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Abstract. We compute explicitly the Goncharov regulator integral associated to K4 classes
on modular curves in terms of L-values of modular forms. We use this expression to connect it
with the Beilinson regulator integral.

1. Introduction

The principal goal of this paper is to give an explicit relation between the integrals of two reg-

ulators defined on the K-group H2
M

(Y (N),Q(n)) ≅ K
(n)
2n−2(Y (N)) in the motivic cohomology

of the modular curve Y (N) of full level N , in the case n = 3.
In the recent work [8], Brunault constructs explicit motivic cohomology classes ξ(a,b) in

H2
M

(Y (N),Q(3)) enumerated by a,b ∈ (Z/NZ)2; the classes are the images of degree 2 cocycles

ξ̃(a,b) in the Goncharov polylogarithmic complex Γ(Y (N),3) under De Jeu’s map [13, 14, 15].
The construction uses the so-called Siegel units gx ∈ O(Y (N))×⊗Q, x ∈ (Z/NZ)2, and certain
relations analogous to modular symbols involving Milnor symbols {gx, gy} in K2(Y (N)) ⊗Q.

The nontriviality of ξ(a,b) for small values of N is shown in [8] via computing numerically
their images under the Goncharov regulator map r3(2) defined in [12]. It is harder to compute

the integral of r3(2)(ξ̃(a,b)) theoretically; the existing literature lacks any such explicit calcu-
lations for the weight 3 polylogarithmic complex of curves. At the same time — and this serves
as a natural motivation for these calculations — such integrals are related to (longstanding
conjectural evaluations of) the Mahler measure of three-variable polynomials [10, Chapter 6].
As an example, Laĺın [19] has made an explicit connection between the Mahler measure of
(1+x)(1+y)+z and the Goncharov regulator for the elliptic curve (1+x)(1+y)(1+ 1

x)(1+
1
y) = 1.

Another motivation for computing the Goncharov regulator integrals comes from a conjec-
ture of the first author [8, Conjecture 9.3] predicting the proportionality of the Goncharov
type elements ξ((0, a), (0, b)) and the Beilinson elements [2] in the motivic cohomology of the
modular curve Y1(N). This conjecture is based on numerical computations of the associated
regulator integrals. This suggests, more generally, the existence of a relation between the two
integrals in the case of Y (N), not just Y1(N), and possibly at the level of cocycles, not just
cohomology classes. It is this task that we perform in the present paper.

In order to compare the Goncharov and Beilinson regulator integrals

G(a,b) = ∫
∞

0
r3(2)(ξ̃(a,b)) and B(a,b) = ∫

∞

0
Eis0,0,1
D

(a,b),

where a,b ∈ (Z/NZ)2, we first express G(a,b) in terms of multiple (in fact, triple) modu-
lar values (MMV) — more specifically, multiple Eisenstein values (MEV). This step requires
defining the latter objects and the corresponding regularisation of integrals along the imagi-
nary axis ]0, i∞[, and setting up numerous properties and rules for MMVs. This part follows
closely Brown’s expositions [4, 5] which we complement with our needs in Sections 2 and 3;

Section 4 serves a toy model for expressing the regulator integral on K
(2)
2 (Y (N)) as a double

modular value (a fact that seems to escape the literature). The MMV expression for the reg-
ulator integral G(a,b) is computed in Section 5 for generic a,b ∈ (Z/NZ)2; the result can be
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interpreted in terms of interpolated Eisenstein series, when each a ∈ (Z/NZ)2 is rescaled to
a/N ∈ ( 1

NZ/Z)2 and the latter interpolates to a function of a on (R/Z)2. This line famously
settled by A. Weil in [24] allows us to differentiate with respect to the (real) elliptic parameters
a,b; more specifically, we choose to differentiate with respect to a2. The differentiation of the
Goncharov regulator integral in Section 7 is preceded, in Section 6, by derivation of auxiliary
Borisov–Gunnells relations for pairwise products of Eisenstein series, and followed by reduction,
in Section 8, of the resulting expression of ∂

∂a2
G(a,b) using the Rogers–Zudilin method. Note

that our proof of the Borisov–Gunnells relations requires the level N structure to be used, so
that we make several switches between interpolated and non-interpolated Eisenstein series. Fi-
nally, in Section 9 we deduce an L-value expression for G(a,b) by integrating its a2-derivative;
this brings us to the comparison of G(a,b) with B(a,b) in Section 10.

Our main results can be stated precisely as follows. We need the following Eisenstein series.
Given a level N ≥ 1, a weight k ≥ 1 and an elliptic parameter x = (x1, x2) in (Z/NZ)2, we define
as in [10, Section 10.4]

(1) G
(k);N
x (τ) = a0(G

(k);N
x ) + ∑

m,n≥1
(m,n)≡x mod N

mk−1qmn/N + (−1)k ∑
m,n≥1

(m,n)≡−x mod N

mk−1qmn/N ,

where the constant term is given by

a0(G
(1);N
x ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−B1({
x2
N }) if x1 = 0 and x2 ≠ 0,

−B1({
x1
N }) if x1 ≠ 0 and x2 = 0,

0 otherwise,

and for k ≥ 2,

a0(G
(k);N
x ) = {

−Nk−1Bk({
x1
N })/k if x2 = 0,

0 if x2 ≠ 0.

Here Bk(t) is the k-th Bernoulli polynomial (in particular B1(t) = t −
1
2), and { ⋅ } stands for

the fractional part. The function G
(k);N
x is an Eisenstein series of weight k and level Γ(N),

except for the case k = 2 and x1 = 0. Given a modular form f = ∑n≥0 anq
n/N on Γ(N), we write

L(f, s) = ∑n≥1 an(n/N)−s for (the analytic continuation of) the L-function of f .

Theorem 1. For any a = (a1, a2), b = (b1, b2) in (Z/NZ)2 such that the coordinates of a, b
and a + b are non-zero, we have

G(a,b) =
3π2

N
L′(G

(1);N
a1,b2

G
(1);N
b1,−a2

+G
(1);N
a1,−b2

G
(1);N
b1,a2

,−1)

−
ζ(3)

4
(B2({

a1
N }) +B2({

b1
N }) + 4B1({

a1
N })B1({

b1
N })

−B2({
a2
N }) −B2({

b2
N }) − 4B1({

a2
N })B1({

b2
N })).

In his PhD thesis, Weijia Wang has made explicit Beilinson’s theorem, by computing B(a,b)
using the Rogers–Zudilin method [23, Théorème 0.1.3]. The resulting L-value turns out to
match the one in Theorem 1. We deduce our second main result, which is an explicit connection
between G(a,b) and B(a,b).

Theorem 2. For any a = (a1, a2), b = (b1, b2) in (Z/NZ)2 such that the coordinates of a, b
and a + b are non-zero, we have

G(a,b) =
N2

6
B(a,b) −

ζ(3)

4
(B2({

a1
N }) +B2({

b1
N }) + 4B1({

a1
N })B1({

b1
N })

−B2({
a2
N }) −B2({

b2
N }) − 4B1({

a2
N })B1({

b2
N })).

This gives some evidence for [8, Conjecture 9.3] asserting the proportionality of the motivic
cohomology classes ξ(a,b) and Eis0,0,1(a,b) — this was formulated for Y1(N), but we expect it
to hold also for Y (N). The discrepancy appearing with the rational multiple of ζ(3) may come
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from the particular choices of representatives of the Deligne–Beilinson cohomology classes, since
]0, i∞[ is not a closed path in Y (N)(C).

Our strategy and its execution reveal several interesting arithmetic phenomena and prospects

for the general K-groups K
(n)
2n−2(Y (N)) with n ≥ 2. First of all, we find the theory of multiple

modular values developed by Brown [4, 5], specifically of multiple Eisenstein values (MEVs),
intrinsic to dealing with both the L-values L(E,n) of modular elliptic curves E and regulators
of Beilinson and Goncharov types. One may hope that if E has conductor N , then L(E,n) can
be always written as a Q-linear combination of length n MEVs with Eisenstein series of weight
2 and level N . This should be explained by a relation between the Goncharov regulator rn(2)
and iterated integrals of length n.

In contrast, the Beilinson regulator produces MEVs of length 2, with weights of Eisenstein
series depending on n, and this corresponds to a representation of L(E,n) as a Q-linear com-
bination of length 2 MEVs. The difference in production from the two regulators suggests
the existence of intermediate regulators in the case n ≥ 4, to cover the entire spectrum of
possibilities of MEVs. At the moment we can only speculate in this direction. Notice that
representativeness of L(E,n) by different length MEVs seems to be part of some general struc-
ture; this indicates existence of possible ‘length drops’ for MMVs themselves. Our calculation
of ∂

∂a2
G(a,b) in Sections 6–8 gives an example of such a length drop by 1. Are there identities

of MMVs in which the length drops by 2 or more? Does a general theory for length reduction
exist? Answering such questions will help to understand the cases with n ≥ 4.

Most of our results in Sections 6–8 are limited to the situations required for dealing with the
Goncharov regulator rn(2) when n = 3 but can be potentially generalised. Our Theorem 61
below is already more general than needed in this paper but can be generalised further; the
Borisov–Gunnells relations exist in arbitrary weight. Differentiation of such relations with
respect to elliptic parameters was already used by Borisov and Gunnells in [3, Section 3],
though with no connection to computing regulators or MMVs.

Our final remark is that writing r3(2) in terms of MMVs provides one with an efficient way
for computing the Goncharov regulator, which is faster when compared with the method used
in [8].

This project greatly benefited from discussions at the International Groupe de Travail on
differential equations in Paris. The first author thanks the participants of the group, especially
Spencer Bloch, Vasily Golyshev, Rob de Jeu and Matt Kerr, for illuminating perspectives. We
are also grateful to our colleagues whose feedback on several aspects of this work have been
instrumental, to Francis Brown, Kamal Khuri-Makdisi, Matilde Laĺın, Riccardo Pengo and
Weijia Wang.

Iterated integrals of modular forms appear intrinsically in the study of modular regulators
and we feel appropriate to dedicate our work to Yuri Manin, who pioneered this topic in [20, 21].
We would benefit from discussing our results with him. But he passed away unexpectedly, full
of many ideas that our mathematics world could have grown further on.

2. Regularised iterated integrals

2.1. Admissible functions. We define the class of functions and differential forms that we
wish to integrate. Let H = {τ ∈ C ∶ Im(τ) > 0} be the upper half-plane, and ]0, i∞[ = {iy ∶ y > 0}
the imaginary axis.

Definition 3 (Admissibility at infinity). A C∞ function f ∶ ]0, i∞[ → C is called admissible at
∞ if it can be written f(τ) = f∞(τ) + f 0(τ), where f∞(τ) ∈ C[τ] is a polynomial, and f 0(τ)
has exponential decay as Im(τ) → +∞: there exists 0 < c < 1 such that f 0(τ) = Oτ→∞(cIm(τ)).
In this case, the regularised value of f at infinity, denoted by f(∞), is defined as the constant
term of the polynomial f∞.

Note that the decomposition f = f∞ + f 0 is unique, hence f(∞) is well defined.



4 F. BRUNAULT AND W. ZUDILIN

Definition 4. A C∞ differential form ω = f(τ)dτ on ]0, i∞[ is called admissible at ∞ if f is
admissible at ∞. We then write ω = ω∞ + ω0 with ω∞ = f∞(τ)dτ and ω0 = f 0(τ)dτ .

As an example, if f is a modular form of weight k ≥ 1 on some finite index subgroup of
SL2(Z), then ω = f(τ)τm dτ is admissible at ∞ for any integer m ≥ 0. Note that if a form ω is
admissible at ∞, then so are Re(ω) = 1

2(ω + ω̄) and Im(ω) = 1
2i(ω − ω̄).

Lemma 5. If a function f and a form ω on ]0, i∞[ are admissible at ∞, then so is fω.

2.2. Regularisation at infinity. We now come to regularisation of iterated integrals. We
follow Brown’s definition [4, Section 4.1] and show how it can be expressed via successive
one-variable regularisations.

Let us first consider the case of a single integral from τ to ∞. Let ω be a differential form
on ]0, i∞[ which is admissible at ∞. Brown’s definition translates to

(2) ∫

∞

τ
ω ∶= lim

p→∞
∫

p

τ
ω + ∫

0

p
ω∞ (p = iy, y → +∞).

We can actually get rid of the limit in (2).

Lemma 6. Let ω be a differential form on ]0, i∞[ which is admissible at ∞. The limit in (2)
exists, and we have

(3) ∫

∞

τ
ω = ∫

∞

τ
ω0 + ∫

0

τ
ω∞.

Moreover, the error term in the convergence of (2) is Op→∞(cIm(p)) with 0 < c < 1, the constant
c being uniform with respect to τ on domains of the form {Im(τ) ≥ y0 > 0}.

Proof. Indeed,

∫

p

τ
ω + ∫

0

p
ω∞ = ∫

p

τ
ω0 + ∫

p

τ
ω∞ + ∫

0

p
ω∞ = ∫

p

τ
ω0 + ∫

0

τ
ω∞. �

We refer to the right-hand side of (3) as the practical regularised integral. Note that the
regularised integral recovers the classical integral in the case ω is integrable on [τ, i∞[ (which
happens if and only if ω∞ = 0). Lemma 6 has the following consequence.

Lemma 7. Let ω be a differential form on ]0, i∞[ which is admissible at ∞. Then the function
F (τ) = −∫

∞

τ ω is admissible at ∞. Moreover, F is the unique primitive of ω whose regularised
value at ∞ is zero.

In particular, if a form ω is admissible at ∞, then any primitive of ω is again admissible
at ∞. On the other hand, the differential of an admissible function f need not be admissible,
because there is no control on the derivative of f 0.

Lemma 8. Let f ∶ ]0, i∞[ → C be a function such that df is admissible at ∞. Then f is
admissible at ∞ and ∫

∞

τ df = f(∞) − f(τ), where f(∞) is the regularised value at ∞ as in
Definition 3.

Proof. This follows from Lemma 7 applied to ω = df . �

One should be careful that in general ∫
∞

τ ω does not converge to zero as τ →∞: this can be
seen from (3). For example, if f(τ) = ∑n≥0 anq

n is a modular form, then

∫

∞

τ
f(τ1)dτ1 = −

1

2πi
∑
n≥1

an
n
qn − a0τ.

One outcome of Lemma 8 is the following formula for integration by parts: if the forms df
and dg are admissible, then f and g are admissible as well, and

(4) ∫

∞

τ

df

dτ
(τ1)g(τ1)dτ1 = f(∞)g(∞) − f(τ)g(τ) − ∫

∞

τ
f(τ1)

dg

dτ
(τ1)dτ1.

Once again, here f(∞) and g(∞) are the regularised values at ∞ as in Definition 3.
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Now let us consider the case of iterated integrals. Brown’s definition [4, Section 4.1] uses a
tangential base point at ∞. This intrinsic definition has the advantage of giving naturally the
shuffle relations for the regularised iterated integrals. Unraveling Brown’s definition gives:

Definition 9. Let ω1, . . . , ωn be differential forms on ]0, i∞[ which are admissible at ∞. Define

(5) ∫

∞

τ
ω1 . . . ωn ∶= lim

p→∞

n

∑
k=0
∫

p

τ
ω1 . . . ωk × ∫

0

p
ω∞k+1 . . . ω

∞
n .

We will justify below the convergence in (5). For certain computations, we will need to
express the regularised iterated integral as a succession of one-variable regularised integrals.
We introduce the following ‘näıve’ regularisation:

(6) ∫

∞,∗

τ
ω1 . . . ωn ∶= ∫

∞

τ
ω1(τ1)∫

∞

τ1
ω2(τ2)⋯∫

∞

τn−1
ωn(τn),

where the right-hand integrals are understood as (3).

Lemma 10. The näıve regularised integral ∫
∞,∗

τ ω1 . . . ωn is well-defined and is admissible at ∞
as a function of τ . Its regularised value at ∞ is zero.

Proof. This follows from inductive application of Lemmas 5 and 7. �

Proposition 11. Let ω1, . . . , ωn be differential forms which are admissible at ∞. Then

∫

∞

τ
ω1 . . . ωn = ∫

∞,∗

τ
ω1 . . . ωn.

To prove this, we need the following lemma.

Lemma 12. The polynomial part of the näıve regularised integral is given by

(∫

∞,∗

τ
ω1 . . . ωn)

∞

= ∫

0

τ
ω∞1 . . . ω∞n ,

where the right-hand side is the usual (absolutely convergent) iterated integral.

Proof. We proceed by induction on n. The case n = 1 follows from Lemma 6. For n ≥ 2, we
have

∫

∞,∗

τ
ω1 . . . ωn = ∫

∞,∗

τ
ω1(τ1)∫

∞,∗

τ1
ω2 . . . ωn.

By the induction hypothesis applied to ω2 . . . ωn, we have

(ω1(τ1)∫
∞,∗

τ1
ω2 . . . ωn)

∞

= ω∞1 (τ1)(∫
∞,∗

τ1
ω2 . . . ωn)

∞

= ω∞1 (τ1)∫
0

τ1
ω∞2 . . . ω∞n .

