutions p → 1/p or p → −(p + 1)/p in (6.2), together
with (x, y) 7→ (x/p4, y/p12), give isomorphic curves for the same fixed λ. Under
these isomorphisms, the elements M correspond, as do the Mq (up to reindexing).
Repeated applications give such identifications also for p → −(p+1), p → −1/(p+1)
and p → −p/(p + 1). If we let u = p + 1 (cf. Theorem 6.10 below), then these
transformations of p correspond to u → u−1, 1 − u±1 and (1 − u±1)±1, as in
Remark 4.11.

Remark 6.7. For any λ ̸= 0 in F such that 27t ̸= 4, so that (6.3) defines an

elliptic curve E, if we let µ =
√
λ2 − 4λ, then on E we have the points P = (0, 1)

and Tq = (−Aq2

B , µq3

λB ) for q as in Proposition 6.1. The divisor of y′ − (x′ + 1) is
equal to 3(P )− 3(O), so the point P has order 3. We also have

− y

x3
=

x3

y + 2x3 + λh(x)2
=

tx′3

(y′ + x′ + 1)
2 =

y′ − (x′ + 1)

y′ + (x′ + 1)
,

so that (
− y

x3

)
= 3(P )− 3(−P )(

q−2x+ 1
)
=

(
B

Aq2
x′ + 1

)
= (Tq) + (−Tq)− 2(O).

(6.8)

For λ = 4, the Tq are F -rational and have order 2 because their y′-coordinate is
zero, and from (6.5) we see they are all distinct because x3 + h(x)2 by assumption
has no multiple roots. So the divisors of the functions in the Mq are supported in
(and generate) a subgroup of F -rational points of E isomorphic to Z/2Z× Z/6Z.

For λ = 1, 2, 3, and p as in Theorem 6.10 below, the norm of the x-coordinate of
each 3Tq is a rational function (not a polynomial) in a, so for general a in Z, it is
not an integer. Using [42, Theorem 7.1], we see that Tq is in general not a torsion
point. Hence the divisor of the function q−2x+1 in Mq is in general not supported
in torsion points.
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Remark 6.9. (1) With notation as in Remark 6.7, the element M in Proposi-
tion 6.1 is equal to SP,1 = TP,1,2 of Section 4.1 on (6.3), with P = (0, 1). Be-
cause (y′ − (x′ + 1)) = 3(P )− 3(O), and 2P = −P = (0,−1), we have

TP,1,2 =

{
y′ − (x′ + 1)

−2
,
y′ + (x′ + 1)

2

}
=

{
y′ − (x′ + 1)

y′ + (x′ + 1)
,
y′ + (x′ + 1)

2

}
.

Adding the Steinberg relation 0 =
{

y′−(x′+1)
y′+(x′+1) ,

2(x′+1)
y′+(x′+1)

}
we obtain M because we

saw in Remark 6.7 that y′−(x′+1)
y′+(x′+1) = − y

x3 , and
h(x)
h(0) = x′ + 1.

(2) Replacing y with λ1/2h(x)y − x3, the family (6.2) becomes

y2 + λ1/2h(x)y − x3 = 0,

which, up to replacing x with −x, is a family with Z/3Z-torsion studied in [16] (see,
e.g., (6.1) of loc. cit.). On this model

M =

{
y2

x3
,
h(x)

h(0)

}
Mq = Cλ

{
y2

x3
, q−2x+ 1

}
(q = p, p+ 1, p(p+ 1)).

For λ = 4, via (6.5) the Mq are related to the elements of loc. cit. (see (6.5) there).

We can now give the main result of this section. Note that by Remarks 4.11
and 6.6, up to isomorphism, in it we may restrict to fa(X) = X3+aX2−(a+3)X+1
with a ⩾ −1 for the cyclic cubic fields, and fa(X) = X3 + aX2 − (a + 1)X + 1
with a ⩾ 0 for the non-cyclic ones.

