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Abstract. This article investigates explicit linear dependence relations
in the K2-group of modular curves. In particular, it is shown that the
Beilinson-Kato elements in K2 of the modular curve Y (N) satisfy the
Manin relations whenN is not divisible by 3. Similar results are obtained
for the modular curves X1(N) and X0(N) when N is prime. Finally we
exhibit explicit generators of K2, assuming the Beilinson conjecture.

Introduction

Let X be a smooth projective curve over Q, and L(h1(X), s) be the

associated L-function. A very special case of Beilinson’s conjectures predicts

that the special value L(h1(X), 2) can be expressed in terms of a suitable

regulator map on the algebraic K-group K2(X) (see [8] for a nice overview

and a precise statement of this conjecture). Beilinson proved a part of his

conjecture in the case where X is a modular curve [18]. Beilinson’s work

was also partially anticipated by Bloch, who studied the particular case of

CM elliptic curves [1].

Despite these profound results, the K-group itself remains very myste-

rious. There’s quite an art to constructing special elements in this group

and, as soon as the genus of X is not zero, it is not even known whether

K2(X)⊗Z Q is a finite dimensional Q-vector space.

I showed in [5] how Beilinson’s theorem can be made explicit in the case

of the modular curve X1(N). This raised the question of determining linear

dependence relations in the group K2(X1(N)) [5, §8].

The main point of this article is to make these relations explicit. Let

Y (N) be the open modular curve associated to the congruence subgroup

Γ(N). By taking cup-products of Siegel units, there is a natural map

(1) ρ : M2(Z/NZ)→ K2(Y (N))⊗Q.
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Under the hypothesis that N is not divisible by 3, I show that ρ satisfies

the Manin relations (Theorem 1.4). This was also proved by Goncharov

[9] using a different method, and his proof works for all N . Thus ρ can be

seen as a Manin symbol (or modular symbol) with values in K2(Y (N))⊗Q.

This result is similar to constructions of Borisov and Gunnells [2, 3] and

Paşol [17] in the case of modular forms. In these works, the product of two

Eisenstein series plays the role of the cup-product.

I then use this result to study the case of the modular curves X1(p)

and X0(p), where p is prime (Theorems 4.2, 4.4 and 4.8). In particular,

the Beilinson conjecture implies that the elements so constructed span the

vector space K2(X0(p))Z ⊗ Q, and I determine all the relations between

them.

Some questions would deserve further study. I do not know (even con-

jecturally) whether the image of ρ spans K2(Y (N))⊗Q (see Remark 1.7).

In view of the arithmetic applications of Kato’s Euler system [10], it would

be also of interest to describe the action of Hecke correspondences on these

elements, in the spirit of Merel’s results for modular symbols [15].

1. The Beilinson-Kato elements in K2

Let us first state some standard facts on modular curves (see [20, 13, 7,

11] for more detailed accounts). Let N ≥ 3 be an integer and Y (N) be

the modular curve classifying elliptic curves E with a level N structure,

that is a basis (e1, e2) of E[N ] over Z/NZ. The curve Y (N) is a smooth

projective curve defined over Q, whose affine ring O(Y (N)) contains the

cyclotomic field Q(ζN) generated by ζN := e2iπ/N . The curve Y (N) is

not geometrically connected. Indeed, there is an isomorphism Y (N)(C) ∼=
(Z/NZ)∗×(Γ(N)\H), whereH is the Poincaré upper half-plane and Γ(N) ⊂
SL2(Z) is the congruence subgroup of matrices satisfying(

a b
c d

)
≡
(

1 0
0 1

)
(mod N).

For any z ∈ H and λ ∈ Q, let us set q = e2iπz and qλ = e2iπλz.

The curve Y (N) has a smooth compactification X(N) over Q which is

obtained by adding on the cusps. The function field of X(N) will be referred

to by Q(X(N)). It is naturally embedded into the function field of the

compactification of Γ(N)\H. There is also a natural inclusion of Q(X(N))

into the field of formal Laurent series Q(ζN)((q1/N)), by looking at the q-

expansion.

1.1. Siegel units. Let us give the definition of Siegel units (see [6, 10, 12]

for further reference). The group of modular units of X(N) will be denoted
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by O∗(Y (N)). In order to avoid torsion problems, Siegel units will always

be considered in the Q-vector space O∗(Y (N))⊗Z Q.

Let B2(X) = X2 −X + 1
6

be the second Bernoulli polynomial.

