
ON THE MAHLER MEASURE OF (1 + x)(1 + y) + z

FRANÇOIS BRUNAULT

Abstract. We prove a conjecture of Boyd and Rodriguez Villegas relating the Mahler measure
of the polynomial (1+ x)(1+ y)+ z and the value at s = 3 of the L-function of an elliptic curve
of conductor 15. The proof makes use of the computation by Zudilin and the author of the
regulator of certain K4 classes on modular curves.

1. Introduction

The (logarithmic) Mahler measure of a complex Laurent polynomial P (x1, . . . , xn) is defined
as the average of log ∣P ∣ over the torus T n ∶ ∣x1∣ = . . . = ∣xn∣ = 1,

m(P ) = 1

(2πi)n ∫Tn
log ∣P ∣ dx1

x1

. . .
dxn
xn

.

For a one-variable polynomial P (x) = c
d

∏
i=1

(x − αi), Jensen’s formula gives

m(P ) = log ∣c∣ +
d

∑
i=1
∣αi∣≥1

log ∣αi∣.

Originally, the multivariate Mahler measure was introduced as a height function for polyno-
mials, in relation with transcendental number theory. It was later realised that the Mahler
measure appears naturally in other contexts. For example, Smyth discovered in 1981 the fol-
lowing formulas

(1) m(1 + x + y) = 3
√

3

4π
L(χ−3,2), m(1 + x + y + z) = 7

2π2
ζ(3),

where χ−3(n) = (−3
n ) is the Dirichlet character modulo 3. The Mahler measure of integer

polynomials turns out to have deep links with special values of L-functions. We mention here
some aspects of this connection, referring to [6, 3, 1, 10] for more complete surveys.

A combination of experiments and theoretical insights led Boyd and Deninger to conjecture
the identity

(2) m(x + 1

x
+ y + 1

y
+ 1) = L′(E,0),

where E ∶ x + 1
x + y +

1
y + 1 = 0 is an elliptic curve of conductor 15. This was proved some 15

years later by Rogers and Zudilin [24].
The identity (2) can be conceptually explained using Beilinson’s theory of regulators, and

Deninger gave in [13] a general framework to relate Mahler measures and cohomology. More
precisely, let P (x1, . . . , xn) be a complex Laurent polynomial, which we assume to be monic in
xn. Applying Jensen’s formula with respect to xn, we may write m(P ) as an integral

(3) ∫
Γ
η(x1, . . . , xn),
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2 F. BRUNAULT

where η is a differential (n − 1)-form on the zero locus VP of P in (C×)n, and Γ is the (n − 1)-
dimensional Deninger chain,

Γ = {(x1, . . . , xn) ∈ VP ∶ ∣x1∣ = ⋯ = ∣xn−1∣ = 1, ∣xn∣ ≥ 1},
endowed with the orientation coming from that of T n−1. We make here all necessary assumptions
for this integral to make sense [13, Assumptions 3.2], in particular Γ must avoid the singular
points of VP .

Assume now that Γ is closed. Then (3) can be given a cohomological interpretation, since
the class of η in de Rham cohomology is the image under the Beilinson regulator map of the
cup-product {x1, . . . , xn} in the motivic cohomology group Hn

M(VP ,Q(n)). This situation is
favourable and under certain conditions, the Beilinson conjectures predict a link between m(P )
and some L-value associated to VP . The identity (2) is an example of this phenomenon (in
reality, in this case the path Γ is not closed, but symmetries can be used to “close the path”).

A more mysterious situation is when the form η is exact, in which case we say P is exact.
Stokes’s formula reduces the Mahler measure m(P ) to an (n− 2)-dimensional integral over the
boundary ∂Γ, but Deninger’s theory does not provide an intrinsic cohomological interpretation
of this integral. Maillot suggested in 2003 that, in the exact case, m(P ) should be related to
the cohomology of the variety

WP ∶ P (x1, . . . , xn) = P( 1

x1

, . . . ,
1

xn
) = 0.

What makes it plausible is that ∂Γ is contained in WP , because VP ∩ T n = WP ∩ T n. The
relevant motivic cohomology group is now Hn−1

M (WP ,Q(n)), which is harder to deal with, as
we cannot use cup-products. The identities (1) are of this type. For example, the polynomial

1+x+y leads to the algebraic K-group K3(Q(
√
−3)), which is known to have rank 1 by Borel’s

theorem. In general, motivic cohomology H i
M(⋅,Q(n)) with i ≠ n makes it more difficult to

handle the Mahler measure.
Following Maillot’s insight, Boyd and Rodriguez Villegas discovered in 2003 several identities

involving 3-variable exact polynomials [6, 3, 4]. One example is:

Conjecture 1 (Boyd and Rodriguez Villegas [3]). We have the equality

(4) m((1 + x)(1 + y) + z) ?= −2L′(E,−1),
where E ∶ (1 + x)(1 + y)(1 + 1

x)(1 +
1
y) = 1 is an elliptic curve of conductor 15.