Theorem 6.10. For fixed ε, ε′ in {±1} in Lemma 4.8(1), let the corresponding
polynomial fa(X) define F = Q(u) with u a root of fa(X), so that u is an excep-
tional unit of OF . Let p = u − 1 and λ = 1, 2, 3 or 4. Then, unless ε = ε′ = 1
and λ|a+ 3

2 | =
9
2 , the normalisation of the curve defined by (6.2) defines an elliptic

curve E over F , and M as well as the Mq in Proposition 6.1 are in KT
2 (E)int.

Moreover, the Beilinson regulator R = R(a) of the Mq satisfies

lim
|a|→∞

R(a)

log3|a|
= 16C3

λ,

with Cλ as in Proposition 6.1. In particular, for |a| ≫ 0, M and the Mq generate
a subgroup isomorphic to Z3, in which the Mq generate a subgroup of index 2Cλ.

Proof. Writing λA3(27t − 4) = 4(27B − λA3) as polynomial in u = p + 1 and
factorising over Q, one sees that one cannot have both 27t = 4 and fa(u) = 0
except when ε = ε′ = 1, and a = −6 or 3 for λ = 1, or a = −3 or 0 for λ = 3, which
are the stated exceptions. In all other cases the normalisation of the curve defined
by (6.2) is an elliptic curve by Proposition 6.1.

Our proof that M and the Mq are in KT
2 (E)int is inspired by, but different from,

that of [16, Theorem 8.3(1)], as we do not only consider singular points in a fibre
over a maximal ideal P of OF , but all points of that fibre.

Let C be the naive model of C defined by (6.2) and (6.4), considered as equations
over OF . Through iterated blowups (which include normalisations) we obtain a
regular E with a morphism to C (see [33, Corollary 8.3.51]). Its generic fibre E is
the normalisation of C, so that E is a regular, flat and proper model of E over OF .

With M = {−y/x3, h(x)/h(0)} in KT
2 (E), we need to show that TD(M) = 1 for

each irreducible component D in each fibre EP of E over P. For D surjecting to an
irreducible component of CP this follows if the two functions in M are generically
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defined and non-zero on that irreducible component of CP. Using (6.2) this is easily
checked to hold on all irreducible components of every CP for the functions x, y,
h(x) and h(0), because h(0) is in O×

F .
For an irreducible component D mapping to a closed point of CP, we shall show

that either the two functions in M are regular on C at the point and have non-zero
values there, or at least one of the two functions is regular on C at the point with
value 1. Considering the valuations along D of the pullbacks to E of the functions,
and their values on it, one sees that either condition implies TD(M) = 1. (The first
condition was not considered in the proof of [16, Theorem 8.3(1)].)

Both functions in M are regular with non-zero values except perhaps, in fi-
bres CP, points (x0, y0) with x0 = 0 or h(x0) = 0, and the point at infinity.
If h(x0) = 0 then x0 ̸= 0 by our conditions on p, so the reduction of (6.2) mod-
ulo P shows that y0/x

3
0 = −1, hence the function −y/x3 is regular with value 1

at (x0, y0). If x0 = 0 then h(x)/h(0) is regular at the point by our conditions
on p, with value 1. At the point of infinity, where (x̃0, ỹ0) = (0,−1), the func-
tion −y/x3 = −ỹ is regular with value 1.

We use the same approach for Mq = {(−y/x3)Cλ , q−2x+1}. The functions x, y,
x+ q and q, with q in O×

F , are generically defined and non-zero on any irreducible
component of any CP. The relevant closed points on C are, in fibres CP, the point
at infinity, and the points (x0, y0) with x0 = 0 or x0 = −q. The point at infinity is
dealt with as for M . If x0 = 0 then the function q−2x+1 is regular with value 1 at
the point because q is in O×

F . If x0 = −q then from (6.5) we obtain h(x0)
2 = −x3

0,
so that y20+(2−λ)x3

0y0+x6
0 = 0 by (6.2). It follows as in the proof of Proposition 6.1

that (−y0/x
3
0)