Definition 1.1. For any (α, β) ∈ (Z/NZ)2 − {(0, 0)} let us define

(2) gα,β(z) = q
1
2
B2(eα/N)

∏
n≥0

(
1− qnqeα/NζβN

)∏
n≥1

(
1− qnq−eα/Nζ−βN

)
where α̃ ∈ Z is the unique representative of α satisfying 0 ≤ α̃ < N . By

convention g0,0 = 1.

Thus gα,β is a holomorphic function on H. It is known that some power of

gα,β (in fact g12N
α,β ) is modular with respect to Γ(N), and lies inO∗(Y (N)) [13,

Chap 19 §2]. Therefore gα,β is well-defined as an element of O∗(Y (N))⊗Q.

Let G be the group GL2(Z/NZ). It acts from the left on Y (N), by the

rule

(3)

(
a b
c d

)
· (E, e1, e2) = (E, ae1 + be2, ce1 + de2)

((
a b
c d

)
∈ G

)
.

This induces on O∗(Y (N)) ⊗ Q a right action of G. It turns out that G

acts on the set of Siegel units. More precisely, we have [10, Lemma 1.7]

(4) gα,β|γ = g(α,β)·γ (γ ∈ G).

Since −1 ∈ G acts trivially on Y (N), we get the relation g−α,−β = gα,β. Ku-

bert and Lang proved that the Siegel units of levelN generateO∗(Y (N))⊗Q

[12].

1.2. The construction of Beilinson and Kato. Let us consider the

Quillen K-group K2(Y (N)), which enjoys a right action of G by functo-

riality. Beilinson constructed special elements in it using cup-products of

modular units. This motivates the following definition.

Definition 1.2. Let ρ be the map

ρ : M2(Z/NZ)→ K2(Y (N))⊗Z Q(5) (
s t
u v

)
7→ {gs,t, gu,v}.

Remark 1.3. Colmez [6, 1.4.2] constructed an algebraic distribution on

M2(Q ⊗ Ẑ) with values in K2, which generalizes Definition 1.2. I shall

not use this more conceptual point of view in what follows.
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Let ε (resp. σ, τ) be the image of

(
−1 0
0 1

)
(resp.

(
0 −1
1 0

)
,

(
0 −1
1 −1

)
)

in G.

Theorem 1.4. The elements ρ(M) satisfy the following relations

(6)

ρ(εM) = ρ(M) and ρ(M) + ρ(σM) = 0 (M ∈M2(Z/NZ)).

Let us suppose further that 3 does not divide N . Then we have

(7) ρ(M) + ρ(τM) + ρ(τ 2M) = 0 (M ∈M2(Z/NZ)).

Remark 1.5. The Manin relations (6) and (7) have also been established

by Goncharov [9, Corollary 2.17], without any assumption on the level N ,

using a different method.

Remark 1.6. The Manin relations (6) and (7) are consistent with the formula

of Kato [10, Thm 2.6] giving the regulator of zN = ρ(I). The element zN

plays a prominent role in the construction of Kato’s Euler system [10, §5].

Remark 1.7. It would be interesting to know whether the elements ρ(M)

span the Q-vector space K2(Y (N)) ⊗ Q. A related question is to deter-

mine whether K2(Y (N)) is generated by the symbols {u, v} with u, v ∈
O∗(Y (N)). Since K2(Y (N)) ⊗ Q is in general not known to be finite-

dimensional, it is more reasonable to ask whether the Manin relations make

up a complete set of relations between the elements ρ(M). A natural way to

tackle this problem would be to compute the Beilinson regulator of ρ(M).

However, the formula of Kato [10, Thm 2.6] seems to indicate that in general

ρ(G) cannot span K2(Y (N))⊗Q.

Proposition 1.8. For any M ∈M2(Z/NZ) the relations (6) hold.

Proof. Let M =

(
s t
u v

)
. We have

ρ(εM) = {g−s,−t, gu,v} = {gs,t, gu,v} = ρ(M)

and ρ(σM) = {g−u,−v, gs,t} = −{gs,t, gu,v} = −ρ(M),

because of the relation g−s,−t = gs,t and the antisymmetry of the Milnor

symbol. �

The relation (7) can be seen as an analogue of the Manin 3-term relation

for modular symbols. The proof of this relation lies deeper, and will be

given in the next two sections.
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2. Weierstrass units

For any z ∈ H, we let ℘(z, u) be the Weierstrass ℘-function associated to

the lattice Λz = Zz + Z ⊂ C. It is defined for u ∈ C− Λz.

