BEILINSON-KATO ELEMENTS IN K,
OF MODULAR CURVES

FRANCOIS BRUNAULT

ABSTRACT. This article investigates explicit linear dependence relations
in the Ks-group of modular curves. In particular, it is shown that the
Beilinson-Kato elements in Ky of the modular curve Y (V) satisfy the
Manin relations when N is not divisible by 3. Similar results are obtained
for the modular curves X;(N) and Xo(N) when N is prime. Finally we
exhibit explicit generators of K5, assuming the Beilinson conjecture.

INTRODUCTION

Let X be a smooth projective curve over Q, and L(h'(X),s) be the
associated L-function. A very special case of Beilinson’s conjectures predicts
that the special value L(h'(X),2) can be expressed in terms of a suitable
regulator map on the algebraic K-group K»(X) (see [8] for a nice overview
and a precise statement of this conjecture). Beilinson proved a part of his
conjecture in the case where X is a modular curve [18]. Beilinson’s work
was also partially anticipated by Bloch, who studied the particular case of
CM elliptic curves [1].

Despite these profound results, the K-group itself remains very myste-
rious. There’s quite an art to constructing special elements in this group
and, as soon as the genus of X is not zero, it is not even known whether
K5(X) ®z Q is a finite dimensional Q-vector space.

I showed in [5] how Beilinson’s theorem can be made explicit in the case
of the modular curve X; (V). This raised the question of determining linear
dependence relations in the group Ky(X;(N)) [5, §8].

The main point of this article is to make these relations explicit. Let
Y (N) be the open modular curve associated to the congruence subgroup

['(N). By taking cup-products of Siegel units, there is a natural map

(1) p: My(Z/NZ) — Ky(Y(N)) ® Q.
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Under the hypothesis that N is not divisible by 3, I show that p satisfies
the Manin relations (Theorem 1.4). This was also proved by Goncharov
9] using a different method, and his proof works for all N. Thus p can be
seen as a Manin symbol (or modular symbol) with values in K>(Y(N)) @ Q.
This result is similar to constructions of Borisov and Gunnells [2, 3] and
Pasol [17] in the case of modular forms. In these works, the product of two
Eisenstein series plays the role of the cup-product.

I then use this result to study the case of the modular curves X;(p)
and Xo(p), where p is prime (Theorems 4.2, 4.4 and 4.8). In particular,
the Beilinson conjecture implies that the elements so constructed span the
vector space Ky(Xo(p))z ® Q, and I determine all the relations between
them.

Some questions would deserve further study. I do not know (even con-
jecturally) whether the image of p spans Ky(Y(N)) ® Q (see Remark 1.7).
In view of the arithmetic applications of Kato’s Euler system [10], it would
be also of interest to describe the action of Hecke correspondences on these

elements, in the spirit of Merel’s results for modular symbols [15].

1. THE BEILINSON-KATO ELEMENTS IN K,

Let us first state some standard facts on modular curves (see [20, 13, 7,
11] for more detailed accounts). Let N > 3 be an integer and Y (N) be
the modular curve classifying elliptic curves E with a level N structure,
that is a basis (e1,es) of E[N] over Z/NZ. The curve Y(N) is a smooth
projective curve defined over Q, whose affine ring O(Y(N)) contains the
cyclotomic field Q(Cy) generated by (y := e*™N. The curve Y (N) is
not geometrically connected. Indeed, there is an isomorphism Y (N)(C) &
(Z/NZ)*x(T'(N)\'H), where H is the Poincaré upper half-plane and I'(N) C

SLs(Z) is the congruence subgroup of matrices satisfying

(c0)=(01) tmoam

For any z € H and X € Q, let us set ¢ = %™ and ¢ = 2™,

The curve Y(N) has a smooth compactification X (V) over Q which is
obtained by adding on the cusps. The function field of X (N) will be referred
to by Q(X(V)). It is naturally embedded into the function field of the
compactification of I'(N)\'H. There is also a natural inclusion of Q(X(V))
into the field of formal Laurent series Q((x)((¢*/")), by looking at the g-

expansion.