Here E arises as the Maillot variety WP of P = (1 + x)(1 + y) + z. The first result towards
Conjecture 1 was obtained by Laĺın [21], who related the Mahler measure of P to the regulator
of a cocycle in the Goncharov complex Γ(E,3) (see Section 3 for the definition of this complex).
Let us write γE = ∂Γ for the boundary of Deninger’s chain Γ; this is a closed path in E.

Theorem 2 (Laĺın). We have m(P ) = 1
4π2 ∫γE r3(2)(ξE), where ξE is the class of the cocycle

{−x}2 ⊗ y − {−y}2 ⊗ x in Γ(E,3), and r3(2) is the Goncharov regulator map.

In essence, Laĺın’s theorem reduces Conjecture 1 to the Beilinson conjecture for L′(E,−1).
In this article, we compute the above Goncharov regulator, leading to the following theorem.

Theorem 3. The Boyd and Rodriguez Villegas conjecture (4) is true.

Another fascinating conjecture by Rodriguez Villegas concerns the Mahler measure of the
polynomials 1 + x1 + . . . + xn for n = 4 and n = 5. These polynomials are also exact and their
Mahler measures are expected to involve L-values of cusp forms of weight 3 and 4, respectively
[10, Section 6.2]. Partial results have been obtained by Shinder and Vlasenko [26]. Here is a
similar identity that we found recently:

m((1 + x)(1 + y)(1 + z) + t) ?= −6L′(f7,−1) − 48

7
ζ ′(−2),

where f7(τ) = η(τ)3η(7τ)3 is the unique CM newform of weight 3 and level 7.
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The main ingredient in the proof of Theorem 3 is the computation by Zudilin and the author
[11] of the Goncharov regulator of explicit classes ξ1(a, b) in the motivic cohomology of the
modular curve Y1(N), which were introduced in [8]. A key fact here is that E is isomorphic
to the modular curve X1(15), something we make precise in Section 2. In Section 3, we recall
Goncharov’s theory of polylogarithmic complexes in weight 2 and 3 and, for modular curves, we
define subcomplexes built out of modular units. These complexes are amenable to computation,
and we partly implemented the weight 3 complex in PARI/GP [23]; the scripts are available at
[9]. In Sections 4 and 5, we express Laĺın’s class ξE and the path γE in purely modular terms.
The final computation is performed in Section 6, using the results of [11]. In the appendix,
we give tables of (conjectural) identities relating 3-variable Mahler measures and L(E,3) for a
number of elliptic curves E over Q.

Acknowledgements. I am grateful to Matilde Laĺın, Riccardo Pengo, Wadim Zudilin and
the International Groupe de travail on differential equations in Paris for exchanges which have
been helpful in several parts of this paper. I would also like to thank Berend Ringeling for
checking numerically several Mahler measure identities from the appendix.

2. The modular parametrisation

Consider the polynomial P (x, y, z) = (1+x)(1+ y)+ z. We keep the same notations as in the
introduction, so that the Maillot variety WP in (C×)3 is defined as

WP ∶
⎧⎪⎪⎨⎪⎪⎩

(1 + x)(1 + y) + z = 0,

(1 + 1
x)(1 +

1
y) +

1
z = 0.

Eliminating z, we see that WP is isomorphic to the smooth curve in (C×)2 given by

(5) C ∶ (1 + x)2(1 + y)2 = xy.
Let E denote the closure of C in P1(C) × P1(C). We view E as a smooth projective curve
defined over Q. It turns out that E is isomorphic to an elliptic curve of conductor 15 [21, (4.2)].
The PARI/GP commands

E = ellfromeqn((1+x)^2*(1+y)^2-x*y)

ellidentify(ellinit(E))

confirm that E is isomorphic to the elliptic curve with Cremona label 15a8. On the other hand,
we know that the modular curve X1(15) is isomorphic to 15a8, since they are both elliptic curves
of conductor 15, and the period lattice of X1(15) can be computed using modular symbols,
agreeing with that of 15a8. Note that Stevens’s conjecture [28, Conjecture II] is known in this
case by [28, Section 7].

In Proposition 4 below we give an explicit isomorphism X1(15) ≅ E (note that the proof
does not rely on floating point computations). An important feature of this parametrisation is
that the functions −x and −y correspond to modular units on X1(15). This is crucially used in
Section 4 to relate Laĺın’s class ξE and the modular classes ξ1(a, b) from [8, Section 6]. Even
more, we need the functions −x and −y to be of the form u1(a, b, c, d), a class of modular units
introduced in [8] and whose definition we now recall.