Definition 2.1. For any a = (a1, a2) ∈ (Z/NZ)2 − {(0, 0)}, let us define

(8) ℘a(z) = ℘
(
z,
ã1z + ã2

N

)
(z ∈ H),

where ã1 and ã2 are any representatives of a1 and a2 in Z.

We use these functions to construct the Weierstrass units. This classical

construction is undertaken in [12, Chap 2 §6]. We give some details for the

sake of completeness.

Theorem ([12]). Let a, b, c, d be four nonzero elements of (Z/NZ)2 satis-

fying a 6= ±b and c 6= ±d. The function

(9)
℘a − ℘b
℘c − ℘d

defines an element of O∗(Y (N)).

Proof. The function ℘a is holomorphic on H and defines a modular form

of weight 2 for the group Γ(N). For any z ∈ H, we have ℘a(z) = ℘b(z)

if and only if a = ±b. Thus (℘a − ℘b)/(℘c − ℘d) is well-defined and does

not vanish on H. The fact that it belongs to Q(X(N)) is a consequence of

results of Shimura ([19, §4], [20, Chap 6]). It essentially amounts to express

(℘a−℘b)/(℘c−℘d) in terms of the x-coordinates of N -torsion points of the

universal elliptic curve over Y (N). The fact that (9) is a modular unit is

proved in [12, Chap 2 Thm 6.1]. �

Now we express the Weierstrass units in terms of Siegel units. Once again

this is done in [12, Chap 2 §6].

Proposition 2.2. Let a, b, c, d be four nonzero elements of (Z/NZ)2 satisfy-

ing a 6= ±b and c 6= ±d. Then the following identity holds in O∗(Y (N))⊗Q

(10)
℘a − ℘b
℘c − ℘d

=
ga+bga−b
g2
ag

2
b

· g2
cg

2
d

gc+dgc−d
.

Proof. We start with the following classical formula from the theory of el-

liptic functions [13, Chap 18 Thm 2]

(11) ℘(z, u)− ℘(z, v) = −σ(z, u+ v)σ(z, u− v)

σ2(z, u)σ2(z, v)
(z ∈ H),
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where σ refers to the Weierstrass sigma function. For any (a1, a2) ∈ Z2, let

us define in the same way as (8)

σa1,a2(z) = σ(z,
a1z + a2

N
) (z ∈ H).

We write abusively a = (a1, a2) and b = (b1, b2) for representatives of a and

b in Z2. The formula (11) can then be rewritten as

℘a − ℘b = −σa+bσa−b
σ2
aσ

2
b

.

Using the expression of σ as an infinite q-product [13, Chap 18 Thm 4], we

get the following formula (compare with [12, p. 29 and 51])

℘a − ℘b = (2iπ)2qb1/Nζb2N
∏
n≥1

(1− qn)4 · γ(q, a+ b)γ(q, a− b)
γ2(q, a)γ2(q, b)

where γ is defined by

γ(q, a1, a2) =
∏
n≥0

(1− qnqa1/Nζa2
N ) ·

∏
n≥1

(1− qnq−a1/Nζ−a2
N ).

Using the obvious notation for c and d, this gives

℘a − ℘b
℘c − ℘d

= q(b1−d1)/Nζb2−d2N

γ(q, a+ b)γ(q, a− b)
γ2(q, a)γ2(q, b)

· γ2(q, c)γ2(q, d)

γ(q, c+ d)γ(q, c− d)
.

Using the expression (2) for Siegel units, we get the equation

℘a − ℘b
℘c − ℘d

= ζb2−d2N

ga+bga−b
g2
ag

2
b

· g2
cg

2
d

gc+dgc−d
.

It is a priori a relation between q-products, but raising it to an appropriate

power yields an equality in Q(ζN)((q1/N)) and thus in O∗(Y (N)). Therefore

the formula (10) is valid in O∗(Y (N))⊗Q. �

3. The three-term relation

Weierstrass units (9) satisfy additive relations. These have already been

used by Kubert and Lang to get diophantine results on modular curves [12,

Chap 8]. In fact the whole proof of (7) is based on the following simple

identity

(12)
℘a − ℘b
℘a − ℘c

+
℘b − ℘c
℘a − ℘c

= 1.

The relation (12) also has applications to the S-unit equation and is con-

nected to the arithmetic of Fermat curves (see the nice introduction of [12,

Chap 8] for precise statements and references).
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Since the canonical bilinear map O∗(Y (N)) × O∗(Y (N)) → K2(Y (N))

enjoys Steinberg relations [16, 9.8], the identity (12) implies the following

relation in K2(Y (N))

(13)

{
℘a − ℘b
℘a − ℘c

,
℘b − ℘c
℘a − ℘c

}
= 0.