1.1. Siegel units. Let us give the definition of Siegel units (see [6, 10, 12]
for further reference). The group of modular units of X (N) will be denoted
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by O*(Y(N)). In order to avoid torsion problems, Siegel units will always
be considered in the Q-vector space O*(Y (N)) ®z Q.
Let By(X) = X? — X + ¢ be the second Bernoulli polynomial.

Definition 1.1. For any («, 8) € (Z/NZ)? — {(0,0)} let us define

(2 gaplz) =2 ] (1 - qnqa/NQﬁv) 11 (1 — q"q’a/NCJGﬁ)

n>0 n>1

where a € Z is the unique representative of « satisfying 0 < a < N. By

convention gpo = 1.

Thus g, 5 is a holomorphic function on H. It is known that some power of
Ja,p (in fact g}%)) is modular with respect to I'(V), and lies in O*(Y'(N)) [13,
Chap 19 §2]. Therefore g, g is well-defined as an element of O*(Y'(N)) ® Q.

Let G be the group GLo(Z/NZ). It acts from the left on Y (N), by the

rule

(3) (a 2)-(E,el,eg):(E,ael—l—be2,cel—|—d62) ((Cc‘ Z)ea).

c

This induces on O* (Y (N)) ® Q a right action of G. It turns out that G
acts on the set of Siegel units. More precisely, we have [10, Lemma 1.7]

(4) 9o 57 = 9apyr (v €G).

Since —1 € G acts trivially on Y (N), we get the relation g_, 3 = g g. Ku-
bert and Lang proved that the Siegel units of level N generate O*(Y (N))®Q
[12].

1.2. The construction of Beilinson and Kato. Let us consider the
Quillen K-group K»(Y(N)), which enjoys a right action of G by functo-
riality. Beilinson constructed special elements in it using cup-products of

modular units. This motivates the following definition.

Definition 1.2. Let p be the map

(5) p: My(Z/NZ) — Ky(Y(N)) ®z Q
(Z ’f]) = {gs,tagu,v}'

Remark 1.3. Colmez [6, 1.4.2] constructed an algebraic distribution on
My(Q ® 2) with values in Ky, which generalizes Definition 1.2. 1 shall
not use this more conceptual point of view in what follows.
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. -1 0 0 —1 0 —1
Let ¢ (resp. o, 7) be the image of ( 0 1) (resp. (1 0 ), (1 _1>)
in G.

Theorem 1.4. The elements p(M) satisfy the following relations

(6)
peM)=p(M)  and  p(M)+p(oM)=0 (M € My(Z/NZ)).

Let us suppose further that 3 does not divide N. Then we have

(7) p(M) + p(rM) + p(r*M) =0 (M € My(Z/NZ)).

Remark 1.5. The Manin relations (6) and (7) have also been established
by Goncharov [9, Corollary 2.17], without any assumption on the level N,
using a different method.

Remark 1.6. The Manin relations (6) and (7) are consistent with the formula
of Kato [10, Thm 2.6] giving the regulator of zy = p(I). The element zy
plays a prominent role in the construction of Kato’s Euler system [10, §5].

Remark 1.7. It would be interesting to know whether the elements p(M)
span the Q-vector space Ky(Y(N)) ® Q. A related question is to deter-
mine whether K5(Y(N)) is generated by the symbols {u,v} with u,v €
O*(Y(N)). Since K3(Y(N)) ® Q is in general not known to be finite-
dimensional, it is more reasonable to ask whether the Manin relations make
up a complete set of relations between the elements p(M). A natural way to
tackle this problem would be to compute the Beilinson regulator of p(M).
However, the formula of Kato [10, Thm 2.6] seems to indicate that in general

p(G) cannot span Ky(Y(N)) ® Q.