Therefore, using Lemma 6,

(7) ∫

∞,∗

τ
ω1 . . . ωn = ∫

∞

τ
(ω1(τ1)∫

∞,∗

τ1
ω2 . . . ωn)

0

+ ∫

0

τ
ω∞1 (τ1)∫

0

τ1
ω∞2 . . . ω∞n .

The first term in (7) decays exponentially as τ →∞, and the second term is a polynomial in τ ,
which finishes the proof. �

Proposition 11 is now a consequence of the following finer result, which controls the conver-
gence as p→∞.

Proposition 13. We have

(8)
n

∑
k=0
∫

p

τ
ω1 . . . ωk × ∫

0

p
ω∞k+1 . . . ω

∞
n = ∫

∞,∗

τ
ω1 . . . ωn +Op→∞(cIm(p)) (0 < c < 1),

the constant c being uniform with respect to τ on domains of the form {Im(τ) ≥ y0 > 0}.
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Proof. We proceed by induction on n. The case n = 1 follows from Lemma 6. Let n ≥ 2. Using
the induction hypothesis to ω2 . . . ωn, the left-hand side of (8) can be written as

∫

p

τ
ω1(τ1)(

n

∑
k=1
∫

p

τ1
ω2 . . . ωk × ∫

0

p
ω∞k+1 . . . ω

∞
n ) + ∫

0

p
ω∞1 . . . ω∞n

= ∫

p

τ
ω1(τ1)(∫

∞,∗

τ1
ω2 . . . ωn +Op→∞(cIm(p))) + ∫

0

p
ω∞1 . . . ω∞n

= ∫

p

τ
ω1(τ1)∫

∞,∗

τ1
ω2 . . . ωn + (∫

p

τ
ω1(τ1))Op→∞(cIm(p)) + ∫

0

p
ω∞1 . . . ω∞n

= ∫

p

τ
ω1(τ1)∫

∞,∗

τ1
ω2 . . . ωn + ∫

0

p
ω∞1 . . . ω∞n +Op→∞(c

Im(p)
2 ).(9)

Consider the differential form

α(τ1) = ω1(τ1)∫
∞,∗

τ1
ω2 . . . ωn.

Applying Lemma 12 to ω2 . . . ωn, the polynomial part of α is

α∞(τ1) = ω
∞
1 (τ1)∫

0

τ1
ω∞2 . . . ω∞n .

Therefore,

(9) = ∫
p

τ
α(τ1) + ∫

0

p
ω∞1 (τ1)∫

0

τ1
ω∞2 . . . ω∞n +Op→∞(c

Im(p)
2 )

= ∫

p

τ
α(τ1) + ∫

0

p
α∞(τ1) +Op→∞(c

Im(p)
2 )

= ∫

∞,∗

τ
α +Op→∞(c

Im(p)
3 ). �

Proposition 11 and Lemma 7 have the following consequence.

Lemma 14. For any differential forms ω1, . . . , ωn which are admissible at ∞, we have

d(∫
∞

τ
ω1 . . . ωn) = −ω1(τ)∫

∞

τ
ω2 . . . ωn.

2.3. Regularisation at zero. The matrix σ = ( 0 −1
1 0 ) acts on H by τ ↦ −1/τ . For a differential

form ω on ]0, i∞[, we write ωσ = σ∗ω.

Definition 15 (Admissibility at 0). A C∞ function f ∶ ]0, i∞[ → C is called admissible at 0 if
the function g(τ) = f(−1/τ) is admissible at ∞. In this case, the regularised value of f at 0 is
defined as f(0) = g(∞).

A C∞ differential form ω on ]0, i∞[ is called admissible at 0 if ωσ is admissible at ∞.

Definition 16 (Admissibility). A function or differential form on ]0, i∞[ is called admissible
if it is admissible at both 0 and ∞.

Example 17. ● The only polynomials in τ which are admissible are the constants.
● If f is a modular form of weight k ≥ 2 on a finite index subgroup of SL2(Z), then
ω = f(τ)dτ is admissible. In fact f(τ)τm−1dτ is admissible for any m ∈ {1, . . . , k − 1}.
If f is a cusp form, then f(τ)τm−1dτ is admissible for any m ∈ Z.

Lemmas 5 and 7 also hold for admissibility at 0, and thus for admissibility:

Lemma 18. Let ω be an admissible differential form on ]0, i∞[, and f(τ) any primitive of ω.
Then f is admissible.

We now want to define the regularised iterated integral from 0 to τ of differential forms
ω1, . . . , ωn which are admissible at 0. We begin with the case n = 1. Formal considerations lead
to the following definition.
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Definition 19. Let ω be a differential form on ]0, i∞[ which is admissible at 0. We set

∫

τ

0
ω ∶= −∫

∞

−1/τ
ωσ,

which is well-defined since ωσ is admissible at ∞.

Lemma 20. Let ω be a differential form on ]0, i∞[ which is admissible at 0. Then ∫
τ

0 ω is the
unique primitive of ω whose regularised value at 0 is zero.

Proof. By Lemma 7 applied to ωσ, we know that d (∫
∞

τ ωσ) = −ωσ. Pulling back by σ∶ τ ↦ −1/τ
gives the desired identity. The statement about the regularised value at 0 follows from the
definition and Lemma 7. �

Now we proceed to the iterated case. Let ω1, . . . , ωn be differential forms on ]0, i∞[ which
are admissible at 0. We want to set

∫

τ

0
ω1 . . . ωn = ∫

−1/τ

∞
ωσ1 . . . ω

σ
n.

The right-hand side can be given a meaning using the reversal of paths formula

∫

b

a
ω1 . . . ωn = (−1)n∫

a

b
ωn . . . ω1.

This leads to:

Definition 21. For any forms ω1, . . . , ωn on ]0, i∞[ which are admissible at 0, we define

∫

τ

0
ω1 . . . ωn ∶= (−1)n∫

∞

−1/τ
ωσn . . . ω

σ
1 .

We have the following analogues of Lemmas 10 and 14.

Lemma 22. The integral ∫
τ

0 ω1 . . . ωn is admissible at 0 as a function of τ , and its regularised
value at 0 is zero.

Proof. This follows from Lemma 10 applied to ωσn . . . ω
σ
1 . �

Lemma 23. We have

d(∫
τ

0
ω1 . . . ωn) = ωn(τ)∫

τ

0
ω1 . . . ωn−1.

Proof. By Lemma 14, we have

d(∫
∞

τ
ωσn . . . ω

σ
1) = −ω

σ
n(τ)∫

∞

τ
ωσn−1 . . . ω

σ
1 .

Applying σ∗ to this identity gives

d(∫
∞

−1/τ
ωσn . . . ω

σ
1) = −ωn(τ)∫

∞

−1/τ
ωσn−1 . . . ω

σ
1 = (−1)nωn(τ)∫

τ

0
ω1 . . . ωn−1. �

2.4. Regularisation from zero to infinity. Note that if ω is admissible, then the integral

∫
∞

0 ω ∶= ∫
τ

0 ω + ∫
∞

τ ω is well-defined and independent of τ by Lemmas 7 and 20. Moreover, if ω
is integrable, then this definition coincides with the usual (convergent) integral of ω on ]0, i∞[.

In the iterated case, the composition of paths formula forces the following definition.

Definition 24. Let ω1, . . . , ωn be admissible differential forms on ]0, i∞[. We define

(10) ∫

∞

0
ω1 . . . ωn =

n

∑
k=0
∫

τ

0
ω1 . . . ωk × ∫

∞

τ
ωk+1 . . . ωn.

Lemma 25. The definition (10) does not depend on τ .
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Proof. Using Lemmas 14 and 23, the differential of the right-hand side of (10) is

n−1

∑
k=0
∫

τ

0
ω1 . . . ωk × ( − ωk+1(τ))∫

∞

τ
ωk+2 . . . . . . ωn

+
n

∑
k=1

ωk(τ)∫
τ

0
ω1 . . . ωk−1 × ∫

∞

τ
ωk+1 . . . . . . ωn

which vanishes by changing k → k + 1 in the second sum. �

The last lemma naturally brings us to a statement which will be important for expressing
the Goncharov regulator integral in terms of iterated integrals.

Proposition 26. Let ω1, . . . , ωn be admissible differential forms on ]0, i∞[. Then

∫

∞

τ
ω1 . . . ωn

is admissible at 0 as a function of τ , and its regularised value at 0 is ∫
∞

0 ω1 . . . ωn. Moreover,

(11) ∫

∞

0
ω1 . . . ωn = ∫

∞

0
ω1(τ1)∫

∞

τ1
ω2(τ2)⋯∫

∞

τn−1
ωn(τn),

where the right-hand side of (11) is understood as successive one-variable regularisations.

Proof. For the first part of the proposition, we proceed by induction on n. The case n = 1
follows from ∫

∞

0 ω1 = ∫
τ

0 ω1 + ∫
∞

τ ω1 and Lemma 20. For n ≥ 2, we can write

∫

∞

τ
ω1 . . . ωn = ∫

∞

0
ω1 . . . ωn −

n

∑
k=1
∫

τ

0
ω1 . . . ωk × ∫

∞

τ
ωk+1 . . . ωn.

By the induction hypothesis and Lemma 22, the right-hand side is admissible at 0. Moreover,
the regularised value at 0 of the product

∫

τ

0
ω1 . . . ωk × ∫

∞

τ
ωk+1 . . . ωn

is the product of the regularised values, hence it is zero by Lemma 22.
Finally, (11) follows formally by using the case n = 1 with the form ω1(τ1) ∫

∞

τ1
ω2 . . . ωn. �

2.5. Shuffle relations of iterated integrals. An important feature of all the regularisations
we have discussed, ∫

∞

0 as well as ∫
τ

0 and ∫
∞

τ , is that they satisfy the shuffle relations. Let
V be the C-vector space of admissible differential 1-forms on ]0, i∞[. Consider the functional
I∞0 ∶V → C sending ω to the regularised integral ∫

∞

0 ω. Then the regularised iterated integrals
of Section 2.4 provide a natural extension of I∞0 to the tensor algebra T (V ) = ⊕n≥0 V ⊗n,

I∞0 ∶T (V ) →C, ω1 ⊗ . . .⊗ ωn ↦ ∫
∞

0
ω1 . . . ωn (ωi ∈ V ).

The algebra T (V ) has a structure of Hopf algebra, called the shuffle algebra, with the multi-
plication T (V ) ⊗ T (V ) → T (V ) given by the shuffle product

ω1 . . . ωp� ωp+1 . . . ωn = ∑
σ∈Sp,n−p

ωσ−1(1) . . . ωσ−1(n),

where the sum is over the (p, n − p)-shuffles.
More generally, one may integrate over a path γ which is either a finite interval in ]0, i∞[, or a

path in the ‘tangent space of H at 0 or ∞’ involving tangential base points 1⃗0 or 1⃗∞, as defined
in [4, Section 4]. For such a path γ, there is an associated functional Iγ ∶ T (V ) → C. The
important point is that, as Iγ is essentially an ordinary iterated integral, it satisfies the shuffle
relations; in other words, Iγ is a morphism of algebras. Moreover, regularised integrals on ]0, i∞[

are defined by formally concatenating the paths 1⃗0 → i/y → iy → 1⃗∞ (with y → ∞). Formal
considerations using the Hopf algebra structure on T (V ) lead to the following proposition.
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Proposition 27. The functional I∞0 ∶T (V ) →C satisfies the shuffle relations ; in other words,

∫

∞

0
ω1 . . . ωp × ∫

∞

0
ωp+1 . . . ωn = ∫

∞

0
ω1 . . . ωp� ωp+1 . . . ωn (ωi ∈ V )

for any choice of p ∈ {1, . . . , n}.

For more details, we refer the reader to [4, Section 4].

2.6. The Newton–Leibniz formula and integration by parts. We now want to generalise
Lemma 8 in the form of formula (4) for integration by parts to iterated integrals ∫

∞

τ ω1 . . . ωn.
‘with respect to a particular form’ ωp(τ) = f(τ)dτ , assuming that the 1-forms ω1, . . . , ωn are
admissible. As we already know from the lemma, f is an admissible function; we keep the
notation f(∞) and f(0) for its regularised values at ∞ and 0 as in Definition 3.

If p = 1 we get, using (4),

∫

∞

τ

df

dτ
(τ1)dτ1 ω2(τ2) . . . ωn(τn)

= ∫

∞

τ

df

dτ
(τ1)dτ1∫

∞

τ1
ω2(τ2) . . . ωn(τn)

= −f(τ)∫
∞

τ
ω2(τ2) . . . ωn(τn) + ∫

∞

τ
f(τ2)ω2(τ2) . . . ωn(τn).

For p > 1, we write

∫

∞

τ
ω1(τ1) . . .

df

dτ
(τp)dτl . . . ωn(τn)

= ∫

∞

τ
ω1(τ1) . . .∫

∞

τp−3
ωp−2(τp−2)∫

∞

τp−2
ωp−1(τp−1)∫

∞

τp−1

df

dτ
(τp)dτp ωp+1(τp+1) . . . ωn(τn)

and use the above derivation to conclude that this is

= −∫

∞

τ
ω1(τ1) . . . ωp−2(τp−2) f(τp−1)ωp−1(τp−1)ωp+1(τp+1) . . . ωn(τn)

+ ∫

∞

τ
ω1(τ1) . . . ωp−1(τp−1) f(τp+1)ωp+1(τp+1)ωp+2(τp+2) . . . ωn(τn).

Taking the regularised value as τ → 0 and using Proposition 26, we get

∫

∞

0
ω1(τ1) . . .

df

dτ
(τp)dτp . . . ωn(τn)(12)

= ∫

∞

0
ω1(τ1) . . . ωp−1(τp−1) f(τp+1)ωp+1(τp+1)ωp+2(τp+2) . . . ωn(τn)

− ∫

∞

0
ω1(τ1) . . . ωp−2(τp−2) f(τp−1)ωp−1(τp−1)ωp+1(τp+1) . . . ωn(τn),

where the first summand is interpreted as

f(∞)∫

∞

0
ω1(τ1) . . . ωn−1(τn−1)

when p = n, while the second summand is

−f(0)∫
∞

0
ω2(τ2) . . . ωn(τn)

when p = 1.
In the particular case p = n = 1, formula (12) extends Lemma 8 to regularised integrals from

0 to ∞:

Lemma 28. Let f ∶ ]0, i∞[ → C be a C∞ function such that df is admissible. Then f is
admissible and ∫

∞

0 df = f(∞) − f(0).
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2.7. Iterated integrals with parameters. In this part we record our needs for differenti-
ating the regularised (iterated) integral when a differential form depends smoothly on a real
parameter.

Proposition 29. Let (ωa)a be a family of differential forms on ]0, i∞[ admissible at ∞ de-
pending on a single real parameter a. Write ωa = fa(τ)dτ , and assume that :

(i) the polynomial f∞a (τ) has degree bounded independently of a, and its coefficients are
differentiable functions of a;

(ii) f 0
a(τ) is differentiable as a function of a;

(iii) locally on a, there exists a constant 0 < c < 1 such that d
daf

0
a(τ) = Oτ→∞(cIm(τ)), where

the implied constant does not depend on a.

Then the function a↦ ∫
∞

τ ωa is differentiable, and we have

d

da
(∫

∞

τ
ωa) = ∫

∞

τ

d

da
ωa.

Proof. Note that the assumptions imply that for every a, the form d
daωa =

d
dafa(τ)dτ is admis-

sible, with ( d
daωa)

∞ = d
daω

∞
a and ( d

daωa)
0 = d

daω
0
a. We have:

∫

∞

τ
ωa = ∫

∞

τ
ω0
a + ∫

0

τ
ω∞a .

This shows that a↦ ∫
∞

τ ωa is differentiable, and we can differentiate inside the integral:

d

da
(∫

∞

τ
ωa) = ∫

∞

τ
(
d

da
ωa)

0

+ ∫

0

τ
(
d

da
ωa)

∞

= ∫

∞

τ

d

da
ωa. �

Proposition 29 motivates calling a real-parameter family (ωa)a of admissible differential forms
on ]0, i∞[ differentially admissible at ∞ if they are subject to conditions (i)–(iii) above, written
as ωa = fa(τ)dτ . Furthermore, we call a real-parameter family (ωa)a differentially admissible at
0 if the family (ωσa)a is differentially admissible at ∞; see Definition 15. With these definitions
in mind, we apply Proposition 29 twice to deduce the following statement.

Proposition 30. Let (ωa)a be a family of differentially admissible at 0 and ∞ differential forms
depending on a single real parameter a. Then the function a ↦ ∫

∞

0 ωa is differentiable, and we
have

d

da
(∫

∞

0
ωa) = ∫

∞

0

d

da
ωa.

Observe that Propositions 29 and 30 cover the iterated integral situation as well, since fa(τ)
themselves may come as iterated integrals of admissible forms. For this, we simply apply the
propositions inductively using Proposition 26.

2.8. Mellin transforms. A powerful analytic tool to compute regularised integrals is the
theory of Mellin transforms. Since we consider admissible forms on ]0, i∞[ with possible poles
at 0 and ∞, we will need generalised Mellin transforms as described in [11, Section 3.4]. We
use notably this theory in Section 8 to compute integrals of products of two Eisenstein series
using the Rogers–Zudilin method.