Using the expression of Weierstrass units in terms of Siegel units gives linear

dependence relations between the elements ρ(M) in K2(Y (N)) ⊗ Q. The

main task will be to show that the 3-term relation is a consequence of these

relations.

Let a, b, c be three nonzero elements of (Z/NZ)2 such that a 6= ±b, b 6=
±c and c 6= ±a. Using (10) and (13) we have the following identity in

K2(Y (N))⊗Q{
ga+bga−b
g2
ag

2
b

· g2
ag

2
c

ga+cga−c
,
gb+cgb−c
g2
bg

2
c

· g2
ag

2
c

ga+cga−c

}
= 0.

Expanding this and using the relation g−a = ga, we get the more symmetric

identity

{ga+bga−bg2
c , gb+cgb−cg

2
a}+ {gb+cgb−cg2

a, gc+agc−ag
2
b}

+ {gc+agc−ag2
b , ga+bga−bg

2
c} = 0.

(14)

We remark that when a = 0 the relation (14) still makes sense and holds.

Similarly it holds in the cases b = 0, c = 0, a = ±b, b = ±c or c = ±a.

Thus (14) is true for any values of a, b, c ∈ (Z/NZ)2.

We now wish to write (14) as a linear combination of 3-term relations.

Let us define ψ(M) = ρ(M) + ρ(τM) + ρ(τ 2M) for any M ∈ M2(Z/NZ).

Let M =

(
s t
u v

)
. An elementary computation yields

(15) ψ(M) = {gs,t, gu,v}+ {gu,v, gs−u,t−v}+ {gs−u,t−v, gs,t}.

For any two elements a and b of (Z/NZ)2, let us write

(
a
b

)
for the 2 by 2

matrix with row vectors a and b. Then (15) can be rewritten as

(16) ψ

(
a
b

)
= ρ

(
a
b

)
+ ρ

(
b

a− b

)
+ ρ

(
a− b
a

)
.

We also have

(17) ψ

(
a
−b

)
= ρ

(
a
b

)
+ ρ

(
b

a+ b

)
+ ρ

(
a+ b
a

)
.
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Lemma 3.1. For any a, b, c ∈ (Z/NZ)2, the left hand side of the relation

(14) can be written as

2ψ

(
a
b

)
+ 2ψ

(
a
−b

)
+ 2ψ

(
b
c

)
+ 2ψ

(
b
−c

)
+ 2ψ

(
c
a

)
+ 2ψ

(
c
−a

)
+ ψ

(
b+ a
b+ c

)
+ ψ

(
b+ a
b− c

)
+ ψ

(
b− a
b+ c

)
+ ψ

(
b− a
b− c

)
.

(18)

Proof. By expanding (14) completely, we obtain

{ga+b, gb+c}+ {gb+c, gc−a}+ {gc−a, ga+b}

+ {ga+b, gb−c}+ {gb−c, gc+a}+ {gc+a, ga+b}

+ 2{ga+b, ga}+ 4{ga, gb}+ 2{gb, ga+b}

+ {ga−b, gb+c}+ {gb+c, gc+a}+ {gc+a, ga−b}

+ {ga−b, gb−c}+ {gb−c, gc−a}+ {gc−a, ga−b}

+ 2{ga−b, ga}+ 2{gb, ga−b}

+ 2{gc, gb+c}+ 2{gb+c, gb}+ 4{gb, gc}

+ 2{gc, gb−c}+ 2{gb−c, gb}

+ 4{gc, ga}

+ 2{ga, gc+a}+ 2{gc+a, gc}

+ 2{ga, gc−a}+ 2{gc−a, gc} = 0.

(19)

In most lines of (19) we recognize an expression of type (16) or (17), but

there are incomplete terms. We can arrange the picture by splitting the

terms with a coefficient 4 and moving them to the right places. This gives

exactly (18). �

We now make use of the relation (14) with a particular choice of a, b and

c. Let us assume that c = a+ b. This gives (for any choice of a and b)

2ψ

(
a
b

)
+ 2ψ

(
a
−b

)
+ 2ψ

(
b

a+ b

)
+ 2ψ

(
b

−a− b

)
+ 2ψ

(
a+ b
a

)
+ 2ψ

(
a+ b
−a

)
+ ψ

(
a+ b
a+ 2b

)
+ ψ

(
a+ b
−a

)
+ ψ

(
−a+ b
a+ 2b

)
+ ψ

(
−a+ b
−a

)
= 0.