Proposition 1.8. For any M € My(Z/NZ) the relations (6) hold.

Proof. Let M = (Z z> We have

p(a’-jM) = {gfs,fta gu,v} = {gs,t> gu,v} - P(M)
and p(oM) = {g v, v, gs.t} = —{Gsts Gup} = —p(M),

because of the relation g_s _; = gs; and the antisymmetry of the Milnor
symbol. O

The relation (7) can be seen as an analogue of the Manin 3-term relation
for modular symbols. The proof of this relation lies deeper, and will be

given in the next two sections.
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2. WEIERSTRASS UNITS

For any z € H, we let p(z,u) be the Weierstrass p-function associated to
the lattice A, = Zz + 7Z C C. It is defined for u € C — A,.

Definition 2.1. For any a = (a1, as) € (Z/NZ)* — {(0,0)}, let us define

) ou(2) = oz D2 %)

where a; and as are any representatives of a; and ay in Z.

(z € H),

We use these functions to construct the Weierstrass units. This classical
construction is undertaken in [12, Chap 2 §6]. We give some details for the

sake of completeness.

Theorem ([12]). Let a,b,c,d be four nonzero elements of (Z/NZ)* satis-
fying a # +b and ¢ # +d. The function

$a — b
9
( ) Pec — ©d
defines an element of O*(Y (N)).

Proof. The function g, is holomorphic on H and defines a modular form
of weight 2 for the group I'(IV). For any z € H, we have p,(z) = @u(2)
if and only if a = +b. Thus (p, — @)/ (pe — pa) is well-defined and does
not vanish on H. The fact that it belongs to Q(X(N)) is a consequence of
results of Shimura ([19, §4], [20, Chap 6]). It essentially amounts to express
(90 — ©0)/ (e — ©a) in terms of the z-coordinates of N-torsion points of the
universal elliptic curve over Y (N). The fact that (9) is a modular unit is
proved in [12, Chap 2 Thm 6.1]. O

Now we express the Weierstrass units in terms of Siegel units. Once again
this is done in [12, Chap 2 §6].

Proposition 2.2. Let a, b, c,d be four nonzero elements of (Z/NZ)? satisfy-
ing a # +b and ¢ # +d. Then the following identity holds in O*(Y (N))® Q

10 ©a— b GatbGa—b  9oUg
(10) — = = :
Qe — $d 9a9y 9et+dY9e—d

Proof. We start with the following classical formula from the theory of el-
liptic functions [13, Chap 18 Thm 2]

o(z,u+v)o(z,u —v)

1) plzu) —o(z,0) = = (z € H),

0%(z,u)0?(z,v)
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where o refers to the Weierstrass sigma function. For any (ay,as) € Z2, let

us define in the same way as (8)

Oar.a5(2) = 0(2, %—i_a?) (z € H).

We write abusively a = (ay, as) and b = (by, by) for representatives of a and
b in Z?. The formula (11) can then be rewritten as

i _ Oa+b0a—b
pa pb 0_30_2
Using the expression of ¢ as an infinite g-product [13, Chap 18 Thm 4], we

get the following formula (compare with [12, p. 29 and 51})

o — Qb = 2i7)2qP /N b2 1— n4.’y(qa+ -
P = o = ()¢ g< LR PRORE )

where v is defined by

f}/(q’ al,ag) = H(l _ qnqa1/NC‘]C<]2) . H(l _ qnq_al/NC]:[(u)‘

n>0 n>1

Using the obvious notation for ¢ and d, this gives

Do =06 _ (or-an)/ bo-as V(@ @+ 0)y(ga—b)  9*(q,0)7%(¢,d)
Ve — ©d N v2(q,a)y*(q,0)  ~(g,c+d)y(g, ¢ —d)