Let N ≥ 1 be an integer. For any a = (a1, a2) ∈ (Z/NZ)2/ ± 1, a ≠ (0,0), we define

℘a(τ) = ℘(τ ;
a1τ + a2

N
) (τ ∈ C, Im(τ) > 0),

where ℘(τ ; z) is the Weierstraß function. The function ℘a is a modular form of weight 2 on
the principal congruence group Γ(N). For any distinct elements a,b,c,d of (Z/NZ)2/ ± 1, we
then define u(a,b,c,d) as the cross-ratio [℘a,℘b,℘c,℘d], with the convention ℘0 =∞. This is
a modular unit on Γ(N). For distinct elements a, b, c, d of (Z/NZ)/ ± 1, we use the shortcut
u1(a, b, c, d) = u((0, a), (0, b), (0, c), (0, d)), which is a modular unit on Y1(N) defined over Q.
The properties of u(a,b,c,d) needed in this article can be found in [8, Section 3].

In the following proposition, we take N = 15.
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Proposition 4. The curve E is parametrised by the following modular units on Γ1(15):

(6) x(τ) = −u1(1,2,3,7)(τ), y(τ) = −u1(2,4,6,1)(τ).

Moreover, the map τ ↦ (x(τ), y(τ)) induces an isomorphism ϕ ∶X1(15) ≅Ð→ E defined over Q.

Proof. Let us show that u = −u1(1,2,3,7) and v = −u1(2,4,6,1) satisfy (1+u)2(1+v)2 = uv. For
this we may replace u and v by their transforms under the Atkin-Lehner involution W15 ∶ τ ↦
−1/15τ on X1(15), as this does not affect the equation. The units ũ = u ○W15 and ṽ = v ○W15

can be expressed in terms of Siegel units of level 15 using [8, eq. (6)]:

ũ = − g̃2g̃4

g̃1g̃7

= −1 − q + q4 + q5 − q7 +O(q8),

ṽ = − g̃4g̃7

g̃1g̃2

= −q−2 − q−1 − 2 − 2q − 2q2 − 2q3 − 2q4 +O(q5)
(7)

where, for a ∈ Z/NZ, a ≠ 0,

g̃a(τ) = qNB2(â/N)/2 ∏
n≥1

n≡a mod N

(1 − qn) ∏
n≥1

n≡−a mod N

(1 − qn) (q = e2πiτ).

Here B2(t) = t2 − t + 1
6 is the Bernoulli polynomial and â is the lift of a in {1, . . . ,N − 1}.

We are now going to compute the divisors of ũ and ṽ. To this end, we recall the description
of the cusps of the modular curve X1(N). There is a bijection [14, Example 9.1.3]

{cusps of X1(N)(C)} ≅Ð→ {(c, d) ∶ c ∈ Z/NZ, d ∈ (Z/(c,N)Z)×}/ ± 1

which associates to a cusp γ∞ with γ ∈ SL2(Z), the class of the bottom row (c, d) of γ.
Moreover, by [14, Section 9.3, p. 79], the Galois action on the cusps is described as follows:
for σ ∈ Aut(C), we have σ ⋅ (c, d) = (c, χ(σ)d), where χ(σ) ∈ (Z/NZ)× is characterised by
σ(e2πi/N) = e2πiχ(σ)/N . As a consequence, a complete set of representatives of the Galois orbits
is provided by the cusps 1

k = ( 1 0
k 1 )∞ with 0 ≤ k ≤ ⌊N2 ⌋.

Now we can compute the divisor of u1(a, b, c, d) for distinct a, b, c, d ∈ (Z/NZ)/±1 as follows.
Since this unit is defined over Q, it suffices to determine its order of vanishing at the cusps 1/k
just described. By [8, Proposition 3.6], we have

u1(a, b, c, d)∣ (
1 0
k 1

) = u((ka, a), (kb, b), (kc, c), (kd, d)).

The order of vanishing of this unit at ∞ is deduced from the expression of u(a,b,c,d) in terms
of Siegel units [8, Proposition 3.7], taking into account that it should be computed with respect
to the uniformising parameter q(k,N)/N . Applying this in our situation, we obtain

div(u) = −2[1/2] + 2[1/7], div(v) = −2[0] + 2[1/4].
These cusps are rational and we see that F = (1+u)2(1+v)2−uv has poles of order at most 4 at
0 and 1/2, and is regular elsewhere. Moreover, we compute from (7) that F (−1/15τ) = O(q5)
when Im(τ)→ +∞. Therefore F vanishes at order ≥ 5 at 0, and consequently F = 0.