We enlarge a bit our setting by considering functions f ∶ ]0, i∞[ → C of the form f(τ) =

f∞(τ) + f 0(τ), where f∞(τ) ∈ C[τ, τ−1] is a Laurent polynomial, and f 0 is a C∞ function with
exponential decay at i∞. Moreover, we assume that f ○ σ(τ) = f(−1/τ) is also of this form.
For such a function f , the (generalised) Mellin transform is defined as

M(f, s) = ∫
∞

0
f(iy)ys

dy

y
(s ∈ C).

In general, this integral may not converge at any s ∈ C. However, splitting the integral as

∫
1

0 +∫
∞

1 , and analytically continuing each term, it is possible to make sense of M(f, s) as a
meromorphic function of s ∈ C, with at most simple poles at finitely many integers. A pole
of M(f, s) can occur at n0 ∈ Z only if −n0 arises as an exponent in the polynomial f∞, or n0
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arises as an exponent in (f ○σ)∞. As a remark,M(f, s) is identically zero if f is a polynomial.
Therefore, we can always reduce to the situation where f∞ = 0.

For any s0 ∈ C, we denote by M∗(f, s0) the constant term of the Laurent expansion of
M(f, s) at s = s0.

From Lemma 28, we get the following computational tool.

Proposition 31 ([11, Section 3.4]). Let ω = f(τ)dτ be an admissible differential form on
]0, i∞[. Then M(f, s) is holomorphic at s = 1, and we have ∫

∞

0 ω = iM(f,1).

3. Multiple modular values

We use the notation e(z) = e2πiz for z ∈ C, so that q = e(τ) for τ ∈ H. For any α ∈ R, write
also qα = e(ατ). Introduce the differential operators

δ = δτ ∶=
1

2πi

d

dτ
= q

d

dq
and δa =

1

2πi

d

da

if a is a real variable.
Recall the Hurwitz zeta function

ζ(y, s) = ∑
n>0

n≡y mod 1

n−s (y ∈ R/Z, Re(s) > 1),

and the periodic zeta function

ζ̂(y, s) = ∑
n≥1

e(ny)n−s (y ∈ R/Z, Re(s) > 1).

Some properties of these functions can be found in [7, Section 2]. Let us point out that the
relation [7, eq. (11)] is incorrect in the case n = 1. Indeed, for x ∈ R/Z, we have

(13) ζ̂(x,0) =

⎧⎪⎪
⎨
⎪⎪⎩

e(x)
1−e(x) if x ≠ 0,

−1
2 if x = 0.

This can be shown by differentiating the relation

ζ̂(x,1) =
∞

∑
n=1

e(nx)

n
= − log(1 − e(x)).

3.1. Eisenstein series. It will be essential to us to view Eisenstein series not only as functions
of the modular variable τ ∈ H, but also as functions of the elliptic variable z ∈ C/(Z + τZ). To
this end, we recall the Eisenstein-Kronecker function, in the notations of Weil [24, VII, §12].

Let L be a lattice in C, and let (ω1, ω2) be a basis of L such that Im(ω2/ω1) > 0. Then
A(L) ∶= (2πi)−1(ω1ω2 −ω1ω2) is a positive real number which does not depend on the choice of
(ω1, ω2).

Definition 32. For an integer a ≥ 0 and x,x0, s ∈ C, introduce the Kronecker double series

Ka(x,x0, s;L) = ∑
w∈L
w≠−x

exp (A(L)−1(wx0 −wx0))
(w + x)a

∣w + x∣2s
,

where the sum is extended to all ω ∈ L, except ω = −x if x ∈ L. In the case L = Z + τZ with
τ ∈ H, we write Ka(x,x0, s; τ) or simply Ka(x,x0, s) when the context is clear.

The seriesKa(x,x0, s;L) converges for Re(s) > 1+a2 . For a ≥ 1, the function s↦Ka(x,x0, s;L)
extends to a holomorphic function on C [24, VII, §13]. Moreover, the functions x↦Ka(x,0, s;L)
and x↦Ka(0, x, s;L) are periodic with respect to L, which justifies the following definition.

Definition 33. Let k ≥ 1 be an integer. For x = (x1, x2) ∈ (R/Z)2, we define

E
(k)
x (τ) = −

(k − 1)!

(−2πi)k
Kk(0, x1τ + x2, k) Ê

(k)
x (τ) =

(k − 1)!

(−2πi)k
Kk(x1τ + x2,0, k).
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Kato has given in [16, Section 3] an algebraic interpretation of Ê
(k)
x in the case x ∈ ( 1

NZ/Z)2.

We are particularly interested in the series E
(k)
x . We will determine its Fourier expansion

with respect to τ , and then examine its behaviour with respect to the action of SL2(Z) on H.

Finally, we will give a differential property of E
(k)
x with respect to the elliptic variable.

Lemma 34. Let k ≥ 1 be an integer, and x = (x1, x2) ∈ (R/Z)2, with x ≠ 0 in the case k = 2.
We have

(14) E
(k)
x (τ) = a0(E

(k)
x ) − ∑

m≥1
n∈R>0

n≡x1 mod 1

e(mx2)n
k−1qmn + (−1)k+1 ∑

m≥1
n∈R>0

n≡−x1 mod 1

e(−mx2)n
k−1qmn,

with

a0(E
(1)
x ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if x1 = x2 = 0,

−1
2
1+e(x2)
1−e(x2)

if x1 = 0 and x2 ≠ 0,

{x1} −
1
2 if x1 ≠ 0,

a0(E
(k)
x ) =

Bk({x1})

k
(k ≥ 2),

where Bk(t) is the k-th Bernoulli polynomial and { ⋅ } stands for the fractional part.

Proof. In the case x is an N -torsion point in (R/Z)2, the Fourier expansions of E
(k)
x and Ê

(k)
x

can be found in [16, Proposition 3.10]. The general case can be handled as in [22, VII], we only
sketch the details in the case k ≥ 3. We have

∑
(m,n)∈Z2

(m,n)≠(0,0)

e(mx2 − nx1)

(mτ + n)k
= ∑
n≠0

e(−nx1)

nk
+ ∑
m≥1

e(mx2)S(x1;mτ) + (−1)k ∑
m≥1

e(−mx2)S(−x1;mτ)

with S(x; τ) = ∑n∈Z e(−nx)(τ + n)
−k. By [7, Section 2], the first term is

∑
n≠0

e(−nx1)

nk
= ζ̂(−x1, k) + (−1)kζ̂(x1, k) = (−1)k+1

(2πi)k

k!
Bk({x1}).

For any x ∈ R, the function e(−τx)S(x; τ) is invariant under τ ↦ τ + 1, hence has a Fourier
expansion

e(−τx)S(x; τ) = ∑
r∈Z

cr(x)e(rτ).

The Fourier coefficients cr(x) can be computed as in [22, VII] using the Poisson summation
formula and the residue theorem, leading to (14). �

Lemma 35. Let k ≥ 1 be an integer, and x ∈ (R/Z)2. For any γ = ( a bc d ) ∈ SL2(Z), we have

E
(k)
x (γτ) = (cτ + d)kE

(k)
xγ (τ),

where xγ means the right multiplication by γ on the row vector x.

Proof. Putting x0 = x1τ + x2 and α = cτ + d, this follows from the identity Kk(0, x0, k;L) =

αkKk(0, αx0, k;αL), valid for any lattice L in C. �

Taking γ = −I2 in Lemma 35, we see that E
(k)
−x = (−1)kE

(k)
x . Lemma 35 also shows that if x

is N -torsion in (R/Z)2, then E
(k)
x is a modular form of weight k on Γ(N), except when k = 2

and x = 0 (in which case E
(2)
0 is not holomorphic).

Using Lemmas 34 and 35 with γ = ( 0 −1
1 0 ), we obtain the following admissibility property.

Lemma 36. For any k ≥ 2 and x ∈ (R/Z)2, with x ≠ 0 in the case k = 2, the differential form

E
(k)
x (τ)τm−1dτ is admissible on ]0, i∞[ for any integer 1 ≤m ≤ k − 1.
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The Eisenstein series E
(2)
x are related to the so-called Siegel units as follows. For x = (x1, x2) ∈

(R/Z)2, x ≠ 0, consider the following function on H:

(15) gx(τ) = q
B2({x1})/2 ∏

n∈R≥0
n≡x1 mod 1

(1 − qne(x2)) ∏
n∈R>0

n≡−x1 mod 1

(1 − qne(−x2)).

For a, b ∈ Z, (a, b) /≡ (0,0) mod N , the function ga/N,b/N is none other than the classical Siegel
unit ga,b [16, Section 1]. This function is a (12N)-th root of a unit on the modular curve Y (N)

over Q, thus defining an element of O(Y (N))× ⊗Q.
We also define, for x ∈ (R/Z)2, x ≠ 0, the logarithm of gx by taking the logarithm of the

infinite product (15) and specifying the branch:
(16)

log gx(τ) = πiB2({x1})τ + log(1 − e(x2)) ⋅ 1x1=0 − ∑
m≥1
n∈R>0

n≡x1 mod 1

e(mx2)

m
qmn − ∑

m≥1
n∈R>0

n≡−x1 mod 1

e(−mx2)

m
qmn,

where

log(1 − e(x2)) = −ζ̂(x2,1) = log ∣1 − e(x2)∣ + πi({x2} −
1

2
).

Lemma 37. For any x ∈ (R/Z)2, x ≠ 0, we have dlog gx(τ) = 2πiE
(2)
x (τ)dτ .

Proof. This follows from comparing the Fourier expansions (14) and (16). �

The Kronecker double series Ka(x,x0, s;L) satisfies differential equations with respect to

the elliptic parameters x and x0 [1, Lemma 1.4]. Similarly, the series E
(k)
x satisfies a differ-

ential relation with respect to both elliptic and modular parameters, which will be especially
important.

Lemma 38. For k ≥ 1, the function x ↦ E
(k)
x (τ) is smooth on the domain (R/Z)2 ∖ {0}.

Moreover, we have

(17) δx2E
(k+1)
x (τ) = δτE

(k)
x (τ).

Proof. The Fourier expansion (14) shows that x ↦ E
(k)
x (τ) is smooth on the domain {x1 ≠ 0}.

Using Lemma 35 with γ = σ, the function is also smooth on {x2 ≠ 0}, whence the claim.
The identity (17) follows either by inspecting the Fourier expansions of both sides (using

Lemma 34), or directly from Definition 33. �

We now introduce an interpolated version of the Eisenstein series G
(k);N
x defined in (1).

Definition 39. For an integer k ≥ 1 and x = (x1, x2) ∈ (R/Z)2, define

G
(k)
x (τ) = a0(G

(k)
x ) +

⎛

⎝
∑

m,n∈R>0
(m,n)≡x mod 1

+(−1)k ∑
m,n∈R>0

(m,n)≡−x mod 1

⎞

⎠
mk−1qmn

with

a0(G
(1)
x ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−B1({x2}) if x1 = 0 and x2 ≠ 0,

−B1({x1}) if x1 ≠ 0 and x2 = 0,

0 otherwise,

(k ≥ 2) a0(G
(k)
x ) = {

−
Bk({x1})

k if x2 = 0,

0 if x2 ≠ 0.

The relation with G
(k);N
x is as follows. If x = (a/N, b/N) is an N -torsion point in (R/Z)2,

then

(18) G
(k)
x (Nτ) = N1−kG

(k);N

a,b
(τ).
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Lemma 40. For k ≥ 1, the function x ↦ G
(k)
x (τ) is smooth on the domain (R/Z ∖ {0})2, and

we have

δx2G
(k)
x (τ) = τG

(k+1)
x (τ).

Proof. It suffices to consider the domain 0 < x1, x2 < 1. There G
(k)
x can be written as

G
(k)
x (τ) = ∑

m,n≥0

(m + x1)
k−1q(m+x1)(n+x2) + (−1)k ∑

m,n≥1

(m − x1)
k−1q(m−x1)(n−x2).

Therefore

δx2G
(k)
x (τ) = ∑

m,n≥0

(m+x1)
kτq(m+x1)(n+x2)+(−1)k ∑

m,n≥1

−(m−x1)
kτq(m−x1)(n−x2) = τG

(k+1)
x (τ). �

To end this section, we give an explicit formula for the Mellin transform of the Eisenstein
series of type E(k) and G(k).

Lemma 41. For any integer k ≥ 1 and x = (x1, x2) ∈ (R/Z)2, with x ≠ 0 in the case k = 2, we
have

M(E
(k)
x , s) = (2π)−sΓ(s)(−ζ(x1, s − k + 1)ζ̂(x2, s) + (−1)k+1ζ(−x1, s − k + 1)ζ̂(−x2, s))(19)

M(G
(k)
x , s) = (2π)−sΓ(s)(ζ(x1, s − k + 1)ζ(x2, s) + (−1)kζ(−x1, s − k + 1)ζ(−x2, s)).(20)

Proof. We give the proof for G
(k)
x , the other case being similar. Writing G

(k)
x (τ) = ∑n∈R≥0 cnq

n,
we have for Re(s) large enough:

M(G
(k)
x , s) = (2π)−sΓ(s) ∑

n∈R>0

cn
ns

= (2π)−sΓ(s)
⎛

⎝
∑

m1,m2∈R>0
(m1,m2)≡(x1,x2) mod 1

+(−1)k ∑
m1,m2∈R>0

(m1,m2)≡(−x1,−x2) mod 1

⎞

⎠

1

ms−k+1
1 ms

2

. �

From the description of the poles of the Mellin transform in Section 2.8, one can show that

the only possible poles of M(E
(k)
x , s) and M(G

(k)
x , s) are located at s = 0 and s = k. For E

(k)
x

this follows from using Lemma 35 with γ = σ, while for G
(k)
x this follows from Lemma 60 below.

3.2. Multiple modular values. Recall that if f is a modular form of weight k ≥ 2 on some
finite index subgroup Γ of SL2(Z), the differential form f(τ)τm−1dτ is admissible on ]0, i∞[

for any 1 ≤m ≤ k − 1 (see Example 17). For any modular forms f1, . . . , fn of respective weights
k1, . . . , kn ≥ 2, and any integers m1, . . . ,mn with 1 ≤mi ≤ ki −1, the regularised iterated integral

Λ(f1, . . . , fn;m1, . . . ,mn) = ∫

∞

0
f1(τ)τ

m1−1dτ . . . fn(τ)τ
mn−1dτ

(21)

= ∫

∞

0
f1(τ1)τ

m1−1
1 dτ1∫

∞

τ1
f2(τ2)τ

m2−1
2 dτ2⋯∫

∞

τn−1
fn(τn)τ

mn−1
n dτn

is called a totally holomorphic multiple modular value (MMV) [5, Section 5]. In the case all
mi are equal to 1, we simply write Λ(f1, . . . , fn) = Λ(f1, . . . , fn; 1, . . . ,1).

In the case Γ = SL2(Z), the multiple modular values are periods of the relative completion of
the fundamental group of M1,1 [4, 5]. In this article, we are particularly interested in the case
Γ is the principal congruence subgroup Γ(N), and all fi are Eisenstein series of weight ≥ 2 on
Γ(N). In this case (21) is called a multiple Eisenstein value.

Example 42. When the Eisenstein series in question are E
(ki)
xi (τ) with ki ≥ 2, all mi = 1, and

allowing continuous parameters xi ∈ (R/Z)2, we can view the MEV as a function

(x1, . . . ,xn) ↦ Λ(E
(k1)
x1 , . . . ,E

(kn)
xn )
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which has partial derivatives with respect all elliptic parameters xp1, xp2 restricted to the interval
(0,1) (or to any shift of it by an integer) where 1 ≤ p ≤ n. This follows from viewing the MEV
as the iterated integral of a family of differential forms that depend on each such parameter, the
forms differentially admissible at both 0 and ∞ as defined in Section 2.7. The diffentiation of
the MEV with respect to the x2-component of x1, . . . ,xn is particularly simple. When an index
p in the range 1 ≤ p ≤ n is fixed, we can apply Proposition 30 to the corresponding parameter
xp2 and then combine the result with Lemma 38 and formula (12) to obtain

∂

∂xp2
Λ(E

(k1)
x1 , . . . ,E

(kp)
xp , . . . ,E

(kn)
xn ) = Λ(E

(k1)
x1 , . . . ,E

(kp−1)
xp−1 ,E

(kp−1)
xp E

(kp+1)
xp+1 , . . . ,E

(kn)
xn )(22)

−Λ(E
(k1)
x1 , . . . ,E

(kp−1)
xp−1 E

(kp−1)
xp ,E

(kp+1)
xp+1 , . . . ,E

(kn)
xn ),

with the first term interpreted as a0(E
(kn−1)
xn )Λ(E

(k1)
x1 , . . . ,E

(kn−1)
xn−1 ) if p = n, while the second

term is discarded if p = 1. This formula means that differentiation of Λ(E
(k1)
x1 , . . . ,E

(kn)
xn ) with

respect to the elliptic parameter xp2 reduces the length of the MEV by 1.