Using the expression (2) for Siegel units, we get the equation

Pa = Ob _ y-dyJarbFa—b  9o9a
_ T SN 2.2 :
e — ©d 9a9% 9et+d9e—d
It is a priori a relation between g-products, but raising it to an appropriate
power yields an equality in Q(Cx)((¢*/")) and thus in O*(Y(N)). Therefore

the formula (10) is valid in O*(Y(N)) ® Q. O

3. THE THREE-TERM RELATION

Weierstrass units (9) satisfy additive relations. These have already been
used by Kubert and Lang to get diophantine results on modular curves [12,
Chap 8]. In fact the whole proof of (7) is based on the following simple
identity

(12) @a_pb_f_@b_pc:l'
Pa — Qe $a — e

The relation (12) also has applications to the S-unit equation and is con-

nected to the arithmetic of Fermat curves (see the nice introduction of [12,

Chap 8] for precise statements and references).
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Since the canonical bilinear map O*(Y(N)) x O*(Y(N)) — Ky(Y(N))
enjoys Steinberg relations [16, 9.8|, the identity (12) implies the following
relation in Ky (Y (N))

(13) {m—m m—pc}_o.

§a — pc, $a — e
Using the expression of Weierstrass units in terms of Siegel units gives linear
dependence relations between the elements p(M) in Ky(Y(N)) ® Q. The
main task will be to show that the 3-term relation is a consequence of these

relations.

Let a, b, c be three nonzero elements of (Z/NZ)? such that a # +b, b #
+c and ¢ # +a. Using (10) and (13) we have the following identity in
K(Y(N) ©Q

{ga+bgab . gggf Jo+cb—c . 9393 } -0
929 Yarcba—c 997 GatcYa—c '

Expanding this and using the relation g_, = g,, we get the more symmetric

identity

{ga—l-bga—bgcQa gb—&-cgb—cgg} + {9b+cgb—c92, gc+a96—agg}

. +{9erage—abp: Garv9a—sgz} = 0.
We remark that when a = 0 the relation (14) still makes sense and holds.
Similarly it holds in the cases b = 0, ¢ = 0, a = £b, b = +c or ¢ = +a.
Thus (14) is true for any values of a,b,c € (Z/NZ)?.

We now wish to write (14) as a linear combination of 3-term relations.

Let us define (M) = p(M) + p(tM) + p(m2M) for any M € My(Z/NZ).

Let M = Z f} . An elementary computation yields
(15) ¢<M) = {gs,ta gu,v} + {gu,w gs—u,t—v} + {gs—u,t—w gs,t}‘

a
b

matrix with row vectors a and b. Then (15) can be rewritten as

)l )

We also have

D ()l L)l

For any two elements a and b of (Z/NZ)?, let us write < ) for the 2 by 2
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Lemma 3.1. For any a,b,c € (Z/NZ)?, the left hand side of the relation

(14) can be written as

oo i) w20 () w20 () w0 (L) v (5) w20 (5)
(18)
b+a b+a b—a b—a
+9 <b+c> v (b—c> 9 (b+c> 9 (b—c) :
Proof. By expanding (14) completely, we obtain

{9a+bs Gore} +{Gv+es Ge—a} + {9e—as Gasn}

+{Gatbs Go—c} +19b—cs Gera} + {Getar Garv}

+ 2{ga+b, 9o} + 4{ga, 9o} + 2{9b, Gt}

+ {9a—bs Go+e} + {Gbtes Gera} + {gerar Gab}

+ {Ga—ts go-c} +{9bcs Ge—a} + {ge-a> Gas}
(19) + 2{ga-b; 9a} + 2{g0; ga—s}

+2{gc, gp+c} + 2{Gb+e, 9} + Hgp, 9c}

+ 2{9e; Go—c} + 2{Gb—c, 9o}

+ 4{9c, ga}

+ 2{9a> Geta} + 2{Getas ge}

+2{9a, 9e-a} + 2{ge-a, 9c} = 0.
In most lines of (19) we recognize an expression of type (16) or (17), but
there are incomplete terms. We can arrange the picture by splitting the

terms with a coefficient 4 and moving them to the right places. This gives
exactly (18). O