Cλ = 1, hence the function −y/x3 is regular with value 1 at (x0, y0).
We now prove the limit result for the Beilinson regulator of the Mq using the

model defined by (6.3). We write this as y′2 = S(x′) with S(x′) = tx′3 + (x′ + 1)2,
and let Ep be the elliptic curve it defines. Then from Remark 6.7 we see that
for q = p, p+ 1 and p(p+ 1), in KT

2 (Ep) we have

Mq = Cλ

{y′ − (x′ + 1)

y′ + (x′ + 1)
,

B

q2A
x′ + 1

}
= Cλ

{ tx′3(
y′ + x′ + 1

)2 , B

q2A
x′ + 1

}
.

For an embedding σ : F → C we know from the proof of Lemma 4.8(1) that,
as |a| → ∞, σ(p) is real, and that precisely one of

(6.11) log|σ(p)| ∼ − log|a|, log|σ(p) + 1| ∼ − log|a|, log|σ(p)| ∼ log|a|

holds. We for now suppress σ from the notation, and let p be a real number with
|p| → 0 or ∞, or |p+ 1| → 0. For p close enough to the limit, we shall construct a
generator γp of H1(Ep(C),Z)− and evaluate the pairing ⟨γp,Mq⟩ in (2.1).

Note A,B and t are real and positive. So for r > 0 we have S(r) > 0, S(−1) < 0,
and S(−r) > 0 is equivalent to t < r−3(r − 1)2. For fixed r ̸= 1 this holds if |p|
or |p + 1| is close enough to 0 or ∞. Now fix r > 1, and consider only real p
such that S(−r) > 0. Then S(x′) has three real roots α1 < α2 < α3, which sat-
isfy α1 < −r < α2 < −1 < α3 < r. From this one easily sees that H1(Ep(C),Z) =
H1(Ep(C),Z)− ⊕ H1(Ep(C),Z)+, and that a loop γp in Ep(C) lifting the circle
in C with |x′| = r generates H1(Ep(C),Z)− (cf. the discussion preceding Fig-
ure 1(a) on [16, p.361]). In fact, for |x′| = r > 1 we have |tx′3/(x′ + 1)2| < 1

because t < r−3(r − 1)2, and rewriting (6.3) as
(
y′/(x′ + 1)

)2
= 1+ tx′3/(x′ + 1)2,
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we can use y′/(x′ +1) =
(
1+ tx′3/(x′ +1)2

)1/2
= 1+ 1

2 tx
′3/(x′ +1)2 + . . . to make

the y′-coordinate on γp explicit as function of x′.

In order to evaluate ⟨γp,Mq⟩, we now write Mq as Cλ

{
tx′3

(2x′+2)2f2 ,
B

q2Ax′ + 1
}

with f = 2−1
(
1 + y′/(x′ + 1)

)
, and compute the following integrals.

• 1
2π

∫
γp

η(tx′3(2x′ + 2)−2, B
q2Ax′ + 1). This can be done in C using |x′| = r. With

the 1-form closed, it is a residue calculation in C, the residues occurring at x′ = 0,
−1 and −q2A/B. The first contributes 0, the second always contributes, and the
third contributes only if q2A/B < r. But q2A/B = q2(p2 + p+ 1)p−2(p+ 1)−2 has
the following limits for q = p, p+1, p(p+1): ∞, 1, 1 as p → −1; 1, ∞, 1 as p → 0;
and 1 , 1, ∞ as |p| → ∞.

So if this limit is ∞, then only the residue at x′ = −1 contributes. The result
is 2 log|1 − B/(q2A)|, which approaches 0 because B/(q2A) → 0. In the other six
cases the limit is 1, and the residue at x′ = −q2A/B also contributes. Using t = 4B

λA3

we see the value of the integral equals 2 log(q/A)−log(λ). Because A = p2+p+1 we
have log(q/A)− log|p+1| → 0 in the two cases where p → −1, log(q/A)− log|p| → 0
in those where p → 0 and log(q/A) + log|p| → 0 in those where p → ∞.
• 1

2π

∫
γp

η(f, B
q2Ax′ + 1). This approaches 0 when |p| → 0 or ∞, or |p + 1| → 0, as

one sees from the expansion of y′/(x′+1), in which t → 0 in all cases, and the limit
behaviour of q2AB−1.