(20)

Using the notation M =

(
a
b

)
and letting T (resp. T ′) be the image of(

1 1
0 1

)
(resp.

(
1 0
1 1

)
) in G, we can rewrite (20) as
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2ψ(M) + 2ψ(−εM) + 2ψ(−τεM) + 2ψ(−τT 2M) + 2ψ(τ 2εM)

+ 3ψ(τ 2T ′2M) + ψ(−τ 2T 2M) + ψ(

(
−1 1
1 2

)
M) + ψ(τ 2M) = 0.

Since ψ(M) = ψ(−M) = ψ(τM) for any M , this simplifies to

(21) 3ψ(M) + 6ψ(εM) + 3ψ(T 2M) + 3ψ(T ′2M) + ψ(

(
−1 1
1 2

)
M) = 0.

Let us consider the formal linear combination of matrices in Z[M2(
Z
NZ

)]

D(M) = 3[M ] + 6[εM ] + 3[T 2M ] + 3[T ′2M ] + [

(
−1 1
1 2

)
M ].

By assumption, we have det

(
−1 1
1 2

)
= −3 ∈ ( Z

NZ
)∗.

Lemma 3.2. The elements D(M) span Q[M2(
Z
NZ

)] when M runs through

M2(
Z
NZ

).

Proof. We remark that D(M) is congruent mod 3 to the single matrix(
−1 1
1 2

)
M . Therefore the determinant of the vectors D(M) in the canon-

ical basis of Z[M2(
Z
NZ

)] is not zero mod 3, and thus a nonzero integer. �

Using (21) and Lemma 3.2 gives ψ(M) = 0 for any M ∈ M2(Z/NZ),

which concludes the proof of Theorem 1.4.

4. Varying the modular curve

In this section I study special elements in the groups K2(X1(N))⊗Q and

K2(X0(N)) ⊗ Q, in the case of prime level. In particular, I make explicit

the link between the Beilinson-Kato elements and the elements which come

up during my PhD thesis [4].

Let us first recall the definition of particular modular units on X1(N) [5,

(95)]. Let Y1(N) be the modular curve over Q classifying elliptic curves E

with a point P of order N , and let X1(N) be the smooth compactification

of Y1(N). The set of cusps of X1(N)(C) is identified with Γ1(N)\P1(Q),

and with this convention the cusp [0] is defined over Q. Let WN : X1(N)→
X1(N) be the Atkin-Lehner involution, which is defined over Q(ζN). For

any λ ∈ (Z/NZ)∗, the Diamond operator 〈λ〉 associated to λ is defined by

(E,P ) 7→ (E, λP ). On the complex points of X1(N) we have 〈λ〉[z] = [mλz]

where mλ ∈ SL2(Z) is any matrix congruent to

(
λ−1 0
0 λ

)
mod N .
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Definition 4.1. For any λ ∈ (Z/NZ)∗, let uλ ∈ O∗(Y1(N)) ⊗ Q be the

unique modular unit satisfying

(22) div(uλ) = 〈λ〉[0]− [0] and uλ ◦WN is normalized.

Note that we use the cusp [0] instead of [∞]. It essentially amounts to

the same thing, because the two definitions are related by WN . In [5, Prop

6.1] I show that the element {uλ, uµ} belongs to K2(X1(N)) ⊗ Q for any

choice of λ, µ ∈ (Z/NZ)∗.

From now on, let us suppose that N = p is an odd prime. In [5, §8] I

remark that the Beilinson conjecture should imply some linear dependence

relations between the elements {uλ, uµ}. It turns out that these relations

can be worked out explicitly and even rigorously proved, as follows.

Let B2 : R/Z → R be the 1-periodic function obtained from B2 by

defining B2(t) = B2(t) for any 0 ≤ t ≤ 1. For any u, v ∈ (Z/pZ)∗, let us

define

(23) γ(u, v) =
∑

λ,µ∈(Z/pZ)∗

B2(
λu

p
)B2(

µv

p
){uλ, uµ} ∈ K2(X1(p))⊗Q.

By convention, we put γ(u, v) = 0 when u = 0 or v = 0.