It remains to show that ϕ ∶X1(15)→ E is an isomorphism. Since X1(15) and E are smooth,
it suffices to check that ϕ is a birational map. We know that u has degree 2 as a function on
X1(15), while x has degree 2 as a function on E. It follows that ϕ is birational. �

3. The weight 3 complex of the modular curve Y1(N)

Goncharov has defined in [16] polylogarithmic complexes which are expected to compute the
motivic cohomology of arbitrary fields. We define in this section a modular complex CN(3),
which is a subcomplex of the weight 3 polylogarithmic complex attached to the modular curve
Y1(N). It is generated (in a suitable sense) by the Siegel units and the modular units u1(a, b, c, d)
from Section 2. Our construction can be seen as a weight 3 analogue of the weight 2 Euler
complex E●

N introduced by Goncharov in [18]. We also explain how to manipulate CN(3) using
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PARI/GP. The constructions below work with no more effort for the modular curve Y (N) with
full level N structure, using parameters in (Z/NZ)2 instead of Z/NZ. However we have not
implemented it, as the case of Y1(N) suffices for our application.

We briefly recall Goncharov’s polylogarithmic complexes in weight 2 and 3. Let F be any
field. Define B2(F ) to be the quotient of Q[F ×/{1}] by the subspace generated by the 5-term
relations [16, Section 1.8]. The group B3(F ) is defined similarly as the quotient of Q[F ×/{1}]
by explicit relations [16, Section 1.8], whose definition will not be needed here. For x ∈ F ×/{1}
and n ∈ {2,3}, we denote by {x}n the image of the generator [x] in Bn(F ). Then the complex
Γ(F,2), in degrees 1 and 2, is defined as

Γ(F,2) ∶
B2(F ) Λ2F × ⊗Q

{x}2 (1 − x) ∧ x,

and the complex Γ(F,3), in degrees 1 to 3, is defined as

Γ(F,3) ∶

B3(F ) B2(F )⊗ F × ⊗Q Λ3F × ⊗Q

{x}3 {x}2 ⊗ x

{x}2 ⊗ y (1 − x) ∧ x ∧ y.

Goncharov conjectures that H i(Γ(F,n)) is isomorphic to H i
M(F,Q(n)). In the case F is the

function field of a smooth curve Y over a field k, these complexes are endowed with residue
maps Γ(F,n) → Γ(k(x), n − 1)[−1] for every closed point x ∈ Y . Goncharov then defines the
complex Γ(Y,n) as the simple of the morphism of complexes Γ(F,n)→⊕x∈Y Γ(k(x), n−1)[−1],
and he conjectures that H i(Γ(Y,n)) is isomorphic to H i

M(Y,Q(n)) [16, Section 1.15(b)].
We will consider these complexes in the case Y is the modular curve Y1(N), and F is its

function field. We will see, in particular, that they have natural subcomplexes built out of
modular units.

Definition 5. Fix an integer N ≥ 1. We introduce the following sets of modular units on
Y1(N):

● U1 consists of the Siegel units g0,a, a ∈ (Z/NZ)/{0}, in O(Y1(N))× ⊗Q;
● U2 consists of the modular units u1(a, b, c, d) in O(Y1(N))×, where a, b, c, d are distinct

elements of (Z/NZ)/ ± 1.

Moreover, we associate to them the following spaces:

● ⟨U1⟩ is the Q-span of U1 in F × ⊗Q;
● ⟨U2⟩ is the Q-span of {u}2, u ∈ U2, in B2(F );
● ⟨U2⟩3 is the Q-span of {u}3, u ∈ U2, in B3(F ).

With these definitions, the weight 2 modular complex can be defined as

CN(2) ∶ ⟨U2⟩ Λ2⟨U1⟩, {u}2 ↦ (1 − u) ∧ u.

This complex is well-defined because U2 is contained in ⟨U1⟩ by [8, Proposition 3.8], and U2 is
stable under u↦ 1−u from the definition of u1(a, b, c, d) as a cross-ratio. It would be interesting
to compare CN(2) with the Euler complex E●

N defined by Goncharov in [18, Section 2.5].
We are now ready to introduce a version of the weight 3 modular complex.

Definition 6. The complex CN(3) is the following subcomplex of Γ(F,3) in degrees 1 to 3:

CN(3) ∶ ⟨U2⟩3 ⟨U2⟩⊗ ⟨U1⟩ Λ3⟨U1⟩.

We warn the reader that the group ⟨U2⟩3 in degree 1 may not be the right one. Indeed, the
unit u1(a, b, c, d) is by definition a cross-ratio, hence is a natural argument for the dilogarithm,
but a priori not for the trilogarithm. However, the complex CN(3) will suffice for our needs.
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Since the construction of CN(3) involves only modular units, the elements of ⟨U2⟩3, ⟨U2⟩ ⊗
⟨U1⟩ and Λ3⟨U1⟩ have trivial residues at every point of Y1(N). In particular, CN(3) embeds
as a subcomplex of Γ(Y1(N),3), and we have natural maps in cohomology H i(CN(3)) →
H i(Γ(Y1(N),3)) in degree i ∈ {1,2,3}. The case of interest to us is i = 2.