Reinstating σ into the notation, we see by combining the above with (6.11) that

lim
|a|→∞

(
⟨γσ(p),Mσ(q)⟩

)
σ,q

−2Cλ log|a|
=

 0 1 1
1 0 1
1 1 0

 .

Taking the absolute value of the determinants gives the limit behaviour of the
Beilinson regulator of the Mq, which implies that for |a| ≫ 0 the Mq generate
a subgroup isomorphic to Z3. That this also holds if we add M as a generator,
with the subgroup generated by the Mq of index 2Cλ, then follows from the rela-
tion

∑
q Mq = 2CλM . □

Remark 6.12. One can also prove the limit statement in Theorem 6.10 along the
lines of the proof of [32, Theorem 6.6], using [31, Lemma 3.4], which generalises [32,
Lemma 6.4]. This involves some rewriting and additional estimates. But with y′

quadratic over x′ in this case, our current approach results in a much more explicit
formula for the regulator pairing, based mostly on a residue calculation in the
complex plane. This gives a different point of view, and using estimates for the
only unknown term in the regulator pairing, it is possible to determine explicitly
for which |a| sufficiently large the Beilinson regulator of the Mq is non-zero.

7. Numerical results

Here we use PARI/GP [37] to numerically verify Beilinson’s conjecture for elliptic
curves, as formulated in Section 2, in some of the families in Sections 4 and 6.

If in (2.2) we use m linearly independent elements of KT
2 (E)int modulo torsion

instead of its Z-basis α1, . . . , αm then Q is replaced with Q̃ = Q/l for l the index
of the subgroup generated by the elements. Note that the numerator of such a

(computable) Q̃ divides that of Q, even though Q itself remains unknown. We
hope that in the future there will be a conjecture for the K-groups of curves over
number fields, in the spirit of Lichtenbaum’s conjecture for the K-groups of number
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fields [30], and that the examples in the tables (with various large prime factors

in the numerator of some Q̃, and hence of Q) can be useful for formulating or
numerically verifying such conjectures (cf. the beginning of [16, Remark 10.14]).

Table 6. Data for N = 7.

a d c L∗(E, 0) Q̃

−15 47 · 911 1259 −33502189.0313992549 −22 · 3 · 5 · 7−5 · 11 · 192

−14 32009 23 · 113 −10623031.4445936662 −24 · 3 · 7−4 · 13 · 19
−13 97 · 241 617 5120119.76612789544 24 · 33 · 7−5 · 103
−12 17 · 977 23 · 72 −1880894.82849877177 −24 · 3 · 5 · 7−4 · 11
−11 72 · 233 223 −298039.373168375865 −23 · 32 · 7−5 · 47
−10 7537 23 · 13 97160.8374079165014 22 · 7−4 · 47
−9 4729 29 9629.57910342935362 22 · 7−5 · 41
−8 2777 23 654.969737972166692 23 · 7−5

−7 1489 13 −434.612790919979199 −23 · 7−5

−6 17 · 41 23 62.5967792926624719 7−5

−5 257 72 32.3160033216808382 7−5

−4 72 23 · 13 4.00033992864846188 3−1 · 7−5

−3 −23 167 1.28519307117788975 2−1 · 7−6

−2 −31 23 · 29 2.68728590621394687 7−6

−1 −23 293 2.34067746029050612 7−6

0 −23 23 · 43 2.81741246119387006 7−6

1 −31 379 −3.65888851182820071 −7−6

2 −23 23 · 72 3.20759739648506351 7−6

3 72 13 · 29 14.5301315201187081 7−5

4 257 23 · 41 235.760168840014734 7−4

5 17 · 41 239 1671.96067772426875 2 · 3 · 5 · 7−5

6 1489 23 · 13 4051.92834496448134 7−3

7 2777 83 −6590.94375552556550 −2 · 5 · 7−5 · 11
8 4729 23 · 41 114693.828270615380 23 · 33 · 7−4