We now make use of the relation (14) with a particular choice of a, b and
c. Let us assume that ¢ = a + b. This gives (for any choice of a and b)

o (5) e (5 20 ( )+ (L)
(20) + 2 (a i b) +2y (ajab) v <aa: 2bb)

() e () e (1) =

Using the notation M = b

11 1 0),. .
(0 1> (resp. (1 1)) in G, we can rewrite (20) as

a) and letting T' (resp. T”) be the image of
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200(M) + 2¢(—eM) + 2¢(—=1eM) + 2¢(—=7T*M) + 2¢(7e M)

-1 1

+ 3Y(T* TP M) + (—1°T* M) +¢(( 1 9

) M) +(r*M) = 0.

Since (M) = (—M) = 1p(t M) for any M, this simplifies to

-1 1
(21) 3Y(M) + 60 (eM) + 3¢ (T*M) + 3 (T M) + ¢(( ] 2) M) =0.
Let us consider the formal linear combination of matrices in Z[M>(;)]

D(M) = 3[M] + 6[sM] + 3[T*M] + 3[T"*M] + [(_11 ;) M].

By assumption, we have det (_11 ;) = -3¢ (&)

Lemma 3.2. The elements D(M) span Q[Ms(-%)] when M runs through
Ma(5z)-

Proof. We remark that D(M) is congruent mod 3 to the single matrix

(—1 1 ;) M. Therefore the determinant of the vectors D(M) in the canon-

ical basis of Z[M>(5%;)] is not zero mod 3, and thus a nonzero integer. [

Using (21) and Lemma 3.2 gives (M) = 0 for any M € My(Z/NZ),
which concludes the proof of Theorem 1.4.

4. VARYING THE MODULAR CURVE

In this section I study special elements in the groups K»(X;(N))® Q and
K3(Xo(N)) ® Q, in the case of prime level. In particular, I make explicit
the link between the Beilinson-Kato elements and the elements which come
up during my PhD thesis [4].

Let us first recall the definition of particular modular units on X; (V) [5,
(95)]. Let Y1(NN) be the modular curve over Q classifying elliptic curves E
with a point P of order N, and let X;(/N) be the smooth compactification
of Y1(N). The set of cusps of X;(N)(C) is identified with TI';(N)\P'(Q),
and with this convention the cusp [0] is defined over Q. Let Wy : X3 (N) —
X1(N) be the Atkin-Lehner involution, which is defined over Q((y). For
any A\ € (Z/NZ)*, the Diamond operator (\) associated to A is defined by
(E, P) — (E,AP). On the complex points of X;(N) we have (\)[z] = [mz]

-1
where my € SLy(Z) is any matrix congruent to A g\ mod N.

0
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Definition 4.1. For any A € (Z/NZ)*, let uy € O*(Y1(N)) ® Q be the

unique modular unit satisfying

(22) div(uy) = (A)[0] — [0] and  uy o Wy is normalized.

Note that we use the cusp [0] instead of [oc]. It essentially amounts to
the same thing, because the two definitions are related by Wy. In [5, Prop
6.1] I show that the element {uy,u,} belongs to K>(X;(N)) ® Q for any
choice of A\, u € (Z/NZ)*.

From now on, let us suppose that N = p is an odd prime. In [5, §8] I
remark that the Beilinson conjecture should imply some linear dependence
relations between the elements {uy,u,}. It turns out that these relations
can be worked out explicitly and even rigorously proved, as follows.

Let By : R/Z — R be the l-periodic function obtained from B, by
defining By(f) = By(t) for any 0 < t < 1. For any u,v € (Z/pZ)*, let us
define

@) o= Y BB ) € K(r) 0 Q

A€ (Z/pZ)*

By convention, we put vy(u,v) =0 when u =0 or v = 0.