Definition 43. For x1, . . . ,xn ∈ (R/Z)2, we define

Λ(x1, . . . ,xn) = (2πi)nΛ(E
(2)
x1 , . . . ,E

(2)
xn )

= (2πi)n∫
∞

0
E

(2)
x1 (τ1)dτ1∫

∞

τ1
E

(2)
x2 (τ2)dτ2⋯∫

∞

τn−1
E

(2)
xn (τn)dτn.

We call Λ(x1, . . . ,xn) a (totally holomorphic) multiple Eisenstein value (MEV) of length
n. In general, we expect Λ(x1, . . . ,xn) to be a period only when the parameters xi belong to
(Q/Z)2. In the sequel, we implicitly identify (Z/NZ)2 with a subgroup of (R/Z)2 by mapping a
pair (x1, x2) to the class of (x1/N,x2/N). In this way Λ(x1, . . . ,xn) makes sense for arguments
xi in (Z/NZ)2.

Since dlog gx = 2πiE
(2)
x (τ)dτ , the multiple Eisenstein value can also be written

Λ(x1, . . . ,xn) = ∫
∞

0
dlog gx1 dlog gx2 . . .dlog gxn .

Recall that σ = ( 0 −1
1 0 ) acts on H. If x ∈ (Z/NZ)2, x ≠ 0, then σ∗(dlog gx) = dlog gxσ by [16,

Lemma 1.7(1)]. By continuity, this identity holds for arbitrary x ≠ 0. Since σ reverses the path
]0, i∞[, the path reversal formula for iterated integrals gives

(23) Λ(x1σ, . . . ,xnσ) = (−1)nΛ(xn, . . . ,x1).

The single modular values are essentially the critical L-values of a modular form. In the
particular case of an Eisenstein series, these values are computed classically in terms of Bernoulli
polynomials.

Proposition 44. For any x = (x1, x2) ∈ (R/Z)2 ∖ {0}, we have

Λ(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2πi ({x1} −
1
2
) ({x2} −

1
2
) if x1, x2 ≠ 0,

log ∣1 − e(x2)∣ if x1 = 0, x2 ≠ 0,

− log ∣1 − e(x1)∣ if x1 ≠ 0, x2 = 0.

Note that the function x↦ Λ(x) has discontinuities at {x1 = 0} ∪ {x2 = 0}.

Proof. Assume first x2 ≠ 0. By Proposition 31 and Lemma 41, we have

Λ(x) = −2πM(E
(2)
x ,1) = ζ̂(x2,1)ζ(x1,0) + ζ̂(−x2,1)ζ(−x1,0).

It remains to apply the identities [7, Section 2]

ζ(x1,0) = {
1
2 − {x1} if x1 ≠ 0,

−1
2 if x1 = 0,

ζ̂(x2,1) = ∑
n≥1

e(nx2)

n
= − log(1 − e(x2)).
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The case x2 = 0 follows by noting that Λ((x1,0)) = −Λ((0, x1)) thanks to (23). �

With the same method in mind, one can show that for k ≥ 2 and m ∈ {1, . . . , k − 1}, we have

Λ(E
(k)
x ;m) = (−1)m+1

Bk−m(x1)Bm(x2)

(k −m)m
(0 < x1, x2 < 1).

We will also need the above iterated integrals with the Eisenstein series replaced by their
real or imaginary parts. For x ∈ (R/Z)2 ∖ {0}, write

ω+x = Re(dlog gx) = dlog ∣gx∣, ω−x = Im(dlog gx) = darg(gx).

Then for any x1, . . . ,xn ∈ (R/Z)2 ∖ {0} and any sequence of signs ε1, . . . , εn ∈ {±}, consider the
regularised iterated integral

Λε1...εn(x1, . . . ,xn) = ∫
∞

0
ωε1x1

. . . ωεnxn
.

For example, taking the real and imaginary parts in Proposition 44, we get

(24) Λ+(x) = 0 and Λ−(x) = 2π(x1 −
1

2
)(x2 −

1

2
) (0 < x1, x2 < 1).

As discussed in Example 42, the function (x1, . . . ,xn) ↦ Λ(x1, . . . ,xn) is differentiable on the
domain (R/Z ∖ {0})2n and its partial derivatives with respect to the x2-components of indices
x1, . . . ,xn can be explicitly computed using equation (22); we make use of this differentiation
in Section 7.

4. A baby case: The K2 regulator and double modular values

Let Y (N) be the modular curve over Q of level N ≥ 1. The cup-products {ga, gb} of two

Siegel units ga and gb provide important elements in the K-group K
(2)
2 (Y (N)). Let us consider

their images under the Beilinson regulator map [16, 2.10]

K
(2)
2 (Y (N)) Ð→H1(Y (N)(C),R ⋅ i).

The regulator of {ga, gb} is represented by the differential form i η(ga, gb) on Y (N)(C), where

η(ga, gb) = log ∣ga∣darg gb − log ∣gb∣darg ga.

The regulator integral of η(ga, gb) along the modular symbol {0, i∞} can be computed in terms
of L-values at s = 0 of modular forms of weight 2 and level Γ(N) [6]. Here we show that this
regulator integral can be expressed in terms of double Eisenstein values.

Proposition 45. Let a,b ∈ (Z/NZ)2 ∖ {0}. We have

∫

∞

0
η(ga, gb) = Im Λ(a,b) −Λ+(a)Λ−(b) +RaΛ−(b) −RbΛ

−(a),

where Rx is the regularised value of log ∣gx∣ at ∞, obtained from (16) by taking the real part of
the constant term. In the case the coordinates of a and b are non-zero, this simplifies to

∫

∞

0
η(ga, gb) = Im Λ(a,b).

Proof. Recall that dlog ∣gx∣ and darg gx are admissible by Lemmas 36 and 37, and note that
log ∣gx(τ)∣ = Rx − ∫

∞

τ dlog ∣gx∣ by Lemma 8. Then

η(ga, gb)(τ) = (Ra − ∫

∞

τ
dlog ∣ga∣)darg gb(τ) − (Rb − ∫

∞

τ
dlog ∣gb∣)darg ga(τ).

This expression shows that the form η(ga, gb) is admissible at ∞. It is also admissible at 0
since σ∗(gx) = gxσ in O(Y (N))×⊗Q by [16, Lemma 1.7(1)]. Integrating from 0 to ∞ and using
Proposition 26, this gives

∫

∞

0
η(ga, gb) = RaΛ−(b) −Λ−+(b,a) −RbΛ

−(a) +Λ−+(a,b).
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Using the shuffle relation Λ−(b)Λ+(a) = Λ−+(b,a) +Λ+−(a,b), we arrive at

∫

∞

0
η(ga, gb) = RaΛ−(b) −Λ−(b)Λ+(a) +Λ+−(a,b) −RbΛ

−(a) +Λ−+(a,b)

= Im Λ(a,b) −Λ+(a)Λ−(b) +RaΛ−(b) −RbΛ
−(a). �

Proposition 45 could be refined by considering the integral regulator of {ga, gb}, which is a
class in H1(Y (N)(C),C/(2πi)2Q); for the definition of this regulator map see [10, Exercise
7.10, p. 93]. The associated regulator integral should then involve the real part of Λ(a,b).

5. The Goncharov regulator in terms of triple modular values

In [8] the first author constructed classes ξ(a,b) in K
(3)
4 (Y (N)), for a,b ∈ (Z/NZ)2. Our aim

in this section is to express the regulator of ξ(a,b) in terms of triple Eisenstein values. Since

we integrate from 0 to ∞, the regulator integral depends on a choice of representative ξ̃(a,b) of
ξ(a,b) in the Goncharov complex Γ(Y (N),3). We choose the one given in [8, Construction 6.1].
One consequence of our main formula (Theorem 54) is that the regulator integral interpolates
as a function of a,b ∈ (R/Z)2, at least in the domain where the coordinates of a, b and a + b
are non-zero.

Let us recall the construction of ξ̃(a,b). Let a,b,c ∈ (Z/NZ)2 be such that a + b + c = 0.
From now on, we assume that all the coordinates of a, b and c are non-zero. This considerably
simplifies the expressions with multiple modular values below.

According to [8, Section 4], there is a triangulation

(25) ga ∧ gb + gb ∧ gc + gc ∧ ga = ∑
i

mi ⋅ ui ∧ (1 − ui) in Λ2O(Y (N))× ⊗Q,

where ui and 1 − ui are certain modular units, and mi ∈ Q. Then our cocycle is

ξ̃(a,b) ∶= ∑
i

mi{ui}2 ⊗
gb
ga

∈ B2(Q(Y (N))) ⊗O(Y (N))× ⊗Q.

For the definition of the group B2(F ) of a field F , see [12, Section 2.2].
Recall the expression of Goncharov’s explicit regulator map r3(2). Let D∶P1(C) →R be the

Bloch–Wigner dilogarithm. For any two functions f, g on a Riemann surface, define the 1-form

(26) r3(2)({f}2 ⊗ g) = −D(f) ⋅ darg g −
1

3
log ∣g∣ ⋅ α((1 − f) ∧ f),

where

α(f1 ∧ f2) = − log ∣f1∣dlog ∣f2∣ + log ∣f2∣dlog ∣f1∣.

By linearity using (26), the regulator 1-form associated to ξ̃(a,b) is

r3(2)(ξ̃(a,b)) = ∑
i

mi(−D(ui) ⋅ darg(gb/ga) −
1

3
log ∣gb/ga∣ ⋅ α((1 − ui) ∧ ui))

= −(∑
i

miD(ui))darg(gb/ga) +
1

3
log ∣gb/ga∣ ⋅ α(ga ∧ gb + gb ∧ gc + gc ∧ ga).

Let us introduce the following notation for the regulator integral:

G(a,b) = ∫
∞

0
r3(2)(ξ̃(a,b)).

By [8, Corollary 7.3], this integral is absolutely convergent. To express G(a,b) as a triple
iterated integral, a key idea is to cast the Bloch–Wigner function D(z) as a primitive:

d(D(z)) = η(z ∧ (1 − z)), where η(f ∧ g) = log ∣f ∣darg(g) − log ∣g∣darg(f).

Then using (25) we can write

(27) d(∑
i

miD(ui)) = ∑
i

mi η(ui ∧ (1 − ui)) = η(ga ∧ gb + gb ∧ gc + gc ∧ ga).



18 F. BRUNAULT AND W. ZUDILIN

As we saw in the proof of Proposition 45, the right-hand side of (27) is an admissible form
on ]0, i∞[. Moreover, if u is a modular unit such that 1 − u is also a modular unit, then
η(u ∧ (1 − u)) is admissible and Lemma 18 implies that D(u) is admissible. Actually D(u(τ))
converges as τ →∞ since D is continuous on P1(C). So the regularised value of D(u) at ∞ is
simply D(u(∞)), and Lemma 8 tells us that

D(u(τ)) =D(u(∞)) − ∫

∞

τ
η(u,1 − u).

Note that the form D(u)darg(gb/ga) is then admissible. Therefore, using (27) the regulator
integral can be written

G(a,b) = A1 +A2 +A3,

where

A1 = −∑
i

miD(ui(∞))∫

∞

0
darg(gb/ga),(28)

A2 = ∫

∞

0
darg(gb/ga)(τ)∫

∞

τ
η(ga ∧ gb + gb ∧ gc + gc ∧ ga),(29)

A3 =
1

3 ∫
∞

0
log ∣gb/ga∣ ⋅ α(ga ∧ gb + gb ∧ gc + gc ∧ ga).(30)

Similar arguments show that the integrand of A3 is admissible on ]0, i∞[.

5.1. The A1 term. The explicit form of the triangulation (25) is given by [8, Theorem 4.3]:

∑
i

mi{ui}2 =
1

N2 ∑
x∈(Z/NZ)2

{u(0,x,a −x,b +x)}2

−
1

4N4 ∑
x,y∈(Z/NZ)2

({u(0,a,c + 2x,y)}2 + {u(0,c,b + 2x,y)}2 + {u(0,b,a + 2x,y)}2),

which simplifies to

∑
i

mi{ui}2 =
1

N2 ∑
x∈(Z/NZ)2

{u(0,x,a −x,b +x)}2

in the case N is odd. By convention, in the above sums we keep only those terms u(x,y,z, t)
for which x,y,z, t are distinct in (Z/NZ)2/ ± 1. The same convention takes place below.

Lemma 46. Let a,b,c ∈ (Z/NZ)2 such that a + b + c = 0. Assume that all the coordinates of
a,b,c are non-zero. Then

∑
x∈(Z/NZ)2

D(u(0,x,a −x,b +x)(∞)) = 0.

Proof. We write x̂ for the representative of x/N , where x ∈ Z/NZ, on the interval [0,1), so that
x̂ ∈ 1

NZ ∩ [0,1). According to [8, Lemma 3.4] we have

(31) u(0,x,a −x,b +x) =
∆2

â−x̂

∆â∆â−2x̂

∆b̂∆b̂+2x̂

∆2
b̂+x̂

,

where
∆u,v = (−e(−v))⌊u⌋qB2({u})/2(1 − e(v)1u∈Z +O(q1/N)) as q → 0.

We now collect relevant information for determining when the unit (31) has order 0 at ∞ and
what is the corresponding constant term in the latter case.

For 0 ≤ â1 < 1 and 0 ≤ x̂1 < 1 we have

ordq
∆2

â−x̂

∆â∆â−2x̂

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−x̂21 if 0 ≤ x̂1 ≤
1
2 â1,

−(1 − x̂1)2 + 1 − â1 if 1
2 â1 < x̂1 ≤ â1,

−x̂21 + â1 if â1 < x̂1 ≤
1
2 +

1
2 â1,

−(1 − x̂1)2 if 1
2 +

1
2 â1 < x̂1 < 1.
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If moreover â1, â1 − x̂1, â1 − 2x̂1 ∉ Z, we find

(−e(−â2 + x̂2))2⌊â1−x̂1⌋

(−e(−â2))⌊â1⌋(−e(−â2 + 2x̂2))⌊â1−2x̂1⌋
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x̂1 ≤
1
2 â1,

−e(−â2 + 2x̂2) if 1
2 â1 < x̂1 ≤ â1,

−e(â2) if â1 < x̂1 ≤
1
2 +

1
2 â1,

e(2x̂2) if 1
2 +

1
2 â1 < x̂1 < 1.

Similarly, for 0 ≤ b̂1 < 1 and 0 ≤ x̂1 < 1 we have

ordq
∆b̂∆b̂+2x̂

∆2
b̂+x̂

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂21 if 0 ≤ x̂1 <
1
2 −

1
2 b̂1,

(1 − x̂1)2 − b̂1 if 1
2 −

1
2 b̂1 ≤ x̂1 < 1 − b̂1,

x̂21 − (1 − b̂1) if 1 − b̂1 ≤ x̂1 < 1 − 1
2 b̂1,

(1 − x̂1)2 if 1 − 1
2 b̂1 ≤ x̂1 < 1.

If moreover b̂1, b̂1 + x̂1, b̂1 + 2x̂1 ∉ Z, we obtain

(−e(−b̂2))⌊b̂1⌋(−e(−b̂2 − 2x̂2))⌊b̂1+2x̂1⌋

(−e(−b̂2 − x̂2))2⌊b̂1+x̂1⌋
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x̂1 <
1
2 −

1
2 b̂1,

−e(−b̂2 − 2x̂2) if 1
2 −

1
2 b̂1 ≤ x̂1 < 1 − b̂1,

−e(b̂2) if 1 − b̂1 ≤ x̂1 < 1 − 1
2 b̂1,

e(−2x̂2) if 1 − 1
2 b̂1 ≤ x̂1 < 1.

Our sum of interest is

Σ(a,b,c) = ∑
x∈(Z/NZ)2

D(u(0,x,a −x,b +x)(∞)).

Notice the following symmetries of the sum: it is invariant under (a,b,c) ↦ (−a,−b,−c) (as
u(a,b,c,d) is defined for indices in (Z/NZ)2/±1) and it is cyclic invariant. The latter follows
from changing the summation for u(0,x,a −x,b +x) = u(0,−x,−a +x,b +x) to the one over
y = b +x and using the definition of u(a,b,c,d) as the cross-ratio of Weierstrass ℘-functions:

Σ(a,b,c) = ∑
y∈(Z/NZ)2

D(u(0,b−y,c+y,y)(∞)) = ∑
y∈(Z/NZ)2

D(u(0,y,b−y,c+y)(∞)) = Σ(b,c,a).

For similar reasons Σ(a,b,c) is antisymmetric under transpositions:

Σ(a,b,c) = ∑
x∈(Z/NZ)2

D(1 − u(0,a −x,x,b +x)(∞)) = − ∑
x∈(Z/NZ)2

D(u(0,a −x,x,−b −x)(∞))

= − ∑
y∈(Z/NZ)2

D(u(0,y,a − y,c + y)(∞)) = −Σ(a,c,b).