9 7537 72 · 13 520366.913326434323 2 · 3 · 7−4 · 137
10 72 · 233 23 · 127 −1485239.71027494934 −2 · 32 · 7−4 · 113
11 17 · 977 1471 5790649.98684165696 24 · 3 · 52 · 7−5 · 41
12 97 · 241 23 · 251 17255203.9121322960 24 · 32 · 7−4 · 131
13 32009 2633 28504752.7830982117 28 · 3 · 7−4 · 37
14 47 · 911 23 · 419 93361926.2369695039 23 · 3 · 7−4 · 3571
15 73 · 769 43 · 97 192572866.057081271 23 · 32 · 7−4 · 43 · 53

In practice, we calculate a regulator determinant as in (2.2) based on (5.1) for
elliptic curves over the complex numbers. The latter involves the Fourier expan-
sion (5.4) of the functions Dτ and Jτ , which converge exponentially fast, so that
we can compute this determinant numerically to high precision.

Now let E be an elliptic curve over a number field F , and fix α in KT
2 (E).

Let X =
∐

σ E
σ(C) where σ runs through the embeddings of F into C.

For a real embedding σ, let Λ be the period lattice of a non-zero 1-form on Eσ,
so Λ = Λ and the map Eσ(C) ∼= C/Λ is compatible with complex conjugation. If we
scale Λ using a non-zero real number to Z+Zτ , then we may assume τ = xτ +iyτ is
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Table 7. Data for N = 8.

a d c L∗(E, 0) Q̃

0 −23 7 · 23 1.22348267827696836 2−23

1 −31 33 · 17 6.64291810562928558 2−21

2 −23 5 · 137 5.97110504152047155 2−21

3 72 7 · 113 31.2948786232840397 2−18

4 257 33 25.2202129687784361 2−18 · 3−1

5 17 · 41 11 · 41 3130.70411060858445 2−15 · 3
6 1489 7 · 13 3377.15438740388289 2−13

7 2777 33 · 5 · 7 −110191.314028644712 −2−10 · 3
8 4729 17 · 127 806249.659144856084 2−13 · 11 · 13
9 7537 19 · 199 −3399020.63508445448 −2−12 · 257
10 72 · 233 33 · 7 · 31 9860642.47040826474 2−11 · 3 · 109
11 17 · 977 23 · 367 −38313626.2137679483 −2−13 · 4547
12 97 · 241 5 · 463 22214626.7118122391 2−14 · 4787
13 32009 33 · 7 2759510.81590883242 2−13 · 3 · 7 · 13
14 47 · 911 7 · 29 · 97 −549654076.156923184 −2−12 · 34 · 311
15 73 · 769 17 · 31 · 47 1205314746.12464172 2−9 · 5 · 1289

Table 8. Data for N = 10.

a d c L∗(E, 0) Q̃

−7 23 · 412 22 · 232 67284.5712909244205 2−11 · 5−5

−6 26 · 72 · 37 34 · 72 12809909.2599370080 2−9 · 5−4 · 13
−5 23 · 13 · 172 22 · 192 321613.252539691824 2−10 · 5−4

−4 28 · 17 172 1308.96784301967823 2−10 · 5−7

−2 26 · 5 132 3.90265959107592883 2−14 · 5−9

−1 23 · 72 22 · 112 18.1524378610645748 2−14 · 5−8

0 28 34 1.29080207928400602 2−14 · 3−2 · 5−8

1 23 · 72 22 · 72 7.41655915683319223 2−15 · 5−8

2 26 · 5 52 0.604505751430063810 2−14 · 5−10

4 28 · 17 72 211.227406732423650 2−11 · 5−7

5 23 · 13 · 172 22 825.817965343090665 2−11 · 5−7

6 26 · 72 · 37 34 272030.854985666477 2−9 · 32 · 5−6

7 23 · 412 22 · 54 111421.646021166774 2−10 · 5−5

in iR>0 or τ is in 1
2 + iR>0. Then under the identification Eσ(C) ∼= C/Λ ∼= C/(Z+