Theorem 4.2. The elements y(u,v) (u,v € Z/pZ) satisfy the following

relations

(24) 7w, v) = y(Fu,v) = 7(u, +v),
(25) 7(“’7 U) + 7(% _u) =0,
(26) Y(u,v) + (v, —u —v) +y(—u —v,u) = 0.

Proof. Since B, is an even function and u_, = uy, we have the relations
v(£u,v) = y(u,+v) = vy(u,v). The antisymmetry of the Milnor symbol
yields v(v,u) = —7(u,v), which proves (25).

In order to prove the three-term relation (26), we jump to X(p). We
have a finite morphism 7 : Y'(p) — Yi(p) which is defined over Q, given by
(E,eq,e2) — (E,e2).

Let M(p) be the field of meromorphic functions on the compactification of
['(p)\H. It is a Galois extension of C(j) with Galois group SLy(Z/pZ)/ £ 1.
We say that a function f € C((¢*/™))* (for some n > 1) is normalized when
the leading coefficient of its g-expansion is one. This definition extends
naturally to C((¢"/"))* ® Q. Two functions f,g € M(p)* coincide if and
only if their divisors are equal and f/g is normalized. Since we have an
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inclusion O*(Y'(p)) € M(p)*, we will apply this principle to check equality
between modular units in O*(Y (p)) ® Q.

The set of cusps of I'(p)\'H is identified with T'(p)\P'(Q), and the restric-
tion of 7 to the cusps is the natural projection I'(p)\P}(Q) — T'1(p)\P*(Q).
The inverse image of a cusp [z] by 7 is given by

p—1
Pl =Yk (xeP(Q)
k=0
The set of cusps I'(p)\P!(Q) can be identified with the set of nonzero col-

umn vectors of (Z/pZ)?* quotiented by +1, the bijection being induced by
la/c] € PHQ) — C_CL for any two relatively prime integers a and ¢. We now

consider m*uy € O*(Y(p)) ® Q C M(p)* ® Q. Its divisor is given by

p—1

27)  divetuy = divey = S [0+ E - K] = 3 m _ m .

k=0 kE€Z/pZ
On the other hand, the order of the Siegel unit g, g at the cusp [oo] can be
deduced from the g-product (2). Since ¢'/? is a uniformizing parameter at

[0c], we have

2
Using the transformation formula (4), we deduce the order of g, 3 at any

ordio) gos = 5 B2() (05) # (0,0)

cusp :

— aa+ pc
o AR
p

A straightforward computation gives

ord(e) ga,s = ) (a,8) #(0,0).

(28)  divgogs =§ > E(%A) m + 234 > m (B #0).

\e(Z/pZ)* ke(Z/pZ)~
kE€Z/pZ

From (27) and (28), it follows that the divisor

— [BA
divgoﬁ — g Z B2(%) div 7 uy
AE(Z/pZ)*
does not depend on [ € (Z/pZ)*. Moreover, we have

1 ) .
9075(_1)_2) =gpo(pz) M C ®Q (z € H).

and ggo(pz) is a normalized function. Since each uy o W), is normalized, we

can write
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gs=h- J] mwe (132(?))
Ae(Z/pZ)*
where h € O*(Y(p)) ® Q is well-defined and independent of 5. We then

have

gou Yo P’
2 e Z/pZ)").

We are now ready to prove (26). Since the map 7* : Ky(Yi(p)) ® Q —
Ky (Y(p)) ® Q is injective, it suffices to work in the latter vector space. The
cases u = 0, v = 0 and v+ v = 0 are easily treated. In the general case, we

write

gou Yo go,u
30 ou Ty L0 dowt + {h, T2
( ) h Y h } {907 g07 } + { g(],y}

Thanks to Theorem 1.4, we already know that (u,v) — {go.u, go»} satisfies
the three-term relation. Since {h, Z’z—’“} is a “boundary element”, we get the
desired result. dJ

Remark 4.3. In general, the relations (24), (25) and (26) between the ele-
ments 7y(u,v) do not make up a complete set of relations. It can be seen
by working out the case p = 5 explicitly. In that case X;(p) is isomorphic
to P! over Q and K,(X;(p)) ® Q is known to be 0. In the general case
however, if we average under the action of Diamond operators (see below),
we can produce special elements in K»(Xo(p)) ® Q together with a full set
of relations.