Recall that â1, b̂1, ĉ1 are the representatives of a1/N, b1/N, c1/N in the interval (0,1). After

possibly replacing (a,b,c) by (−a,−b,−c) we may assume that â1 + b̂1 + ĉ1 = 1; furthermore,
since our goal is to demonstrate that Σ(a,b,c) = 0, after possibly permuting a,b,c we may

assume that 0 < â1 ≤ b̂1 ≤ ĉ1 < 1. Then we get

0 < 1
2 â1 < â1 ≤

1
2 −

1
2 b̂1 <

1
2 +

1
2 â1 ≤ 1 − b̂1 < 1 − 1

2 b̂1 < 1,

so that

ordq u(0,x,a −x,b +x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x̂1 ≤
1
2 â1,

2x̂1 − â1 ≠ 0 if 1
2 â1 < x̂1 ≤ â1,

â1 ≠ 0 if â1 < x̂1 <
1
2 −

1
2 b̂1,

â1 − b̂1 + 1 − 2x̂1 if 1
2 −

1
2 b̂1 ≤ x̂1 ≤

1
2 +

1
2 â1,

−b̂1 ≠ 0 if 1
2 +

1
2 â1 < x̂1 < 1 − b̂1,

b̂1 − 2(1 − x̂1) ≠ 0 if 1 − b̂1 ≤ x̂1 < 1 − 1
2 b̂1,

0 if 1 − 1
2 b̂1 ≤ x̂1 < 1.



20 F. BRUNAULT AND W. ZUDILIN

This means that ordq u(0,x,a − x,b + x) = 0 iff x̂1 ∈ [0, 12 â1] ∪ {1
2(â1 − b̂1 + 1)} ∪ [1 − 1

2 b̂1,1).

Furthermore, the constant term of u(0,x,a−x,b+x) is equal to 1 for x̂1 ∈ [0, 12 â1)∪(1− 1
2 b̂1,1),

and it is

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1/(1 − e(â2 − 2x̂2)) if x̂1 =
1
2 â1,

e(â2 − b̂2 − 2x̂2) if x̂1 =
1
2(â1 − b̂1 + 1),

1 − e(b̂2 + 2x̂2) if x̂1 = 1 − 1
2 b̂1.

No matter whether these values of x̂1 are in 1
NZ or not, using the relations D(1−x) =D(1/x) =

−D(x) we see that the resulting sums over x̂2 ∈
1
NZ/Z vanish. For example,

∑
x̂2∈

1
N
Z/Z

D(1/(1 − e(â2 − 2x̂2))) = ∑
x̂2∈

1
N
Z/Z

D(e(â2 − 2x̂2)) = 0,

because the latter sum involves pairs of complex conjugate roots of unity, apart from possibly
±1, and D(x) = −D(x). Therefore, Σ(a,b,c) = 0. �

Lemma 47. Let N > 1 be an integer, and let u ≠ 1 be an N-th root of unity. Then

∑
v∶vN=1

D(
1 − v

1 − u
) =

N

2
D(u).

Proof. We use the 5-term relation for the Bloch–Wigner dilogarithm with the quintuple (∞,0,1,
v, u):

D(v) +D(
1 − u−1

1 − v−1
) +D(

u − 1

u − v
) +D(

u

v
) +D(

−u

1 − u
) = 0.

Using the relations D(1 − x) = D(1/x) = D(x̄) = −D(x) as well as u−1 = ū and v−1 = v̄, this can
be written

D(v) +D(
1 − v

1 − u
) +D(

1 − v

1 − u
) +D(

u

v
) −D(u) = 0.

Summing over v ≠ 1, u and using the relation ∑v∶vN=1D(v) = 0, we deduce the required result.
�

Lemma 48. Let a,c ∈ (Z/NZ)2 and the coordinates of a non-zero. Then the double sum

(32) ∑
x,y∈(Z/NZ)2

D(u(0,a,c + 2x,y)(∞))

vanishes.

Proof. To compute the double sum (32) notice that

u(0,a,z,y) =
E(z,a)

E(y,a)

where E(z,a) = ∆2
ẑ/(∆ẑ+â∆ẑ−â), and the sum can be rearranged to run over z,y. Notice

that this rearrangement affects the summation on z = (z1, z2) in the case of even N , because
it becomes 4 times a sum over z ∈ (Z/NZ)2 subject to the congruence conditions z1 ≡ c1,
z2 ≡ c2 mod 2. Changing a into −a does not change the modular unit u(0,a,c + 2x,y), hence
we can assume that the representative â1 of a1/N satisfies 0 < â1 ≤

1
2 ≤ 1 − â1 < 1.

With 0 ≤ ẑ1 < 1 we obtain

ordq E(z,a) = â1(1 − â1) −min{â1,1 − â1, ẑ1,1 − ẑ1} = â1(1 − â1) −min{â1, ẑ1,1 − ẑ1},
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while the leading coefficient of E(z,a) is equal to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) − (1 − e(ẑ2))2/e(ẑ2 − â2) = 4e(â2) sin2(πẑ2) if ẑ1 = 0,

(b) − 1/e(ẑ2 − â2) = −e(â2)e(−ẑ2) if 0 < ẑ1 < â1,

(c) − 1/e(−ẑ2 − â2) = −e(â2)e(ẑ2) if 0 < 1 − ẑ1 < â1,

(d) 1/(1 − e(ẑ2 − â2)) if ẑ1 = â1 < 1 − â1 = 1 − ẑ1,

(e) 1/(1 − e(−ẑ2 − â2)) if 1 − ẑ1 = â1 < 1 − â1 = ẑ1,

(f) 1 if â1 < min{ẑ1,1 − ẑ1},

(g) 1
2e(â2)/(cos(2πâ2) − cos(2πẑ2)) if â1 = ẑ1 =

1
2

(the case 1 − â1 < min{ẑ1,1 − ẑ1} is excluded from the consideration because â1 ≤
1
2). We now

want to control when the terms E(z,a)/E(y,a) in the sum (32) have constant terms, that is,
when

(33) min{â1, ẑ1,1 − ẑ1} = min{â1, ŷ1,1 − ŷ1}.

For each of these situations, call them (rz) × (sy) with r, s ∈ {a, . . . ,g}, we want to compute a
related sum of the dilogarithms of the products of corresponding constant terms over ẑ2, ŷ2 ∈
1
NZ/Z. Because of condition (33), the case (az) occurs if only (ay) occurs, and vice versa; the

corresponding sum of D(sin2(πẑ2)/ sin2(πŷ2)) over ẑ2, ŷ2 ∈
1
NZ/Z vanishes, because each term

is zero (as D(x) = 0 for x ∈ R). Similarly, the case (gz) exclusively pairs up with (gy), and the
dilogarithm arguments are real-valued for this combination as well, leading to the zero value
for the sum in question. The case (fz) may only pair up with (fy), in which case the sum of
D(1) terms is void, or with (dy) or (ey). If one of the latter situations occur, for instance (dy),
we can write our sum as

∑
′

ẑ2,ŷ2∈
1
N
Z/Z

D(1 − e(ŷ2 − â2)) = − ∑
′

ẑ2,ŷ2∈
1
N
Z/Z

D(e(ŷ2 − â2)) = − ∑
′

ẑ2∈
1
N
Z/Z

∑
t̂∈ 1

N
Z/Z

D(e(t̂)),

where ∑
′
ẑ2 means that we sum over ẑ2 under the constraint z2 ≡ c2 mod 2 if N is even. The

double sum then vanishes because the sum over t̂ does. Similarly, the case (fy) pairs up with (fz)
(which we already discussed), or with (dz) or (ez), and we argue as above using the summation

∑
′

ẑ2∈
1
N
Z/Z

D(e(±ẑ2 − â2)) = 0

followed from

(34) ∑
t̂∈ 2

N
Z/Z

D(e(t̂)) = ∑
t̂∈ 1

N
+ 2

N
Z/Z

D(e(t̂)) = 0

in the case of even N (because conjugate roots of unity e(t̂) and e(−t̂), when different from
±1 ∈ R, combine). Furthermore, the situations (dz)×(dy), (dz)×(ey), (ez)×(dy) and (ez)×(ey)
are all treated with the help of Lemma 47 applied to the summation over ŷ2 ∈

1
NZ/Z and the

external summation ∑
′

ẑ2∈
1
N
Z/Z

is performed on the basis of (34) if N is even. Finally, the cases

(bz), (cz) may only pair up with (by), (cy) in view of condition (33), and we obtain the sum

∑
′

ẑ2,ŷ2∈
1
N
Z/Z

D(e(±ẑ2 ± ŷ2))

for an appropriate choice of both ‘±’, again a vanishing sum. �

Consequently, Lemmas 46 and 48 imply the following.

Proposition 49. We have A1 = 0.

Though proving that A1 vanishes is surprisingly involved, we do not exclude intrinsic reasons
behind this degeneracy.
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5.2. The A2 term. We now deal with the A2 term (29).

Lemma 50. If the coordinates of x,y,z ∈ (Z/NZ)2 are non-zero, then

(35) ∫

∞

0
darg gx(τ)∫

∞

τ
η(gy, gz) = Λ−−+(x,y,z) −Λ−−+(x,z,y).

Proof. We expand η(gy, gz) using just the definition. The form dlog ∣gy ∣ is admissible, so
Lemma 8 implies

log ∣gy(τ1)∣ = log ∣gy ∣(∞) − ∫

∞

τ1
dlog ∣gy ∣.

Noting that log ∣gy ∣(∞) = 0 here, this leads to

η(gy, gz)(τ1) = −darg gz(τ1)∫
∞

τ1
dlog ∣gy ∣ + darg gy(τ1)∫

∞

τ1
dlog ∣gz ∣,

which implies (35). �

Expanding A2 in (29) using Lemma 50, we get A2 = I1 +⋯ + I6 with

I1 = Λ−−+(b,a,b) −Λ−−+(b,b,a), I2 = Λ−−+(b,b,c) −Λ−−+(b,c,b),

I3 = Λ−−+(b,c,a) −Λ−−+(b,a,c), I4 = −Λ−−+(a,a,b) +Λ−−+(a,b,a),

I5 = −Λ−−+(a,b,c) +Λ−−+(a,c,b), I6 = −Λ−−+(a,c,a) +Λ−−+(a,a,c).

To simplify this expression for A2, we use shuffle relations between iterated integrals Λε1ε2ε3

with ε1, ε2, ε3 ∈ {±1}. Consider the relation

Λ−(x)Λ−+(y,z) = Λ−−+(x,y,z) +Λ−−+(y,x,z) +Λ−+−(y,z,x).

Specialising to z = x and y = x respectively, we get

Λ−−+(x,y,x) = −Λ−+−(y,x,x) −Λ−−+(y,x,x) +Λ−(x)Λ−+(y,x),(36)

Λ−+−(x,z,x) = −2Λ−−+(x,x,z) +Λ−(x)Λ−+(x,z).(37)

Similarly,

Λ−(x)Λ+−(z,y) = Λ−+−(x,z,y) +Λ+−−(z,x,y) +Λ+−−(z,y,x)

which, taking y = x, specialises to

(38) Λ−+−(x,z,x) = −2Λ+−−(z,x,x) +Λ−(x)Λ+−(z,x).

Equating the right-hand sides of (38) and (37) gives

(39) Λ−−+(x,x,z) = Λ+−−(z,x,x) +
1

2
Λ−(x)(Λ−+(x,z) −Λ+−(z,x)).

We now simplify I1, . . . , I6. We introduce the shortcut

Λ1(x,y,z) ∶= (Λ+−− +Λ−+− +Λ−−+)(x,y,z).

Note that in this way,

(40) Re Λ(x,y,z) = −Λ1(x,y,z) +Λ+++(x,y,z)

for any x,y,z. Using (39) and (36), we have

I1 = Λ−−+(b,a,b) −Λ−−+(b,b,a)

= Λ−−+(b,a,b) −Λ+−−(a,b,b) −
1

2
Λ−(b)(Λ−+(b,a) −Λ+−(a,b))

= −Λ−+−(a,b,b) −Λ−−+(a,b,b) +Λ−(b)Λ−+(a,b) −Λ+−−(a,b,b)

−
1

2
Λ−(b)(Λ−+(b,a) −Λ+−(a,b))

= −Λ1(a,b,b) +Λ−(b)(Λ−+(a,b) −
1

2
Λ−+(b,a) +

1

2
Λ+−(a,b)).
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The integrals I2, I4 and I6 are obtained from I1 by simply rearranging the letters:

I2 = +Λ1(c,b,b) −Λ−(b)(Λ−+(c,b) −
1

2
Λ−+(b,c) +

1

2
Λ+−(c,b)),

I4 = −Λ1(b,a,a) +Λ−(a)(Λ−+(b,a) −
1

2
Λ−+(a,b) +

1

2
Λ+−(b,a)),

I6 = +Λ1(c,a,a) −Λ−(a)(Λ−+(c,a) −
1

2
Λ−+(a,c) +

1

2
Λ+−(c,a)).

It remains to treat the terms I3 and I5, involving permutations of (a,b,c). By the shuffle
relations, we have

Λ−−+(b,c,a) = Λ−(b)Λ−+(c,a) −Λ−−+(c,b,a) −Λ−+−(c,a,b),(41)

Λ−−+(a,c,b) = Λ−(a)Λ−+(c,b) −Λ−−+(c,a,b) −Λ−+−(c,b,a).(42)

We also have

Λ−(b)Λ−+(a,c) = Λ−−+(b,a,c) +Λ−−+(a,b,c) +Λ−+−(a,c,b),

Λ−(a)Λ+−(c,b) = Λ−+−(a,c,b) +Λ+−−(c,a,b) +Λ+−−(c,b,a),

and thus
(43)
Λ−−+(b,a,c) +Λ−−+(a,b,c) = Λ−(b)Λ−+(a,c) −Λ−(a)Λ+−(c,b) +Λ+−−(c,a,b) +Λ+−−(c,b,a).

Therefore,

I3 + I5 = (41) + (42) − (43)

= Λ−(b)Λ−+(c,a) −Λ−−+(c,b,a) −Λ−+−(c,a,b)

+Λ−(a)Λ−+(c,b) −Λ−−+(c,a,b) −Λ−+−(c,b,a)

−Λ−(b)Λ−+(a,c) +Λ−(a)Λ+−(c,b) −Λ+−−(c,a,b) −Λ+−−(c,b,a)

= −Λ1(c,b,a) −Λ1(c,a,b)

+Λ−(b)Λ−+(c,a) +Λ−(a)Λ−+(c,b) −Λ−(b)Λ−+(a,c) +Λ−(a)Λ+−(c,b).

Putting everything together, we obtain

A2 = −Λ1(a,b,b) +Λ1(c,b,b) −Λ1(b,a,a) +Λ1(c,a,a) −Λ1(c,b,a) −Λ1(c,a,b)(44)

+Λ−(b)(Λ−+(a,b) +Λ−+(c,a) −Λ−+(a,c) −Λ−+(c,b)

−
1

2
Λ−+(b,a) +

1

2
Λ+−(a,b) +

1

2
Λ−+(b,c) −

1

2
Λ+−(c,b))

+Λ−(a)(Λ−+(b,a) +Λ−+(c,b) +Λ+−(c,b) −Λ−+(c,a)

+
1

2
Λ+−(b,a) −

1

2
Λ−+(a,b) +

1

2
Λ−+(a,c) −

1

2
Λ+−(c,a)).

The terms involving double modular values can be rewritten using the shuffle relations. In
our generic situation when the coordinates of the vectors are non-zero, we have Λ−+(x,y) +
Λ+−(y,x) = Λ−(x)Λ+(y) = 0 by (24). Therefore,

Λ−+(a,b) +Λ−+(c,a) −Λ−+(a,c) −Λ−+(c,b)

−
1

2
Λ−+(b,a) +

1

2
Λ+−(a,b) +

1

2
Λ−+(b,c) −

1

2
Λ+−(c,b)

= (Λ−+(a,b) +Λ+−(a,b)) + (Λ−+(b,c) +Λ+−(b,c)) + (Λ−+(c,a) +Λ+−(c,a))

= Im Λ(a,b) + Im Λ(b,c) + Im Λ(c,a).
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Similarly,

Λ−+(b,a) +Λ−+(c,b) +Λ+−(c,b) −Λ−+(c,a)

+
1

2
Λ+−(b,a) −

1

2
Λ−+(a,b) +

1

2
Λ−+(a,c) −

1

2
Λ+−(c,a)

= − Im Λ(a,b) − Im Λ(b,c) − Im Λ(c,a).

Copying into (44) gives the following proposition.

Proposition 51. Let a,b,c ∈ (Z/NZ)2 such that a+b+c = 0, with all the coordinates of a,b,c
non-zero. Then

A2 = −Λ1(a,b,b) +Λ1(c,b,b) −Λ1(b,a,a) +Λ1(c,a,a) −Λ1(c,b,a) −Λ1(c,a,b)

+ (Λ−(b) −Λ−(a)) Im(Λ(a,b) +Λ(b,c) +Λ(c,a)).

5.3. The A3 term. Finally, we treat the A3 term (30). We leave the required admissibility
properties of the differential forms to the reader.

Lemma 52. If the coordinates of x,y,z ∈ (Z/NZ)2 are non-zero, then

(45) ∫

∞

0
log ∣gx∣α(gy, gz) = −Λ+++(z,y,x) −Λ+++(z,x,y) +Λ+++(y,z,x) +Λ+++(y,x,z).