We have implemented part of the complex CN(3) in PARI/GP, with the specific aim of
comparing cocycles in degree 2. Firstly, the following lemma gives a natural way to represent
modular units in ⟨U1⟩.

Lemma 7. A basis of ⟨U1⟩ is given by the Siegel units g0,a with 1 ≤ a ≤ ⌊N/2⌋.

Proof. We have g0,−a = g0,a in F × ⊗ Q, and by [29], the units g0,a with 1 ≤ a ≤ ⌊N/2⌋ form a
basis of (O(Y1(N))×/Q×)⊗Q. �

Each unit in U2 can be written in the basis of Lemma 7 using [8, Proposition 3.8]. Note that
no computation of divisor is needed here, thanks to this choice of basis. We actually need to
determine U2 as a set, and so to check whether two given units u1(a, b, c, d) and u1(a′, b′, c′, d′)
are equal. We remark that the leading coefficient of u1(a, b, c, d) at the cusp 0 is equal to 1 by
the discussion after [8, Proposition 3.8]. Combining this with Lemma 7, we see that two such
units are equal if and only if their coordinates in the basis of ⟨U1⟩ are equal.

We now consider the free vector space Q[U2], and we quotient it by the following subspaces,
encoding the relations between the symbols {u1(a, b, c, d)}2. From the definition of u1(a, b, c, d)
as a cross-ratio, the symmetric group S4 acts on U2 by permuting the indices, and this action
factors through S3. Moreover, because of the relations {1/u}2 = {1 − u}2 = −{u}2 in B2(F ) [30,
VI, Lemma 5.4], we have the antisymmetry property:

(8) {u1(aσ(1), aσ(2), aσ(3), aσ(4))}2 = ε(σ){u(a1, a2, a3, a4)}2 (σ ∈ S4),

for all distinct parameters ai in (Z/NZ)/ ± 1, where ε(σ) = ±1 is the signature. It thus suffices
to consider those parameters satisfying 0 ≤ a < b < c < d ≤ ⌊N/2⌋. The elements {u1(a, b, c, d)}2

are also subject to the 5-term relations [8, Lemma 4.7]:

(9) ∑
j∈Z/5Z

{u1(aj, aj+1, aj+2, aj+3)}2 = 0 in B2(F ),

for any family (aj)j∈Z/5Z of distinct elements of (Z/NZ)/ ± 1. We denote by R2 the subspace
of Q[U2] generated by the antisymmetry relations (8) and the 5-term relations (9). Finally, we
denote by Q the subspace of Q[U2]⊗ ⟨U1⟩ generated by the symbols [u]⊗u with u ∈ U2, which
correspond to the degree 2 coboundaries in CN(3).

In practice, in order to reduce the size of the objects, we only compute:

● a set U ′
2 of representatives of the quotient U2/S3;

● the subspace R′
2 of Q[U ′

2] generated by the 5-term relations;
● the subspace Q′ of Q[U ′

2]⊗ ⟨U1⟩ of degree 2 coboundaries.

The corresponding scripts are contained in the file K4-modular-complex.gp from [9]. They
can be applied in the following way. Say we have two degree 2 cocycles ξ and ξ′ in Γ(Y1(N),3).
Assume that they are both linear combinations of symbols {u1(a, b, c, d)}2⊗ g0,x. We may then
represent ξ − ξ′ by an element of Q[U2]⊗ ⟨U1⟩, and we check whether this element belongs to
the subspace R2⊗ ⟨U1⟩+Q. If so, then we can deduce that ξ and ξ′ are cohomologous, and thus

have the same image in K
(3)
4 (Y1(N)) under De Jeu’s map [8, Theorems 5.3 and 5.4]. If ξ − ξ′

does not belong to the subspace, we cannot conclude anything, as R2 and Q may not contain
all the relations in the respective groups.

The linear system involved in the above computation has size O(N5) ×O(N6). Experimen-
tally, we have found that the cardinality of U2 for N = p prime is (p2 − 1)(p2 − 25)/192, which

is smaller by a factor of about 3 than what we could expect, namely 6((p+1)/2
4

). Furthermore, it
seems that the dimension of Q[U2]/R2 is equal to (p − 1)(p − 5)/12, which is also the number
of triples (a, b, c) with 0 < a < b < c < p and a + b + c ≡ 0 mod p, where 2b < p; see [22, Sequence
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A242090]. If true, there should be a way to bypass the step of quotienting by R2. This would
result in a much smaller linear system for the comparison of cocycles.