A theorem of Schappacher and Scholl [18, 1.1.2 (iii)] implies that v(u,v)
belongs to the integral subsapce K3(X;(p))z ® Q, and we can ask about the
span of the elements v(u,v). Let

(31) rp  Ko(Xi1(p))z ® Q — Homg(2'(Xi(p)), R)

be the Beilinson regulator map, as defined in [5, §1].

Theorem 4.4. The Beilinson conjecture for L(h'(X1(p)),2) implies that
Ky(X1(p))z ® Q is generated by the elements vy(u,v), with u,v € (Z/pZ)*.

Proof. Beilinson’s conjecture predicts that r, is injective and that its image
is a Q-structure of the target vector space. We already know that Beilin-
son’s conjecture implies that Ko(X;(p))z ® Q is generated by the elements
{ux,w,} [5, §8]. It is sufficient to show that each {u,,u,} is a Q-linear
combination of the elements y(u, v). Let us consider
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— A .
0= BN eQlz/rz)/£1].
se@pzy P
For every even Dirichlet character x : (Z/pZ)* — C*, we have

(32) G- Y B =1, (x=1)
X\V) = 20— )X(A) =9
\E(Z/pZ)* p T?L(Xa 2) (x#1)
where 7(y) = i: x(a)e¥ ™/ is the Gaufl sum of y. But for any char-

acter x, we have L(y,2) # 0, so that 6 is invertible in the group algebra
QlZ/pZ)"/ +1]. O

We finally investigate the group K> (Xo(p)) ® Q. The natural morphism
Xi1(p) — Xo(p) identifies K5 (Xo(p)) ® Q with the fixed part of Ky(X;(p))®
Q under the Diamond operators.

Definition 4.5. For any = € (Z/pZ)*, let

(33) Y@= Y A uz)
u€(Z/pZ)*
Besides, we define v¢(0) = vp(00) = 0.

Lemma 4.6. For any x € (Z/pZ)*, we have y(x) € Ka(Xo(p)) @ Q.
Proof. 1t suffices to prove that 7*vy(z) is invariant under any matrix ¢ =

8 Z € GLy(Z/pZ). Because of (4), we have gg 5|t = goas. Using (29),

we remark that

Y2 gOu QOux
EW Yo(z) = Z {
€(Z/pZ)*

= Z {go,ua gO,ux}
u€(Z/pZ)*

which is clearly invariant under . U

Remark 4.7. The element vo(x) € K(Xo(p)) ® Q is defined only implicitly.
By this I mean that the actual definition uses Milnor symbols with functions
on X;(p), and not on Xy(p), which only contains two cusps. It is posible to

rewrite v (z) as follows

W= % E(*“)Bx“f){ux,uu}

u€(Z/pZ)* \,u€(Z/pZ)* p

(34) Z (X BOBED)( X (mad)

€(Z/pZ)* ue(Z/pZ)* A\E(Z/pZ)*
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In (34), each sum over \ already lies in K5(Xo(p)) ® Q. Moreover, we

recognize the sum over u to be a Dedekind sum.