Zτ), H1(E
σ(C),Z)− is generated by γ = [0, τ ] in the first case and by γ = [0, 2iyτ ]

in the second. Hence
Ωγ

yτΩ0
= ci with c equal to 1 or 2 in these cases. Let u = uσ

be the diamond operator applied to ασ. By (5.1), we have

(7.1) ⟨γ, α⟩X = ⟨γ, ασ⟩ = − 1

2π
Im(ciRτ (u)) = − c

2π
Dτ (u).

For a pair of conjugated complex embeddings σ and σ̄, let Eσ(C) ∼= C/(Z+Zτ)
and Eσ̄(C) ∼= C/(Z+Zτ̄) be compatible with complex conjugation. Then γ1 = [0, 1]
and γ2 = [0, τ ] form a Z-basis of H1(E

σ(C),Z), and γ−
1 = γ1−γ1 and γ−

2 = γ2−γ2
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become part of a basis of H1(X,Z)−. Then from the behaviour of the argument
under complex conjugation, we see from (2.1) that ⟨γ−

j , α⟩X = 2⟨γj , ασ⟩, with the

latter computed on Eσ(C). So if u is the result of applying the diamond operator ⋄
to ασ, then by (5.1) we have

⟨γ−
1 , α⟩X =

1

πyτ
Jτ (u),

⟨γ−
2 , α⟩X = − 1

πyτ
Im(τRτ (u)) = − 1

π
Dτ (u) +

xτ

πyτ
Jτ (u).

Since we calculate the determinant, we may ignore the term xτ

πyτ
Jτ (u) in ⟨γ−

2 , α⟩X .

We can find τ with Im(τ) > 0 numerically as ω1/ω2, with Zω1 + Zω2 the pe-
riod lattice as output by ellperiods in PARI/GP. When E is defined over R,
Re(τ) equals 0 or 1

2 . Also, for E defined over C, given a point on E, the function
ellpointtoz provides an element of C that corresponds to the point in C modulo
the lattice.

We use the function lfun to calculate L∗(E, 0), with 18 significant digits. This
usually requires a lot of memory when the conductor norm of the elliptic curve is
large, which in practice limits how many examples we can give in each table. We

use the function lindep to recognise the resulting Q̃ as a non-zero rational number.

Example 7.2. For N = 7, 8 and 10, let us consider the elliptic curves E over a
number field F with a point of order N , as described in Theorem 4.13.

For N = 7 and 8, let F be defined by fa(X) with ε = 1 and ε′ = −1 as in
Lemma 4.8(1). So u is a root of fa(X) = X3+ aX2− (a+1)X +1 with a in Z. By
the lemma, F is non-Abelian except for a = −4 or 3, when F is cyclic, and from its
discriminant as computed in the proof one sees F is totally real unless a = −3, . . . , 2.

In Theorem 4.13, for N = 8 we have t = 1/(u + 1). If a → −(a + 1), then
u → 1/u and t → 1− t, so by Remark 4.6 we only need to consider a ⩾ 0 here.