Proof. By definition

(46) ∫

∞

0
log ∣gx∣α(gy, gz) = ∫

∞

0
−dlog ∣gz ∣ ⋅ log ∣gx∣ log ∣gy ∣ + dlog ∣gy ∣ ⋅ log ∣gx∣ log ∣gz ∣.

Recall that the regularised value of the various log ∣gx∣ at ∞ is zero. Therefore

log ∣gx(τ)∣ log ∣gy(τ)∣ = (log ∣gx∣ log ∣gy ∣)(∞) − ∫

∞

τ
d(log ∣gx∣ log ∣gy ∣)

= −∫

∞

τ
dlog ∣gy ∣ ⋅ log ∣gx∣ + dlog ∣gx∣ ⋅ log ∣gy ∣

= ∫

∞

τ
dlog ∣gy ∣dlog ∣gx∣ + dlog ∣gx∣dlog ∣gy ∣,

so that (46) continues as

∫

∞

0
log ∣gx∣α(gy, gz) = −∫

∞

0
dlog ∣gz(τ)∣ ∫

∞

τ
dlog ∣gy ∣dlog ∣gx∣ + dlog ∣gx∣dlog ∣gy ∣

+ ∫

∞

0
dlog ∣gy(τ)∣ ∫

∞

τ
dlog ∣gz ∣dlog ∣gx∣ + dlog ∣gx∣dlog ∣gz ∣. �

Using Lemma 52, the term A3 can be written as a sum of six expressions of type (45):

3A3 = −Λ+++(b,a,b) −Λ+++(b,b,a) +Λ+++(a,b,b) +Λ+++(a,b,b)(47)

−Λ+++(c,b,b) −Λ+++(c,b,b) +Λ+++(b,c,b) +Λ+++(b,b,c)

−Λ+++(a,c,b) −Λ+++(a,b,c) +Λ+++(c,a,b) +Λ+++(c,b,a)

+Λ+++(b,a,a) +Λ+++(b,a,a) −Λ+++(a,b,a) −Λ+++(a,a,b)

+Λ+++(c,b,a) +Λ+++(c,a,b) −Λ+++(b,c,a) −Λ+++(b,a,c)

+Λ+++(a,c,a) +Λ+++(a,a,c) −Λ+++(c,a,a) −Λ+++(c,a,a).

Using the shuffle relations

0 = Λ+(x)Λ++(y,z) = Λ+++(x,y,z) +Λ+++(y,x,z) +Λ+++(y,z,x),

the six lines in (47) can be simplified, respectively, to

3Λ+++(a,b,b), −3Λ+++(c,b,b), 2Λ+++(c,a,b) +Λ+++(c,b,a),

3Λ+++(b,a,a), 2Λ+++(c,b,a) +Λ+++(c,a,b), −3Λ+++(c,a,a).

In this way we obtain the following expression for A3.
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Proposition 53. Let a,b,c ∈ (Z/NZ)2 such that a+b+c = 0, with all the coordinates of a,b,c
non-zero. Then

A3 = Λ+++(a,b,b) −Λ+++(c,b,b) +Λ+++(c,a,b) +Λ+++(c,b,a) +Λ+++(b,a,a) −Λ+++(c,a,a).

Putting together Propositions 49, 51 and 53, we obtain an expression for G(a,b). The terms
of type Λ1 and Λ+++ collect thanks to (40). This results in the following final formula.

Theorem 54. Let a,b,c ∈ (Z/NZ)2 such that a+b+c = 0. Assume that all the coordinates of
a, b and c are non-zero. Then

G(a,b) = Re(Λ(a,b,b) −Λ(c,b,b) +Λ(b,a,a) −Λ(c,a,a) +Λ(c,b,a) +Λ(c,a,b)

− (Λ(b) −Λ(a))(Λ(a,b) +Λ(b,c) +Λ(c,a))).

Corollary 55. The Goncharov regulator G(a,b) interpolates as a differentiable function of a,b
in the domain {(a,b) ∈ (R/Z)4 ∶ ak, bk, ak + bk ≠ 0 for k = 1,2}.

6. The Borisov–Gunnells relations

Borisov and Gunnells [3] have shown that certain pairwise products of Eisenstein series on the
group Γ1(N) satisfy linear dependence relations, which strikingly resemble the Manin 3-term
relations for modular symbols. We show in Theorem 56 below an explicit version of the result
of Borisov and Gunnells [3, Theorem 6.2] in weight 3 and for Eisenstein series on Γ(N). We
then deduce in Theorems 58 and 59 similar relations for Eisenstein series with rational Fourier
coefficients.

Theorem 56. Let x,y,z ∈ (R/Z)2 ∖ {0} such that x + y + z = 0. Then

(48) E
(1)
z E

(2)
y −E

(1)
y E

(2)
x −E

(1)
z E

(2)
x +E

(1)
y E

(2)
z = E

(3)
x −

1

2
E

(3)
y −

1

2
E

(3)
z .

Proof. Our starting point is an addition formula due to Weil [24, IV, §2, eq. (10)]:

(49) (E∗
2 (x) −E

∗
2 (x

′))(E∗
1 (x + x

′) −E∗
1 (x) −E

∗
1 (x

′)) +E∗
3 (x) −E

∗
3 (x

′) = 0

(x,x′ ∈ C/(Z + τZ), x, x′, x + x′ ≠ 0),

where, in Weil’s notations, E∗
k(x) = Kk(x,0, k; τ). (Weil states the identity for series denoted

by Ek(x), but they can be expressed in terms of E∗
k(x) [24, VI, §2].) In terms of Êx (see

Definition 33), the identity (49) can be rewritten

(50) (Ê
(1)
a + Ê

(1)
b + Ê

(1)
−a−b)(Ê

(2)
a − Ê

(2)
−a−b) =

1

2
(Ê

(3)
a − Ê

(3)
−a−b) (a,b ∈ (R/Z)2, a,b,a + b ≠ 0).

Our original source of (49) was a nice geometric interpretation given by Khuri-Makdisi [17,
eq. (4.39)]: this identity expresses the slope of the line passing through 3 points P,Q,R on
Eτ = C/(Z + τZ), where P +Q +R = 0. Another proof is given in [18, p. 177–178].

Now, after restricting to N -torsion points, the Eisenstein series E
(k)
x1,x2 is essentially the dis-

crete Fourier transform of Ê
(k)
a1,a2 . In the sequel, we implicitly identify (Z/NZ)2 with a subset

of (R/Z)2 by mapping a pair (x1, x2) to the class of (x1/N,x2/N). Moreover, let us introduce
the Weil pairing on Eτ [N] ≅ (Z/NZ)2:

eN ∶ (Z/NZ)2 × (Z/NZ)2 →C×, (a,x) ↦ e(
a2x1 − a1x2

N
) .

For k ≥ 1, the relation between E(k) and Ê(k) is

∑
a∈(Z/NZ)2

eN(a,x)Ê
(k)
a = (−1)k+1NkE

(k)
x (x ∈ (Z/NZ)2) .

This can be proved directly from the definitions of E
(k)
a and Ê

(k)
x (Definition 33).

This leads us to taking the Fourier transform of (50) with respect to both a and b. However,
it is important to note that (50) only holds when a, b and a + b are non-zero. For example,
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when a = 0, the left-hand side of (50) is zero while the right-hand side may not be. We thus
take the Fourier transform of both sides of (50) separately, and then use the inclusion-exclusion
principle:

(51) ∑
a,b∈(Z/NZ)2

a,b,a+b≠0

= ∑
a,b∈(Z/NZ)2

− ∑
a=0

b∈(Z/NZ)2

− ∑
a∈(Z/NZ)2

b=0

− ∑
a∈(Z/NZ)2

b=−a

+2 ∑
a=b=0

.

We will denote by La,b the left-hand side of (50), and by Ra,b its right-hand side. Let x,y,z ∈

(Z/NZ)2 be as in the statement of Theorem 56. Noting that La,b is zero when a, b or a + b is
zero, we have

∑
a,b∈(Z/NZ)2

a,b,a+b≠0

eN(a,x)eN(−b,y) × La,b(52)

= ∑
a,b∈(Z/NZ)2

eN(a,x)eN(−b,y)(Ê
(1)
a + Ê

(1)
b + Ê

(1)
−a−b)(Ê

(2)
a − Ê

(2)
−a−b)

= ∑
a,b∈(Z/NZ)2

eN(a,x)eN(−b,y)(−Ê
(1)
a Ê

(2)
−a−b + Ê

(1)
b Ê

(2)
a − Ê

(1)
b Ê

(2)
−a−b + Ê

(1)
−a−bÊ

(2)
a )

= N3 (E
(1)
x+yE

(2)
y +E

(1)
y E

(2)
x −E

(1)
x+yE

(2)
x −E

(1)
y E

(2)
x+y) .

We compute the Fourier transform of Ra,b similarly, keeping in mind the correction terms (51):

∑
a,b∈(Z/NZ)2

a,b,a+b≠0

eN(a,x)eN(−b,y) ×Ra,b(53)

= −
1

2

⎛

⎝
∑
a=0

b∈(Z/NZ)2

+ ∑
a∈(Z/NZ)2

b=0

+ ∑
a∈(Z/NZ)2

b=−a

⎞

⎠
eN(a,x)eN(−b,y)(Ê

(3)
a − Ê

(3)
−a−b)

= N3 (−E
(3)
x +

1

2
E

(3)
y −

1

2
E

(3)
x+y) .

The identity (48) now follows from (52), (53) and the relation E
(k)
x+y = (−1)kE

(k)
z .

So far we have established the result for N -torsion points. Since both sides of the identity
are continuous in x,y,z by Lemma 38, the result is true in general. �

Let us now consider Eisenstein series with rational Fourier coefficients, and investigate the

Borisov–Gunnell type relations for them. As the following lemma shows, G
(k);N
x is essentially

the partial Fourier transform of E
(k)
x with respect to the second parameter.

Lemma 57. For x1, u ∈ Z/NZ, we have

∑
x2∈Z/NZ

e(−
ux2
N

)E
(k)
x1,x2 = −N

2−kG
(k);N
x1,u .

Proof. This is a direct computation using the q-expansions (1) and (14). �

The Borisov–Gunnells relation for G
(k)
x is as follows. We first state the case when the first

coordinates are non-zero.

Theorem 58. Let x1, y1, u2, v2 ∈ (R/Z) ∖ {0} such that x1 + y1, u2 − v2 ≠ 0. Then

G
(1)
x1+y1,u2G

(2)
y1,v2−u2 +G

(1)
y1,v2G

(2)
x1,u2 −G

(1)
x1+y1,v2G

(2)
x1,u2−v2 −G

(1)
y1,v2−u2G

(2)
x1+y1,u2 = 0.

Proof. As for Theorem 56, it suffices to treat the case of N -torsion points. In this case, the
identity takes the form

G
(1);N
x1+y1,u2G

(2);N
y1,v2−u2 +G

(1);N
y1,v2 G

(2);N
x1,u2 −G

(1);N
x1+y1,v2G

(2);N
x1,u2−v2 −G

(1);N
y1,v2−u2G

(2);N
x1+y1,u2 = 0
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with x1, y1, u2, v2 ∈ (Z/NZ) ∖ {0} such that x1 + y1, u2 − v2 ≠ 0. Now the idea is to apply the
partial Fourier transform to the identity (48). Using Lemma 57, the transform of the left-hand
side Lx2,y2 of (48) can be computed as

∑
x2,y2∈Z/NZ

e(−
u2x2 + v2y2

N
) × Lx2,y2(54)

= −N (G
(1);N
x1+y1,u2G

(2);N
y1,v2−u2 +G

(1);N
y1,v2 G

(2);N
x1,u2 −G

(1);N
x1+y1,v2G

(2);N
x1,u2−v2 −G

(1);N
y1,v2−u2G

(2);N
x1+y1,u2) .

Moreover, the transform of the right-hand side vanishes, as for example

∑
x2,y2∈Z/NZ

e(−
u2x2 + v2y2

N
)E

(3)
z1,−x2−y2

t=−x2−y2
= ∑

x2,t∈Z/NZ

e(−
(u2 − v2)x2 − v2t

N
)E

(3)
z1,t

= 0

thanks to our assumption u2 − v2 ≠ 0. �

The case when the first coordinate of x, y or z is zero requires special care. We will not
state it in general, but content ourselves with the following result.

Theorem 59. Let u1, u2 ∈ R/Z with u1 ≠ 0. Then

G
(1)
u1,u2G

(2)
u1,−u2 −G

(1)
u1,−u2G

(2)
u1,u2 = G

(3)
0,u2

.

Proof. Again, it suffices to show that

G
(1);N
u1,u2G

(2);N
u1,−u2 −G

(1);N
u1,−u2G

(2);N
u1,u2 =

1

N
G

(3);N
0,u2

(u1, u2 ∈ Z/NZ, u1 ≠ 0).

We use (48) with x1 = 0, y1 = u1 and x2 ≠ 0. The left-hand side of (48) is

Lx2,y2 = −E
(1)
u1,x2+y2E

(2)
u1,y2 + (E

(1)
u1,x2+y2 −E

(1)
u1,y2)E

(2)
0,x2

+E
(1)
u1,y2E

(2)
u1,x2+y2 .

Note that Lx2,y2 is zero when x2 = 0. Using (54) with v2 = 0, we have

∑
x2≠0

y2∈Z/NZ

e(−
u2x2
N

) × Lx2,y2 = ∑
x2,y2∈Z/NZ

e(−
u2x2
N

) × Lx2,y2

= −N (G
(1);N
u1,u2G

(2);N
u1,−u2 +G

(1);N
u1,0

G
(2);N
0,u2

−G
(1);N
u1,0

G
(2);N
0,u2

−G
(1);N
u1,−u2G

(2);N
u1,u2 ) .

A similar computation gives

∑
x2≠0

y2∈Z/NZ

e(−
u2x2
N

) ×Rx2,y2 = −G
(3);N
0,u2

. �

7. Differentiating the Goncharov regulator

All elliptic parameters x = (x1, x2) etc., a = (a1, a2) etc. considered below are generic, not
hitting the integers. Apart from the already established

∂

∂x2
Λ(x) = 2πi({x1} −

1
2) = 2πiE

(1)
x (∞)

we need to consider similar partial derivatives for the regularised multiple integrals

Λ(x,y) = (2πi)2∫
∞

0
ω

(2)
x (τ1)ω

(2)
y (τ2)

and

Λ(x,y,z) = (2πi)3∫
∞

0
ω

(2)
x (τ1)ω

(2)
y (τ2)ω

(2)
z (τ3),
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where from now on we set ω
(k)
x (τ) = E

(k)
x (τ)dτ , ω

(k;m)
x;y (τ) = E

(k)
x (τ)E

(m)
y (τ)dτ , etc. Using (22)

and E
(1)
x (0) = 0, which follows from Lemma 35 with k = 1 and γ = ( 0 −1

1 0 ), we obtain

∂

∂x2
Λ(x,y) = (2πi)2∫

∞

0
ω

(1;2)
x;y (τ1),

∂

∂y2
Λ(x,y) = 2πiΛ(x)E

(1)
y (∞) − (2πi)2∫

∞

0
ω

(2;1)
x;y (τ1),

∂

∂x2
Λ(x,y,z) = (2πi)3∫

∞

0
ω

(1;2)
x;y (τ1)ω

(2)
z (τ2),

∂

∂y2
Λ(x,y,z) = (2πi)3∫

∞

0
ω

(2)
x (τ1)ω

(1;2)
y;z (τ2) − (2πi)3∫

∞

0
ω

(2;1)
x;y (τ1)ω

(2)
z (τ2),

∂

∂z2
Λ(x,y,z) = 2πiΛ(x,y)E

(1)
z (∞) − (2πi)3∫

∞

0
ω

(2)
x (τ1)ω

(2;1)
y;z (τ2).