For any xz € PY(Z/pZ), let £(x) € Hy (X, (p)(C), cusps, Z) be the modular

symbol {g,0, g,00} where g, = (i b) € SLy(Z) is any matrix satisfying

(
r = ¢/d mod p. Let §i( ) = 1(&(x) + &(— )) For any cusp form f €
S2(T'(p)), we define &¢(x) = [, wy and & (x = Jer(nyws where wy =
2imf(2)dz

Theorem 4.8. (1) For any newform f € Sy(L'o(p)), we have

@) o)) - D@ @ e @)

(2) For any v € PYZ/pZ), the following relations hold

Y0(x) = y0(=12)
(36) Y0(x) +7(=1/2) =0

70(2) +70(—ﬁ) + (1 — é) = 0.

(3) The equations (36) make up a complete set of relations for the ele-
ments vo(x).

Proof. The point (1) will be a consequence of the explicit computation of
Beilinson’s regulator for the modular curve X;(p) [5, Thm 1.1]. Let X be
the set of even non-trivial characters of (Z/pZ)*. For any y € X, we define
a modular unit u, € O*(Y1(p)) ® C by

(37) ue=J[ UA®(——L(X’2W(A>).

Ae(Z/pZ)*

Now let us compute the following element in K3(X;(p)) ® C

=Y x@{uyuxy  (z € (Z/pZ)).

xEX

Using (37) gives

(38) %:4%4 > (Zx JL(X, )>{uA,uu}-

Mu€e(Z/pZ)* xeX

The inner sum can be computed using the formula (32), which gives
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m(p—1) a— 3. 7 a — 3
(39) TR > Bz(E)B (5) — > B2(;)B (5)
a,B€(Z/pZ)” o,Be(Z/pZ)*
arpu==6\

The second term of (39) contributes to zero in (38) by antisymmetry of the
Milnor symbol. Finally, we get

=2l S BB

4
P o,B,\u€(Z/pZ)* b
arp=0X\

In order to use [5, Thm 1.1], we have to take care of the Atkin-Lehner
involution W,,. Let w(f) be the W,-eigenvalue of f. We let temporarily u,
(resp. u,) be the modular unit defined in [5, (5)] (resp. in [5, (95)]). We

have u)|W, = uy-1 and for any xy € X

Yy} =2 4;1%@).

SRS

fu g} W, = 2B S 00 ) W,

4 4
T \u€E(Z/pZ)*
Liy,2)L(y,2
_ % S XM
\ue(Z/pZ)*
— {Ey, ﬂx}

because of [5, Prop 5.4]. Let f € S3(Iy(p)) be a newform and w(f) be the
W,-eigenvalue of f. Using [5, Thm 1.1], we have

(rp({uy, ux}), ) = (rp({ux, ugtWy), Wy f)
= w(f)(rp({uy, ux}), f)
_ 2(p = Duw(/)
- pWT(X) L(f72)L(f?X71)
A classical computation [14] yields

L = -2 S @ e ).
a€(Z/pZ)*
By taking the sum over characters x, we obtain

2(p —1)°

(000, 1) = T

L(f,2)&f (x).
This proves (35).

The relations (36) are an easy consequence of Theorem 4.2 and the defini-
tion (33) of vo(z). Note that they are consistent with the regulator formula
(35).

Finally, for the point (3), let 75 be the map
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Y0 - Q(Z/pZ)"] — K»(Xo(p)) ® Q
[z] = 70(x).
Let R be the kernel of 7p. We wish to show that R is generated by the

relations (36). For this we use the theory of Manin symbols. For any
x € (Z/pZ)*, the cycle £(x) has trivial boundary. Thus we have a map

¢ QUZ/pZ)"] — H (Xo(p)(C), Q).
Manin’s theorem implies that the kernel of £ is generated by the relations
(36), so that ker £t C R. In order to prove the reverse inclusion, it suffices to
consider the dimensions. Let g(Xo(p)) be the genus of Xy(p). From (35) we
know that the image of 7 has dimension at least g(Xo(p)). Manin’s theorem
implies that the dimension of the image of £ is precisely g(Xo(p)) (the
element £(0) = {0,00} = —¢(oc0) has non-trivial boundary). We conclude
that dim R < dimker (™, so that R is generated by (36). O
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