For N = 10, let F be defined by fa(X) = X4 + aX3 − aX + 1 with a in Z,
which is one of the families in Lemma 4.8(2) (see Table 5). By writing out the 28
exceptions mentioned there, we see that fa(X) is irreducible if and only if |a| ̸= 3.
By making explicit the end of the proof of Lemma 4.8(2), we see the Galois group
for such irreducible fa(X) is D4 for a ̸= 0, while for a = 0 it is Z/2Z×Z/2Z. Using

fa(X) = (X2+ a
2X− 1)2− (a

2

4 − 2)X2, it is straightforward to see that F is totally
real unless a = −2, . . . , 2, where it has two complex places. By Theorem 4.13 we
know that SP,s is in KT

2 (E)int for N = 7, and 2SP,s is for N = 8 or 10. We
calculate (7.1) for each embedding using (5.2). In Tables 6 (resp. 7 and 8), for

some small a we list Q̃ as in (2.2) using SP,s for N = 7 (resp. 2SP,s for N = 8, 10)

with 1 ⩽ s ⩽ ⌊N−1
2 ⌋, together with the discriminant d of F , conductor norm c of

E and L∗(E, 0).

Remark 7.3. The simple shape of (5.2) is convenient in the part of the proof of
Theorem 4.13 in Section 5. But as used in the proofs of Theorems 4.7 and 4.13,
the SP,s lie in the subgroup of KT

2 (E)int generated by the TP,s,t for N = 7, and
the 2SP,s in that generated by the 2TP,s,t for N = 8 and 10. We can use those, and
other elements, including those in Remark 3.5, to obtain Beilinson regulators for

which the corresponding Q̃ is a positive integer multiple of that of the SP,s or 2SP,s.
Suppose for N = 7 that SP,1, SP,2 and SP,3 have Beilinson regulator RS ̸= 0.

The SP,s lie in the subgroup of KT
2 (E)int generated by the TP,s,t, which contains
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Table 9. Data for λ = 1.

a d c L∗(E, 0) Q̃

0 −23 23 · 17 · 107 132.724179260406391 2−4 · 3
1 −31 23 · 34 · 17 168.814511547175067 2−4 · 3
2 −23 23 · 19 · 37 53.4019469956784239 2−4

3 72 23 · 127 37.1776384769406512 2−4 · 3 · 7−1

4 257 23 · 34 −721.242054102691853 −2−3 · 3
5 17 · 41 23 · 19 1414.02549043158906 2−2 · 3
6 1489 23 · 17 · 19 83163.7726064265207 2 · 33
7 2777 23 · 34 · 37 2915249.85675393311 22 · 33 · 13
8 4729 23 · 71 · 163 33679082.6389894579 2 · 33 · 241
9 7537 23 · 37 · 863 260954243.280987485 2 · 33 · 1567

elements (e.g., TP,1,2, TP,1,3 and TP,1,4) with Beilinson regulator 7−2RS . (This can
be computed using their images under the diamond operator in Z[E(C)]− modulo
torsion, which all lie in the rank 3 subgroup generated by the classes of (P ), (2P )
and (3P ).) Using instead the βP,b,c of Remark 3.5 (e.g., βP,2,3, βP,2,4 and βP,2,5)
one obtains a Beilinson regulator that is 7−4RS . But the obstruction mentioned
at the end of Remark 3.5 is in O×

F /(O
×
F )

7, which is isomorphic to Z/7Z for a =
−3, . . . , 2, and to (Z/7Z)2 otherwise. Using this we can enlarge the group, and

obtain regulators 7−6RS for a = −3, . . . , 2, and 7−5RS otherwise. The resulting Q̃
are then 76 or 75 times that in Table 6. The limit statement in Theorem 4.13 can
be similarly modified by changing the elements.

Similarly, for N = 8, we can supplement the 2SP,s with all 2TP,s,t, and all TP,s,t

with both s and t even. And with 2P of order 4 and hitting the 0-component in
every fibre of the minimal regular model of the curve, we can also use S2P,1 as well
as T2P,1,2, T2P,1,3 and T2P,2,3. In the resulting subgroup of KT

2 (E)int one can find

three elements for which Q̃ is multiplied by 210 compared to that for the 2SP,s.
For N = 10, one can similarly supplement the 2SP,s with various elements:

the 2TP,s,t, and TP,s,t if both s and t are even, S2P,1 and S2P,2 (with 2P of order 5
and hitting the 0-component at all primes), T2P,s,t with 1 < s < t < 5, as well as
the β2P,a,b with 1 < a < b < 5 of Remark 3.5. In the resulting subgroup ofKT

2 (E)int
one can find four elements for which Q̃ is 21054 times that for the 2SP,s.