4. The Laĺın class

Recall that Laĺın’s theorem (Theorem 2) expresses the Mahler measure of (1 + x)(1 + y) + z
as the regulator integral of the following class in the weight 3 complex of E:

ξE = {−x}2 ⊗ y − {−y}2 ⊗ x.

Our aim in this section is to relate ξE to the classes ξ1(a, b) on X1(15), which were introduced
in [8, Section 6]. This is a purely algebraic computation making use of our implementation of
the weight 3 complex of X1(15) explained in Section 3.

We first pull back ξE to the modular curve X1(15) using the modular parametrisation ϕ.
Using Proposition 4 and its proof, we have in the degree 2 cohomology of Γ(Y1(15),3)

(10) ϕ∗ξE = {u1(1,2,3,7)}2 ⊗ (g4g7

g1g2

) − {u1(2,4,6,1)}2 ⊗ (g2g4

g1g7

),

with the shortcut gk = g0,k for k ∈ Z/15Z. Let us denote by ξ̃15 the cocycle in the right-hand

side of (10). Laĺın has shown that the cocycle ξ̃E has trivial residues [21, Section 4.1, p. 213],

hence ξ̃15 has trivial residues at the cusps.
The next task is to express ξ̃15 in terms of the cocycles ξ̃1(a, b) with a, b ∈ Z/15Z. We do

this using the modular complex C15(3) from Section 3. Using the function find_xi1ab from

K4-modular-complex.gp [9], we detect the following simple expression for ξ̃15.

Proposition 8. We have the equality of cocycles ξ̃15 = −20ξ̃1(1,4) + Ξ, where Ξ is a Q-linear
combination of coboundaries {u}2 ⊗ u with u ∈ U2. In particular, we have ϕ∗(ξE) = −20ξ1(1,4).

5. The integration path

In Theorem 2, the integration path γE = ∂Γ is a closed path in E, and we would like to express
it in terms of modular symbols on X1(15), via the modular parametrisation of Section 2. This is
a crucial ingredient in the computation of the regulator integral on E. We will do this carefully
in order to certify the relation (Proposition 9).

Laĺın [21, Section 4.1] has shown that γE is a generator of H1(E,Z)+, where (⋅)+ de-
notes the subgroup of invariants under complex conjugation. So we first search for a gen-
erator γ15 of H1(X1(15),Z)+. We do this with the help of SageMath [25]; see the notebook
ModularSymbolGamma15.ipynb in [9]. For any g ∈ SL2(Z), denote by [g] = {g0, g∞} the as-
sociated Manin symbol, viewed in the relative homology group H1(X1(15),{cusps},Z). We
obtain

(11) γ15 = 2 [(1 9
2 19

)] − [(0 −1
1 11

)] − [(0 −1
1 4

)] + 2 [(0 −1
1 2

)] .

We therefore have γE = ±ϕ∗(γ15). The precise sign is not strictly needed in what follows, as
the Mahler measure is a positive real number and the final identity will fix the sign for us.
However, we want to sketch a method to determine the sign rigorously, as it could be useful in
more general situations, where the integration path γ need not be a generator of the homology
group. In such a scenario, one wishes to ascertain an identity of the form γ = c ⋅ ϕ∗(γ0), where
ϕ is the modular parametrisation, γ0 is a modular symbol, and c ∈ Z is to be determined.

The idea is to integrate an invariant differential form over the cycles to be compared. By
[21, Section 4.1], an invariant differential form on E is given by

ωE ∶=
−dx

2(x + 1)2(y + 1) − x
.

https://oeis.org/A242090
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Using (7), we can compute the Fourier expansion of the pull-back of ωE to X1(15):

W ∗
15(ϕ∗ωE) = −(q − q2 − q3 +O(q4))dq

q
.

A basis of Ω1(X1(15)) is given by ω15 ∶= 2πif15(τ)dτ , where f15 = q − q2 − q3 + O(q4) is the
newform of weight 2 on Γ1(15). Therefore W ∗

15(ϕ∗ωE) = −ω15. Moreover, the involution W15

has a fixed point τ = i/
√

15 in the upper half-plane, so it must act on the complex torus
underlying X1(15) as z ↦ z0 − z for some z0 (it cannot be a translation). It follows that W15

acts as −1 on Ω1(X1(15)), and we conclude that ϕ∗ωE = ω15.
Now let us integrate the forms ωE and ω15, and compare the signs of the integrals. Following