Therefore,

δa2((Λ(a) −Λ(b))(Λ(a,b) +Λ(b,c) +Λ(c,a)))

= E
(1)
a (∞)(Λ(a,b) +Λ(b,c) +Λ(c,a)))

+ (Λ(a) −Λ(b)) ⋅ (2πi∫
∞

0
ω

(1;2)
a;b −Λ(b)E

(1)
c (∞) + 2πi∫

∞

0
ω

(2;1)
b;c

− 2πi∫
∞

0
ω

(1;2)
c;a +Λ(c)E

(1)
a (∞) − 2πi∫

∞

0
ω

(2;1)
c;a )

= E
(1)
a (∞)(Λ(a,b) +Λ(b,c) +Λ(c,a) + (Λ(a) −Λ(b))Λ(c))

−E
(1)
c (∞)(Λ(a) −Λ(b))Λ(b)

− 2πi(Λ(a) −Λ(b))∫
∞

0
(ω

(1;2)
a;c + ω

(1;2)
c;a − ω

(1;2)
a;b − ω

(1;2)
c;b )

where c = −(a + b), while the δa2-derivative of

Λ(a,b,b) −Λ(c,b,b) +Λ(b,a,a) −Λ(c,a,a) +Λ(c,b,a) +Λ(c,a,b)

is as follows:

(2πi)2∫
∞

0
ω

(1;2)
a;b ω

(2)
b + (2πi)2∫

∞

0
ω

(1;2)
c;b ω

(2)
b

+ (2πi)2∫
∞

0
ω

(2)
b ω

(1;2)
a;a − (2πi)2∫

∞

0
ω

(2;1)
b;a ω

(2)
a

+Λ(b,a)E
(1)
a (∞) − (2πi)2∫

∞

0
ω

(2)
b ω

(2;1)
a;a

+ (2πi)2∫
∞

0
ω

(1;2)
c;a ω

(2)
a − (2πi)2∫

∞

0
ω

(2)
c ω

(1;2)
a;a

+ (2πi)2∫
∞

0
ω

(2;1)
c;a ω

(2)
a −Λ(c,a)E

(1)
a (∞) + (2πi)2∫

∞

0
ω

(2)
c ω

(2;1)
a;a

− (2πi)2∫
∞

0
ω

(1;2)
c;b ω

(2)
a +Λ(c,b)E

(1)
a (∞) − (2πi)2∫

∞

0
ω

(2)
c ω

(2;1)
b;a

− (2πi)2∫
∞

0
ω

(1;2)
c;a ω

(2)
b + (2πi)2∫

∞

0
ω

(2)
c ω

(1;2)
a;b − (2πi)2∫

∞

0
ω

(2;1)
c;a ω

(2)
b

= E
(1)
a (∞)(Λ(b,a) −Λ(c,a) +Λ(c,b))

+ (2πi)2∫
∞

0
(ω

(1;2)
a;c + ω

(1;2)
c;a − ω

(1;2)
a;b − ω

(1;2)
c;b )(ω

(2)
a − ω

(2)
b ).

Recall that

ω
(1;2)
a;c + ω

(1;2)
c;a − ω

(1;2)
a;b − ω

(1;2)
c;b = (E

(1)
a E

(2)
c +E

(1)
c E

(2)
a − (E

(1)
a +E

(1)
c )E

(2)
b )dτ.



MODULAR REGULATORS AND MULTIPLE EISENSTEIN VALUES 29

The latter expression is subject to the Borisov–Gunnells type relation in weight 3,

E
(1)
a E

(2)
c +E

(1)
c E

(2)
a − (E

(1)
a +E

(1)
c )E

(2)
b = E

(3)
b − 1

2E
(3)
a − 1

2E
(3)
c ,

implying

ω
(1;2)
a;c + ω

(1;2)
c;a − ω

(1;2)
a;b − ω

(1;2)
c;b = ω

(3)
b − 1

2ω
(3)
a − 1

2ω
(3)
c .

In addition, the shuffle relations imply

Λ(a,b) +Λ(b,c) +Λ(c,a) + (Λ(a) −Λ(b))Λ(c) + (Λ(b,a) −Λ(c,a) +Λ(c,b))

= Λ(a)Λ(b) +Λ(b)Λ(c) + (Λ(a) −Λ(b))Λ(c) = Λ(a)(Λ(b) +Λ(c)).

Combining the above derivations and using the fact that the quantities

E
(1)
a (∞)Λ(a)(Λ(b) +Λ(c)) = (2πi)2({a1} −

1
2)

2({a2} −
1
2)

× (({b1} −
1
2)({b2} −

1
2) + ({c1} −

1
2)({c2} −

1
2))

and

E
(1)
c (∞)(Λ(a) −Λ(b))Λ(b) = (2πi)2({b1} −

1
2)({b2} −

1
2)({c1} −

1
2)

× (({a1} −
1
2)({a2} −

1
2) − ({b1} −

1
2)({b2} −

1
2))

are purely real, we finally arrive at

1

2π

∂

∂a2
G(a,b) = Im (2πi(Λ(a) −Λ(b))∫

∞

0
(ω

(3)
b − 1

2ω
(3)
a − 1

2ω
(3)
c )(55)

− (2πi)2∫
∞

0
(ω

(3)
b − 1

2ω
(3)
a − 1

2ω
(3)
c )(ω

(2)
a − ω

(2)
b ))

= −4π2 Im (∫

∞

0
(ω

(2)
a − ω

(2)
b )(ω

(3)
b − 1

2ω
(3)
a − 1

2ω
(3)
c ));

in the final step we applied the shuffle relations again.

8. Using the Rogers–Zudilin method

To handle the integrals ∫
∞

0 ω
(2)
u ω

(3)
v in (55), we use the Rogers–Zudilin method.

8.1. The setup. For weights ` ≥ k ≥ 2, we want to work out the integral

I
(k,`)
u,v = ∫

∞

0
E

(k)
u (iy)Ẽ

(`)
v (iy)dy (u,v ∈ (R/Z)2)

in terms of L-values. Here Ẽ
(`)
v denotes the Eichler integral of E

(`)
v , that is, the unique prim-

itive of 2πiE
(`)
v (τ)dτ whose regularised value at ∞ is zero. The function E

(k)
u (τ)Ẽ

(`)
v (τ) is

admissible, so that I
(k,`)
u,v is well-defined.

Recall the modularity with respect to σ = ( 0 −1
1 0 ) (Lemma 35):

(56) E
(k)
u (iy) = (E

(k)

uσ−1
∣kσ)(iy) = (iy)−kE

(k)

uσ−1
(
i

y
) = (−i)ky−kE

(k)
−uσ(

i

y
) = iky−kE

(k)
uσ (

i

y
).

8.2. The computation. We have

I
(k,`)
u,v = ik ∫

∞

0
E

(k)
uσ (

i

y
)Ẽ

(`)
v (iy)

dy

yk
.
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Write E
(k)
uσ (i/y) = C1+S1(y) and Ẽ

(`)
v (iy) = C2y+S2(y), where S1(y), respectively S2(y), decays

exponentially as y → 0+, respectively y → +∞. Explicitly,

C1 = a0(E
(k)
uσ ),

C2 = −2πa0(E
(`)
v ),

S1(y) = ∑
m1≥1
n1∈R>0

(a(m1)b(n1) + (−1)ka(−m1)b(−n1))n
k−1
1 e−2πm1n1/y,

S2(y) = ∑
m2≥1
n2∈R>0

(c(m2)d(n2) + (−1)`c(−m2)d(−n2))
n`−22

m2

e−2πm2n2y,

where the functions a, b, c, d∶R→C are defined by

a(m) = −e(−mu1), c(m) = −e(mv2),

b(n) = 1n≡u2 mod 1, d(n) = 1n≡v1 mod 1.

We can write I
(k,`)
u,v = T1 + T2 + T3 with

T1 = i
k
∫

∞

0
S1(y)S2(y)

dy

yk
,

T2 = i
kC1∫

∞

0
Ẽ

(`)
v (iy)

dy

yk
,

T3 = i
kC2∫

∞

0
E

(k)
uσ (

i

y
)
dy

yk−1
,

where each term Ti is understood as the regularised value of the corresponding Mellin transform
(actually the integral T1 converges exponentially at 0 and ∞). The terms T2 and T3 essentially
boil down to L-values of Eisenstein series, and will be dealt with later.

We compute T1 using the Rogers–Zudilin method. We first consider the terms a(m1)b(n1)

and c(m2)d(n2) inside the series S1 and S2 respectively:

∫

∞

0

⎛
⎜
⎜
⎝

∑
m1≥1
n1∈R>0

a(m1)b(n1)n
k−1
1 e−2πm1n1/y

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
m2≥1
n2∈R>0

c(m2)d(n2)
n`−22

m2

e−2πm2n2y

⎞
⎟
⎟
⎠

dy

yk

= ∑
m1≥1
n1∈R>0

∑
m2≥1
n2∈R>0

a(m1)b(n1)c(m2)d(n2)n
k−1
1 ⋅

n`−22

m2
∫

∞

0
e−2π(m2n2y+

m1n1
y

)dy

yk

y→
n1
m2

⋅y

= ∑
m1≥1
n1∈R>0

∑
m2≥1
n2∈R>0

a(m1)b(n1)c(m2)d(n2)n
`−2
2 mk−2

2 ∫

∞

0
e−2π(n1n2y+

m1m2
y

)dy

yk

= ∫

∞

0
( ∑
m1,m2≥1

a(m1)c(m2)m
k−2
2 e−2πm1m2/y)( ∑

n1,n2∈R>0

b(n1)d(n2)n
`−2
2 e−2πn1n2y)

dy

yk
.

This computation will be summarised with the formal transformation ab⊗ cd→ ac⊗ bd.
Now the term T1 is a linear combination of four terms, involving substitutions (mi, ni) →

(−mi,−ni) for i = 1,2. As a shortcut, write f−(x) = f(−x) for a function f ∶R → C. Then the
computation of T1 can be written formally

(ab + (−1)ka−b−) ⊗ (cd + (−1)`c−d−)

→ ac⊗ bd + (−1)`ac− ⊗ bd− + (−1)ka−c⊗ b−d + (−1)k+`a−c− ⊗ b−d−.

This linear combination does not produce Eisenstein series: for example ∑ b(n1)d(n2)qn1n2 has
no modularity property, because of the lack of parity conditions in b and d. To get Eisenstein
series, we have to take the imaginary part of T1; this corresponds to considering the Beilinson
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regulator map with values in real Deligne–Beilinson cohomology. Noting that ā = a−, c̄ = c−,
b̄ = b and d̄ = d, we see that T1 − T1 can be computed as

(ab + (−1)ka−b−) ⊗ (cd + (−1)`c−d−) + (−1)k−1(a−b + (−1)kab−) ⊗ (c−d + (−1)`cd−)

→ ac⊗ bd + (−1)`ac− ⊗ bd− + (−1)ka−c⊗ b−d + (−1)k+`a−c− ⊗ b−d−

+ (−1)k−1a−c− ⊗ bd + (−1)k+`−1a−c⊗ bd− − ac− ⊗ b−d + (−1)`−1ac⊗ b−d−

= (ac + (−1)k−1a−c−) ⊗ (bd + (−1)`−1b−d−) + (−1)k(a−c + (−1)k−1ac−) ⊗ (b−d + (−1)`−1bd−).

Up to the constant terms, we recognise the sum of two pairwise products of Eisenstein series
of weights k − 1 and ` − 1, respectively. Denoting by f 0 = f − a0(f) the rapidly decreasing part
of f , we have

(57) Im(T1) =
i−k−1

2 ∫

∞

0
(H

(k−1),0
u1,v2 (

i

y
)G

(`−1),0
v1,−u2 (iy) −H

(k−1),0
u1,−v2 (

i

y
)G

(`−1),0
v1,u2 (iy))

dy

yk
,

where for x = (x1, x2) ∈ (R/Z)2, the Eisenstein series H
(k)
x is given by

H
(k)
x (τ) = a0(H

(k)
x ) + ∑

m,n≥1

(e(mx1 + nx2) + (−1)ke(−mx1 − nx2))n
k−1qmn,

with

a0(H
(1)
x ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0,
1
2
1+e(x2)
1−e(x2)

if x1 = 0 and x2 ≠ 0,
1
2
1+e(x1)
1−e(x1)

if x1 ≠ 0 and x2 = 0,
1
2 (

1+e(x1)
1−e(x1)

+
1+e(x2)
1−e(x2)

) if x1 ≠ 0 and x2 ≠ 0,

(k ≥ 2) a0(H
(k)
x ) = (−1)kζ̂(−x2,1 − k).

The Eisenstein series G
(k)
x and H

(k)
x are related as follows.

Lemma 60. Let k ≥ 1 and x = (x1, x2) ∈ (R/Z)2, with x1 ≠ 0 in the case k = 2. Then

H
(k)
x ∣kσ = G

(k)
x . In particular, we have H

(k)
x (i/y) = (iy)kG

(k)
x (iy) for any y > 0.

Proof. In the case x ∈ ( 1
NZ/Z)2, this is [7, Lemme 3.10]. The general case follows since both

sides are continuous in x. �

We compute (57) by ‘completing’ the Eisenstein series H(k−1) and G(`−1), and separating the
contribution from the constant terms, using also Lemma 60:

∫

∞

0
H

(k−1),0
a (

i

y
)G

(`−1),0
b (iy)ys

dy

y
(58)

=M(H
(k−1)
a (

i

y
)G

(`−1)
b (iy), s) − a0(H

(k−1)
a )M(G

(`−1)
b , s) − a0(G

(`−1)
b )M(H

(k−1)
a (

i

y
), s)

= ik−1M(G
(k−1)
a G

(`−1)
b , s + k − 1)

− a0(H
(k−1)
a )M(G

(`−1)
b , s) − ik−1a0(G

(`−1)
b )M(G

(k−1)
a , s + k − 1).

Putting (57) and (58) together, we get the following formula for the imaginary part of T1:

Im(T1) = T
′
1 + T

′
2 + T

′
3,

T ′
1 = −

1

2
M∗(G

(k−1)
u1,v2 G

(`−1)
v1,−u2 −G

(k−1)
u1,−v2G

(`−1)
v1,u2 ,0),

T ′
2 =

i1−k

2
a0(H

(k−1)
u1,v2 )M(G

(`−1)
v1,−u2 ,1 − k) − i

1−ka0(H
(k−1)
u1,−v2)M(G

(`−1)
v1,u2 ,1 − k),

T ′
3 =

1

2
a0(G

(`−1)
v1,−u2)M

∗(G
(k−1)
u1,v2 ,0) −

1

2
a0(G

(`−1)
v1,u2 )M

∗(G
(k−1)
u1,−v2 ,0).
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If u and v are N -torsion (and u1, v1 ≠ 0), the main term T ′
1 is the (completed) L-value of a

modular form of weight k + ` − 2 and level Γ(N) with rational Fourier coefficients.

8.3. The constant terms. We henceforth assume that k = 2, which is enough for our purpose.
Also, we put ourselves in the generic situation where the coordinates of u and v are non-zero.
In this case, the Eisenstein series appearing in T ′

1 have no constant term (see Definition 39),

so that the Mellin transform in T ′
1 is holomorphic at s = 0. Moreover a0(G

(`−1)
v1,−u2) = 0 and thus

T ′
3 = 0.

Let us compute Im(T2). The Mellin transform of the Eichler integral Ẽ
(`)
v is given by

M(Ẽ
(`)
v , s) =

2π

s
M(E

(`)
v , s + 1) =

2π

s
(−
a0(E

(`)
v )

s + 1
+M∗(E

(`)
v ,0) +Os→−1(s + 1)),

from which we deduce

T2 = −a0(E
(2)
uσ )M∗(Ẽ

(`)
v ,−1) = πB2({u2})(M

∗(E
(`)
v ,0) − a0(E

(`)
v )).

Using Lemma 41 and equation (13), this leads to

Im(T2) = −
πi

2
B2({u2}) lim

s→0
Γ(s)(−ζ(v1, s − ` + 1) + (−1)`ζ(−v1, s − ` + 1))(ζ̂(v2, s) − ζ̂(−v2, s))

=
πi

2
B2({u2})

1 + e(v2)

1 − e(v2)
lim
s→0

Γ(s)(ζ(v1, s − ` + 1) + (−1)`+1ζ(−v1, s − ` + 1)).

For the term T3, we rewrite it using (56):

T3 = −2πa0(E
(`)
v )∫

∞

0
E

(2)
u (iy)y dy = −2π

B`({v1})

`
M∗(E

(2)
u ,2).

Moreover,

lim
s→2
s∈R

Im(M(E
(2)
u , s)) = (2π)−2 lim

s→2
s∈R

(−ζ(u1, s − 1) Im(ζ̂(u2, s)) − ζ(−u1, s − 1) Im(ζ̂(−u2, s)))

= (2π)−2 Im(ζ̂(u2,2)) × πi
1 + e(u1)

1 − e(u1)
.

Therefore,

Im(T3) = −
i

2

B`({v1})

`
⋅ Im(ζ̂(u2,2)) ⋅

1 + e(u1)

1 − e(u1)
.

It remains to compute T ′
2. We have T ′

2 = A +B with

A =
i

4

1 + e(u1)

1 − e(u1)
(M(G

(`−1)
v1,u2 ,−1) −M(G

(`−1)
v1,−u2 ,−1)),

B = −
i

4

1 + e(v2)

1 − e(v2)
(M(G

(`−1)
v1,u2 ,−1) +M(G

(`−1)
v1,−u2 ,−1)).

Let us compute A. Using Lemma 41, we obtain

M(G
(`−1)
v1,u2 ,−1) −M(G

(`−1)
v1,−u2 ,−1)

= 2π lim
s→−1

Γ(s)(ζ(v1, s − ` + 2) + (−1)`ζ(−v1, s − ` + 2))(ζ(u2, s) − ζ(u2,−s))

= −
4π

`
B`({v1}) lim

s→−1
Γ(s)(ζ(u2, s) − ζ(−u2, s)).

Now using the Hurwitz formula [7, eq. (6)], we have

ζ(u2, s) − ζ(−u2, s) = (2π)s−1Γ(1 − s)(e−πi(1−s)/2 − eπi(1−s)/2)(ζ̂(u2,1 − s) − ζ̂(−u2,1 − s)),

which gives

lim
s→−1

Γ(s)(ζ(u2, s) − ζ(−u2, s)) = −
1

2π
Im(ζ̂(u2,2)).
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Therefore,

A =
i

2

B`({v1})

`

1 + e(u1)

1 − e(u1)
Im(ζ̂(u2,2)).