Remark 7.4. As observed in Remark 4.11, the isomorphism Q(ua) ≃ Q(u−a−1)
of cubic fields in Example 7.2, which is used in the example when N = 8, does
not necessarily lead to isomorphic curves in the example when N = 7; in fact, in
Table 6 the values of L∗(E, 0) do not match. The same applies in the example
when N = 10 for the isomorphisms of the quartic fields with a and −a given
by ua 7→ −u−a or u−1

−a, as can be seen from Table 8. (The isomorphism for N = 10
in Remark 4.6 corresponds to the automorphism of the field given by ua 7→ −u−1

a .)

Example 7.5. We now consider the elliptic curves E with elements M and Mq

(q = p, p+1, p(p+1)) in KT
2 (E)int, as described in Theorem 6.10. where F = Q(u)

for u a root of fa(X) = X3 + aX2 − (a+ 1)X + 1 with a in Z, and p = u− 1. As
mentioned before Theorem 6.10, we may assume a ⩾ 0.
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Table 10. Data for λ = 2.

a d c L∗(E, 0) Q̃

0 −23 26 · 11 · 23 · 37 4486.81605627777558 2−1 · 3 · 5
1 −31 26 · 33 · 11 · 13 3599.55769844723823 2−1 · 32
2 −23 26 · 52 · 59 837.555573566513198 2
3 72 26 · 13 · 83 −2498.99534192761051 −3
4 257 26 · 33 · 37 −64543.3050825583931 −22 · 33
5 17 · 41 26 · 112 · 13 · 23 −16392164.6852019715 −22 · 34 · 53
6 1489 26 · 23 · 47 · 179 437520185.347094640 25 · 32 · 1187

Table 11. Data for λ = 3.

a d c L∗(E, 0) Q̃

0 −23 23 · 39 · 19 25300.9847248343307 3 · 17
1 −31 23 · 311 −21806.9954627600874 −22 · 3 · 5
2 −23 23 · 39 · 17 −21113.3123276958079 −22 · 3 · 5
3 72 23 · 39 5601.39536780219401 22 · 3
4 257 23 · 311 · 19 −26042785.9143510709 −23 · 33 · 233

Table 12. Data for λ = 4.

a d c L∗(E, 0) Q̃

0 −23 26 · 5 · 7 19.1718016489393019 2−3

1 −31 26 · 32 8.95758063575193728 2−3 · 3−1

2 −23 26 · 5 · 11 −25.4138019939166741 −2−3

3 72 26 · 7 · 13 241.273298483854998 2−1 · 3
4 257 26 · 32 · 5 −2647.23969149488937 −32

5 17 · 41 26 · 5 · 11 · 17 441097.703795075666 23 · 33 · 5
6 1489 26 · 7 · 13 · 19 −4149007.28165801473 −27 · 32 · 7
7 2777 26 · 32 · 5 · 7 2423760.93043136419 2 · 33 · 73
8 4729 26 · 11 · 17 · 23 99044008.9977606699 27 · 32 · 112
9 7537 26 · 5 · 13 · 19 66308672.9214609161 25 · 32 · 7 · 41
10 72 · 233 26 · 32 · 5 · 7 41156246.2610705047 24 · 33 · 107

With notation as in Remark 6.7, by (6.8), in Z[E(C)]− we have

Cλ

( y

x3

)
⋄ (q−2x+ 1) = 6Cλ

(
(P + Tq) + (P − Tq)− 2(P )

)
.

From this and the relation Mp + Mp+1 + Mp(p+1) = 2CλM we can calculate Q̃
as in (2.2) for Mp, Mp+1 and M . We list the result in Tables 9, 10, 11 and 12,
for some small a, together with the discriminant d of F , conductor norm c of E
and L∗(E, 0).
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