[21, Section 4.1], the path γE is described using polar coordinates x = eiθ, y = eiψ with θ,ψ ∈
[−π,π], and is given by the equation cos(θ/2) cos(ψ/2) = 1/4. Since the orientation of the
Deninger chain Γ is induced by the product orientation of [−π,π]2, its boundary γE is oriented
counterclockwise in this square (see Figure 1). We can use the symmetries of γE to reduce the
integration path. For any automorphism σ of E defined over R, we have σ∗ωE = ε(σ)ωE, where
ε(σ) = 1 if σ preserves the orientation of E(R), and ε(σ) = −1 otherwise. Equivalently, ε(σ) = 1
if and only if σ = id or σ has no fixed point. Applying this with the symmetries (x, y)↦ (1/x, y)
and (x, y) ↦ (x,1/y), which reverse the orientation of E(R) as well as that of γE, we obtain
that ∫γE ωE is 4 times the integral over the path γ pictured in Figure 1.

Figure 1. The Deninger chain Γ, its boundary γE and the path γ.

After some computation, we get

(12) ∫
γE
ωE = 4∫

γ
ωE = 4∫

2 arccos(1/4)

0

dθ√
16 cos2(θ/2) − 1

> 0.

Now with the modular curve X1(15), we wish to determine the sign of ∫γ15 ω15. For this, con-

sider the linear map H1(X1(15),{cusps},Z)→H1(X1(15),Q) provided by the Manin-Drinfeld
theorem [15]. Again with SageMath, we compute that the image of {0,∞} is equal to − 1

16γ15

(see ModularSymbolGamma15.ipynb [9]). It follows that

(13) ∫
γ15
ω15 = −16∫

∞

0
ω15 = 16L(f15,1) > 0.

That L(f15,1) is positive can be ascertained witout much effort using the rapidly convergent

series L(f15,1) = 2∑∞
n=1 ane

−2πn/
√

15/n [12, Proposition 7.5.8]. Namely, one may use the bound
∣an∣ ≤ n for n ≥ 1, which follows from the Hasse bound on E and the inspection of the coefficients
an for small n. Combining (12) and

∫
ϕ∗(γ15)

ωE = ∫
γ15
ϕ∗ωE = ∫

γ15
ω15 > 0,

we come to the following conclusion.



ON THE MAHLER MEASURE OF (1 + x)(1 + y) + z 9

Proposition 9. We have γE = ϕ∗(γ15).

To be fully accurate (and in order to handle more general situations), ascertaining this
equality requires to compute numerically the integrals (12) and (13). And since the ratio
of these integrals is known to be an integer, it suffices to compute them with rigorous error
bounds. The integral (12) is a complete elliptic integral which can be dealt with the Arb library
[19, 20]. On the other hand, (13) involves integrating a modular form over a modular symbol.
We can do it in the present situation thanks to the rapidly convergent series. In general,
although PARI/GP [23] and Magma [2] can evaluate such integrals efficiently, we are not aware
of implementations that prove error bounds for them.

6. Final computation

We denote by r3(2) the Goncharov regulator map in degree 2 for the weight 3 complex of
a smooth complex curve [17]. It sends a degree 2 cocycle to an explicit closed 1-form on this
curve. By Proposition 9, we have

(14) ∫
γE
r3(2)(ξE) = ∫

ϕ∗(γ15)
r3(2)(ξE) = ∫

γ15
r3(2)(ϕ∗ξE) = ∫

γ15
r3(2)(ξ̃15).

Note that the differential form r3(2)(ξ̃15) is defined only on the open modular curve Y1(15).
However, it has trivial residues at the cusps since the same is true for ξ̃15, see Section 4. We may
therefore compute the integral by choosing the representative of γ15 given by (11). Note that
this integral involves cusps but it is absolutely convergent by [8, Corollary 7.3]. The technical
details of this procedure are explained at the end of [8, Section 8].

Lemma 10. Let u be a modular unit on X1(N) such that 1 − u is also a modular unit. For

any two cusps α ≠ β in P1(Q), we have ∫
β

α r3(2)({u}2 ⊗ u) = L̂3(u(β)) − L̂3(u(α)), where

L̂3 ∶ P1(C)→R is the single-valued trilogarithm defined in [17, Section 2.1].

Proof. By [17, Theorem 2.2], we have

r3(2)({u}2 ⊗ u) = r3(2)(δ({u}3)) = dr3(1)({u}3) = dL̂3(u). �

Since the path γ15 is closed, Lemma 10 implies that ∫γ15 r3(2)({u}2 ⊗ u) = 0 for any u ∈ U2.

Using Proposition 8, the computation (14) continues as

(15) ∫
γE
r3(2)(ξE) = −20∫

γ15
r3(2)(ξ̃1(1,4)).