Similarly, the term B is equal to

B = −
πi

2

1 + e(v2)

1 − e(v2)
B2({u2}) lim

s→0
Γ(s)(ζ(v1, s − ` + 1) + (−1)`+1ζ(−v1, s − ` + 1)).

Collecting everything, we see that Im(T2) +B = 0 and Im(T3) +A = 0. Thus, Im(I
(2,`)
u,v ) = T ′

1, as
summarised in the following theorem.

Theorem 61. Let ` ≥ 2 be an integer, and u = (u1, u2), v = (v1, v2) in (R/Z)2, where all ui
and vi are non-zero. Then

Im(I
(2,`)
u,v ) = −

1

2
M(G

(1)
u1,v2G

(`−1)
v1,−u2 −G

(1)
u1,−v2G

(`−1)
v1,u2 ,0).

9. Getting to the L-value

In Section 7, we established that the a2-derivative of the (interpolated) Goncharov regulator

of ξ̃(a,b) is

∂

∂a2
G(a,b) = −4π2 Im (∫

∞

0
(E

(2)
b (τ) −E

(2)
a (τ))(Ẽ

(3)
b (τ) − 1

2Ẽ
(3)
a (τ) − 1

2Ẽ
(3)
c (τ))dτ),

see formula (55). This holds in the domain where all the coordinates of a,b,c ∈ (R/Z)2 are
non-zero, with a + b + c = 0 as usual. Using Theorem 61, we have

∂

∂a2
G(a,b) = 2π2M((G

(1)
b1,b2

G
(2)
b1,−b2

−G
(1)
b1,−b2

G
(2)
b1,b2

) −
1

2
(G

(1)
b1,a2

G
(2)
a1,−b2

−G
(1)
b1,−a2

G
(2)
a1,b2

)

(59)

−
1

2
(G

(1)
b1,c2

G
(2)
c1,−b2

−G
(1)
b1,−c2

G
(2)
c1,b2

) − (G
(1)
a1,b2

G
(2)
b1,−a2

−G
(1)
a1,−b2

G
(2)
b1,a2

)

+
1

2
(G

(1)
a1,a2G

(2)
a1,−a2 −G

(1)
a1,−a2G

(2)
a1,a2) +

1

2
(G

(1)
a1,c2G

(2)
c1,−a2 −G

(1)
a1,−c2G

(2)
c1,a2),0).

Let us write f = f1 + ⋅ ⋅ ⋅ + f6 for the modular form inside (59). We rewrite f using Theorems 58
and 59. Theorem 59 gives

M(f1,0) =M(G
(3)
0,b2
,0), M(f5,0) =

1

2
M(G

(3)
0,a2

,0).

Using Theorem 58 with x1 = c1, y1 = a1, u2 = a2 and v2 = −c2, we have

(60) G
(1)
−b1,a2

G
(2)
a1,b2

+G
(1)
a1,−c2G

(2)
c1,a2 −G

(1)
−b1,−c2

G
(2)
c1,−b2

= G
(1)
a1,b2

G
(2)
b1,−a2

;

and with x1 = c1, y1 = b1, u2 = b2 and v2 = −c2, we obtain

(61) G
(1)
b1,−c2

G
(2)
c1,b2

−G
(1)
−a1,−c2G

(2)
c1,−a2 −G

(1)
b1,a2

G
(2)
−a1,b2

= G
(1)
a1,−b2

G
(2)
b1,a2

.

Combining (60) and (61), we have

f2 + f3 + f6 = −
1

2
× (60) +

1

2
× (61) = −

1

2
G

(1)
a1,b2

G
(2)
b1,−a2

+
1

2
G

(1)
a1,−b2

G
(2)
b1,a2

=
1

2
f4.

Therefore,

∂

∂a2
G(a,b) = 2π2M(G

(3)
0,b2

+
1

2
G

(3)
0,a2

+
3

2
f4,0)(62)

= −3π2M(G
(1)
a1,b2

G
(2)
b1,−a2

−G
(1)
a1,−b2

G
(2)
b1,a2

,0) + π2M(G
(3)
0,a2

+ 2G
(3)
0,b2
,0).
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To find the a2-antiderivative of the right-hand side of (62), we use Lemma 40. We have
formally

M(G
(1)
a1,−b2

G
(2)
b1,a2

,0) = ∫
∞

0
G

(1)
a1,−b2

(iy)G
(2)
b1,a2

(iy)
dy

y
(63)

= −
1

2π ∫
∞

0
G

(1)
a1,−b2

(iy)
∂

∂a2
G

(1)
b1,a2

(iy)
dy

y2

= −
1

2π

∂

∂a2
M(G

(1)
a1,−b2

G
(1)
b1,a2

,−1).

Lemma 62. For x ∈ R/Z, x ≠ 0, we have M(G
(3)
0,x,0) = −2ζ ′(−2)B1({x}).

Proof. Using (20), we obtain

M(G
(3)
0,x,0) = lim

s→0
Γ(s)ζ(s − 2)(ζ(x, s) − ζ(−x, s)) = ζ ′(−2)(ζ(x,0) − ζ(−x,0)).

We conclude using the evaluation ζ(x,0) = −B1({x}) [7, Section 2, p. 1123]. �

From (62), (63) and Lemma 62, we get

(64)
∂

∂a2
G(a,b) = −

3π

2

∂

∂a2
M(G

(1)
a1,b2

G
(1)
b1,−a2

+G
(1)
a1,−b2

G
(1)
b1,a2

,−1) +
ζ(3)

2
(B1(a2) + 2B1(b2)).

This identity holds in the domain

D0 = {(a,b) ∶ 0 < a1, a2, b1, b2 < 1, a1 + b1 ≠ 1, a2 + b2 ≠ 1},

which has four connected components:

D++ = {a1 + b1 > 1, a2 + b2 > 1}, D+− = {a1 + b1 > 1, a2 + b2 < 1},

D−+ = {a1 + b1 < 1, a2 + b2 > 1}, D−− = {a1 + b1 < 1, a2 + b2 < 1}.

We can integrate (64) on each of these domains, with possibly different integration constants.
So for ◻ ∈ {++,+−,−+,−−} and (a,b) ∈D◻, we have

G(a,b) = −
3π

2
M(G

(1)
a1,b2

G
(1)
b1,−a2

+G
(1)
a1,−b2

G
(1)
b1,a2

,−1)

+
ζ(3)

4
(B2(a2) +B2(b2) + 4B1(a2)B1(b2)) +C◻(a,b),(65)

where C◻(a,b) does not depend on a2. For convenience, write

L(a,b) = −
3π

2
M(G

(1)
a1,b2

G
(1)
b1,−a2

+G
(1)
a1,−b2

G
(1)
b1,a2

,−1).

To get further, note that the symmetry (a,b) → (b,a) leaves stable the connected components
D◻. And we have

G(a,b) = G(b,a) ((a,b) ∈D◻),

which follows from the identity of cocycles ξ̃(a,b) = ξ̃(b,a), or from the expression of G(a,b)
in terms of triple modular values. Taking into account L(a,b) = L(b,a), we see from (65) that
C◻(a,b) is symmetric in a,b. Therefore C◻(a,b) does not depend on b2 either, and we can
write

C◻(a,b) = C
′
◻(a1, b1).

(The function C ′
◻(α,β) is defined either on the domain α + β > 1 or on the domain α + β < 1,

depending on the first sign in ◻.)
Now, let us use the matrix σ = ( 0 −1

1 0 ) acting as

(a,b) = (a1, a2, b1, b2) → (aσ,bσ) = (a2,−a1, b2,−b1).
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It permutes the connected components of the domain by D++ → D+− → D−− → D−+ → D++.
With the regulator, we have

G(a,b) = ∫
∞

0
r3(2)(ξ̃(a,b)) = ∫

0

∞
r3(2)(ξ̃(a,b))∣σ

= −∫

∞

0
r3(2)(ξ̃(a,b)∣σ) = −∫

∞

0
r3(2)(ξ̃(aσ,bσ)) = −G(aσ,bσ).

One also checks that L(a,b) = −L(aσ,bσ), using the identity of Eisenstein series G
(1)
x1,x2 =

G
(1)
x2,x1 = −G

(1)
−x1,−x2 . Therefore,

0 = G(a,b) + G(aσ,bσ)

=
ζ(3)

4
(B2(a2) +B2(b2) + 4B1(a2)B1(b2)) +C

′
◻(a1, b1)

+
ζ(3)

4
(B2(a1) +B2(b1) + 4B1(a1)B1(b1)) +C

′
σ(◻)(a2, b2).

This identity can be rewritten as

ζ(3)

4
(B2(a1) +B2(b1) + 4B1(a1)B1(b1)) +C

′
◻(a1, b1)

= −
ζ(3)

4
(B2(a2) +B2(b2) + 4B1(a2)B1(b2)) −C

′
σ(◻)(a2, b2).

The left-hand side depends only on a1, b1, while the right-hand side depends only on a2, b2.
Therefore, they do not depend on (a,b) in D◻ and we can write

C ′
◻(a1, b1) = −

ζ(3)

4
(B2(a1) +B2(b1) + 4B1(a1)B1(b1)) +C

′′
◻ ,

C ′
σ(◻)(a2, b2) = −

ζ(3)

4
(B2(a2) +B2(b2) + 4B1(a2)B1(b2)) −C

′′
◻ .

Reporting into (65) we have, for (a,b) ∈D◻,

G(a,b) = −
3π

2
M(G

(1)
a1,b2

G
(1)
b1,−a2

+G
(1)
a1,−b2

G
(1)
b1,a2

,−1)(66)

−
ζ(3)

4
(B2(a1) +B2(b1) + 4B1(a1)B1(b1)

−B2(a2) −B2(b2) − 4B1(a2)B1(b2)) +C
′′
◻ .

Substituting (a,b) → (aσ,bσ) in this relation, we see that C ′′
σ(◻)

= −C ′′
◻ for any component

◻ ∈ {++,+−,−+,−−}.

Finally, let us take a = b in (66). Since the cocycle ξ̃(a,a) is zero, we have G(a,a) = 0.
Specialising even further to a = b = (α,α) with α ∈ (0,1), α ≠ 1

2 , the L-value part in (66)

vanishes since G
(1)
α,−α = 0. Moreover, the ζ(3) part also vanishes. It follows that C ′′

++ = C
′′
−− = 0,

hence C ′′
◻ = 0 for every ◻. We have thus shown the following.

Theorem 63. For any a,b ∈ (R/Z)2 such that the coordinates of a, b and a+ b are non-zero,
we have

G(a,b) = −
3π

2
M(G

(1)
a1,b2

G
(1)
b1,−a2

+G
(1)
a1,−b2

G
(1)
b1,a2

,−1)(67)

−
ζ(3)

4
(B2(a1) +B2(b1) + 4B1(a1)B1(b1)

−B2(a2) −B2(b2) − 4B1(a2)B1(b2)).

Theorem 1 follows by specialising Theorem 63 to the case of N -torsion points. More precisely,
using (18), we have the relation, for x,y ∈ (Z/NZ)2,

(68) M(G
(1)

x/N
G

(1)

y/N
,−1) =

1

N
M(G

(1);N
x G

(1);N
y ,−1) = −

2π

N
L′(G

(1);N
x G

(1);N
y ,−1).
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10. Relation to the Beilinson regulator

In [8, Conjecture 9.3], the first author conjectured that the elements ξ((0, a), (0, b)), a, b ∈

Z/NZ, are proportional to the Beilinson elements in K
(3)
4 (Y1(N)). For a,b ∈ (Z/NZ)2, let

Eis0,0,1(a,b) denote the associated Beilinson element in K
(3)
4 (Y (N)) [23, Definition 2.3.6].

There is an explicit representative Eis0,0,1
D

(a,b) of the Beilinson regulator of Eis0,0,1(a,b) [23,
Proposition 2.4.2]. This is a differential 1-form on Y (N)(C), and Weijia Wang proved the
following explicit formula [23, Example 6.1.5], for a,b ≠ 0:

B(a,b) ∶= ∫
∞

0
Eis0,0,1
D

(a,b) =
9π

N3
M(G

(1);N
a2,−b1

G
(1);N
b2,a1

+G
(1);N
a2,b1

G
(1);N
b2,−a1

,−1).

Using the relations G
(1);N
x1,x2 = G

(1);N
x2,x1 = −G

(1);N
−x1,−x2 , as well as (68), we obtain

B(a,b) = −
9π

N2
M(G

(1)
a1,b2

G
(1)
b1,−a2

+G
(1)
a1,−b2

G
(1)
b1,a2

,−1) (a,b ≠ 0),

where we identify Z/NZ and 1
NZ/Z. The modular form on the right-hand side matches with

the one in (67), and from comparing the two expressions we deduce Theorem 2.
As explained in the introduction, Theorem 2 gives evidence for the conjectural coincidence

of the motivic cohomology classes ξ(a,b) and ±N
2

3 Eis0,0,1(a,b). This was formulated in [8,
Conjecture 9.3] for the modular curve Y1(N), taking indices of the form (0, x) with x ∈ Z/NZ,
however we expect it to hold also for Y (N) with general indices in (Z/NZ)2. Note a different
from ±N2/3 factor N2/6 in Theorem 2: this is due to the fact that the Beilinson regulator, which
is used to define Eis0,0,1

D
(a,b), is expected to be ±2 times the Goncharov regulator r3(2), via

De Jeu’s map. De Jeu has proved this compatibility for general curves under some assumptions
[15, Theorem 5.4]; see the discussion in [8, Section 5.4].

11. Conclusion

One important application of Theorem 1 is to proving the longstanding conjecture of Boyd
and Rodriguez Villegas on the Mahler measure [10] of the three-variable polynomial P = (1+x)⨉
(1 + y) + z, namely m(P ) = −2L′(E,−1), where E is the elliptic curve over Q defined by the
affine equation (1 + x)(1 + y)(1 + 1

x)(1 +
1
y) = 1. To do this, the starting point is the work of

Laĺın [19] expressing this Mahler measure as a Goncharov regulator on the elliptic curve E:

(69) m((1 + x)(1 + y) + z) =
1

4π2 ∫γ+E
r3(2)(ξP ),

where ξP is a degree 2 cohomology class in the weight 3 Goncharov complex of E, and γ+E
is a generator of H1(E(C),Z)+, the subgroup of invariants under complex conjugation in the
homology of E. What allows one to compute the regulator integral (69) is that E is actually
isomorphic to the modular curve X1(15), and using this identification, the class ξP has the
simple expression ξP = 20ξ((0,4), (0,6)) − 20ξ((0,6), (0,7)). The details of this are given by
the first author in [9].

Though our Theorems 1 and 2 do not cover the boundary cases, where some coordinates of
a,b,a + b ∈ (Z/NZ)2 are zero, they indicate some interesting behaviour when the parameters
approach the boundary. The rational multiple of ζ(3) in Theorems 1 and 2 has discontinuities
at the boundary due to the Bernoulli polynomial B1, which may have to be replaced by the
sawtooth wave or by regularised values as in Propositions 44 and 45. It is also not clear, to begin
with, whether the Goncharov regulator G(a,b) can be interpolated as a continuous function
along the boundary. It would be interesting to gain a more conceptual understanding of these
continuity issues; some numerical experiments may shed light on that.

In essence, the explicit relation between the regulator integrals G(a,b) and B(a,b) should
be enough to prove [8, Conjecture 9.3] at the level of Deligne–Beilinson cohomology (as well
as its more general version for the modular curve Y (N)). At the motivic level, however, the
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conjecture looks more difficult and seems to require new ideas; a Hodge theoretic interpretation
of the computations in this article would be already very interesting.
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ÉNS Lyon, Unité de mathématiques pures et appliquées, 46 allée d’Italie, 69007 Lyon, France
Email address: francois.brunault@ens-lyon.fr
URL: http://perso.ens-lyon.fr/francois.brunault

IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
Email address: w.zudilin@math.ru.nl
URL: https://www.math.ru.nl/~wzudilin/

https://arxiv.org/abs/1407.5167v4
https://arxiv.org/abs/1904.00179
https://arxiv.org/abs/2009.07614v2
https://doi.org/10.1017/9781108885553
https://tel.archives-ouvertes.fr/tel-02965542

	1. Introduction
	2. Regularised iterated integrals
	2.1. Admissible functions
	2.2. Regularisation at infinity
	2.3. Regularisation at zero
	2.4. Regularisation from zero to infinity
	2.5. Shuffle relations of iterated integrals
	2.6. The Newton–Leibniz formula and integration by parts
	2.7. Iterated integrals with parameters
	2.8. Mellin transforms

	3. Multiple modular values
	3.1. Eisenstein series
	3.2. Multiple modular values

	4. A baby case: The K2 regulator and double modular values
	5. The Goncharov regulator in terms of triple modular values
	5.1. The A1 term
	5.2. The A2 term
	5.3. The A3 term

	6. The Borisov–Gunnells relations
	7. Differentiating the Goncharov regulator
	8. Using the Rogers–Zudilin method
	8.1. The setup
	8.2. The computation
	8.3. The constant terms

	9. Getting to the L-value
	10. Relation to the Beilinson regulator
	11. Conclusion
	References