We are now in position to apply the main result of [11], which computes

G(a,b) ∶= ∫
∞

0
r3(2)(ξ̃(a,b)) (a,b ∈ (Z/NZ)2),

under the assumption that the coordinates of a, b and a + b are non-zero. We may integrate
along Manin symbols [g] = {g0, g∞} as well, noting that

∫
g∞

g0
r3(2)(ξ̃(a,b)) = ∫

∞

0
r3(2)(ξ̃(ag,bg)) = G(ag,bg) (g ∈ SL2(Z)).

Recall also that ξ̃1(a, b) = ξ̃((0, a), (0, b)). Expanding (15), we get

∫
γE
r3(2)(ξE) = −20(2G((2,4), (8,1)) − G((1,11), (4,14)) − G((1,4), (4,1)) + 2G((1,2), (4,8))).

The assumption on the coordinates of the parameters is satisfied, and [11, Theorem 1] gives

(16) ∫
γE
r3(2)(ξE) = π2L′(F,−1)

with

F = −8(G2,1G8,−4 +G2,−1G8,4) + 4(G1,14G4,−11 +G1,−14G4,11)
+ 4(G1,1G4,−4 +G1,−1G4,4) − 8(G1,8G4,−2 +G1,−8G4,2).

(17)
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Here Ga,b is a shortcut for the Eisenstein series G
(1);15
a,b defined in [11, Introduction] for arbitrary

level N by

G
(1);N
a,b (τ) = a0(G(1);Na,b ) + ∑

m,n≥1
(m,n)≡(a,b)mod N

qmn/N − ∑
m,n≥1

(m,n)≡−(a,b)mod N

qmn/N (a, b ∈ Z/NZ).

In our situation the indices a, b are non-zero modulo 15, so that the constant terms a0(Ga,b)
vanish. The functions Ga,b are Eisenstein series of weight 1 on Γ(15). Note that the products
GxGy appearing in (17) are actually power series in q, because x1x2 +y1y2 is divisible by 15 for
each such product. It follows that F belongs to M2(Γ1(15)).

We have written a script K4-reg-Lvalue.gp [9] to automate the application of [11, Theorem
1] and compute the q-expansion of the resulting modular form to arbitrary precision. We find
that F = −8f15+O(q21), where f15 is the newform associated to E. Moreover, the Sturm bound
for the space M2(Γ1(15)) is equal to 16 (apply [27, Sturm’s theorem, 9.4.1.2] with the group
Γ = ±Γ1(15), which has index 96 in SL2(Z)). This means that if two modular forms F1 and F2

in this space satisfy F1 = F2 +O(q17), then F1 = F2. In our situation, this allows us to certify
that F = −8f15. Using Theorem 2 and (16), the Mahler measure finally equals

m(P ) = 1

4π2 ∫γE
r3(2)(ξE) =

1

4π2
⋅ π2L′(−8f15,−1) = −2L′(E,−1).

This concludes the proof of Theorem 3.

Appendix. Tables of 3-variable Mahler measures

We would like to give here a list of conjectural identities for 3-variable Mahler measures
involving L(E,3) for several elliptic curves E over Q. It is possible that our methods can be
applied to prove at least some of these identities. The success of the approach will depend
very much on the modular parametrisation of the elliptic curve; in our case, Proposition 4 was
crucial. This is similar to what happens for the 2-variable Mahler measures, where the proofs
using the Rogers–Zudilin method require the curve to be parametrised by modular units [10,
Section 8.4 and Chapter 9].

Boyd and Rodriguez Villegas [3] discovered several identities of type m(P (x, y, z)) = r ⋅
L′(E,−1) with r ∈ Q× by looking at polynomials of the form P = A(x) +B(x)y +C(x)z where
A, B, C are products of cyclotomic polynomials. Boyd found further examples in [4, 5]. We
extended Boyd’s search with A, B, C of degree up to 5 and found a few other examples, see
Table 1 below (we do not claim to have spotted all identities for this range of A,B,C). Table
2 displays two Mahler measures which involve a combination of L(E,3) and ζ(3). Note that
ζ(3) terms also appear in [11, Theorem 1].

In the tables below, the curve E is given by its Cremona label, and the integer g is the genus
of the Maillot variety WP (or a component of it) whose Jacobian has E as an isogeny factor.

We also looked at polynomials P (x, y, z) which have degree 1 in each variable x, y, z, and
all of whose coefficients are ±1 (or zero). It seems to be the case that every such polynomial
is exact. The identities found are collected in Table 3. The first entry in this table is not of
this shape but we include it for completeness; it already appears in [10]. Ringeling computed
numerically the Mahler measures in Table 3, and the identities seem to hold to at least 100
digits.

A particular feature of Table 3 is the appearance of the elliptic curve 36a1, which has complex
multiplication. The elliptic curve 450c1 is also the first example with a curve of rank 1.
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