Theorem 4.2. The elements γ(u, v) (u, v ∈ Z/pZ) satisfy the following

relations

γ(u, v) = γ(±u, v) = γ(u,±v),(24)

γ(u, v) + γ(v,−u) = 0,(25)

γ(u, v) + γ(v,−u− v) + γ(−u− v, u) = 0.(26)

Proof. Since B2 is an even function and u−λ = uλ, we have the relations

γ(±u, v) = γ(u,±v) = γ(u, v). The antisymmetry of the Milnor symbol

yields γ(v, u) = −γ(u, v), which proves (25).

In order to prove the three-term relation (26), we jump to X(p). We

have a finite morphism π : Y (p)→ Y1(p) which is defined over Q, given by

(E, e1, e2) 7→ (E, e2).

LetM(p) be the field of meromorphic functions on the compactification of

Γ(p)\H. It is a Galois extension of C(j) with Galois group SL2(Z/pZ)/±1.

We say that a function f ∈ C((q1/n))∗ (for some n ≥ 1) is normalized when

the leading coefficient of its q-expansion is one. This definition extends

naturally to C((q1/n))∗ ⊗ Q. Two functions f, g ∈ M(p)∗ coincide if and

only if their divisors are equal and f/g is normalized. Since we have an
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inclusion O∗(Y (p)) ⊂M(p)∗, we will apply this principle to check equality

between modular units in O∗(Y (p))⊗Q.

The set of cusps of Γ(p)\H is identified with Γ(p)\P1(Q), and the restric-

tion of π to the cusps is the natural projection Γ(p)\P1(Q)→ Γ1(p)\P1(Q).

The inverse image of a cusp [x] by π is given by

π∗[x] =

p−1∑
k=0

[x+ k] (x ∈ P1(Q)).

The set of cusps Γ(p)\P1(Q) can be identified with the set of nonzero col-

umn vectors of (Z/pZ)2 quotiented by ±1, the bijection being induced by

[a/c] ∈ P1(Q) 7→
[
a
c

]
for any two relatively prime integers a and c. We now

consider π∗uλ ∈ O∗(Y (p))⊗Q ⊂M(p)∗ ⊗Q. Its divisor is given by

(27) div π∗uλ = π∗ div uλ =

p−1∑
k=0

[〈λ〉0 + k]− [k] =
∑

k∈Z/pZ

[
k
λ

]
−
[
k
1

]
.

On the other hand, the order of the Siegel unit gα,β at the cusp [∞] can be

deduced from the q-product (2). Since q1/p is a uniformizing parameter at

[∞], we have

ord[∞] gα,β =
p

2
B2(

α

p
) (α, β) 6= (0, 0).

Using the transformation formula (4), we deduce the order of gα,β at any

cusp :

ord[a
c
] gα,β =

p

2
B2(

αa+ βc

p
) (α, β) 6= (0, 0).

A straightforward computation gives

(28) div g0,β =
p

4

∑
λ∈(Z/pZ)∗

k∈Z/pZ

B2(
βλ

p
)

[
k
λ

]
+

p

24

∑
k∈(Z/pZ)∗

[
k
0

]
(β 6= 0).

From (27) and (28), it follows that the divisor

div g0,β −
p

4

∑
λ∈(Z/pZ)∗

B2(
βλ

p
) div π∗uλ

does not depend on β ∈ (Z/pZ)∗. Moreover, we have

g0,β(− 1

pz
) = gβ,0(pz) in C∗ ⊗Q (z ∈ H).

and gβ,0(pz) is a normalized function. Since each uλ ◦Wp is normalized, we

can write
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g0,β = h ·
∏

λ∈(Z/pZ)∗

π∗uλ ⊗
(p

4
B2(

βλ

p
)
)

where h ∈ O∗(Y (p)) ⊗ Q is well-defined and independent of β. We then

have

(29) {g0,u

h
,
g0,v

h
} =

p2

16
π∗γ(u, v) (u, v ∈ (Z/pZ)∗).

We are now ready to prove (26). Since the map π∗ : K2(Y1(p)) ⊗ Q →
K2(Y (p))⊗Q is injective, it suffices to work in the latter vector space. The

cases u = 0, v = 0 and u+ v = 0 are easily treated. In the general case, we

write

(30) {g0,u

h
,
g0,v

h
} = {g0,u, g0,v}+ {h, g0,u

g0,v

}.

Thanks to Theorem 1.4, we already know that (u, v) 7→ {g0,u, g0,v} satisfies

the three-term relation. Since {h, g0,u

g0,v
} is a “boundary element”, we get the

desired result. �

Remark 4.3. In general, the relations (24), (25) and (26) between the ele-

ments γ(u, v) do not make up a complete set of relations. It can be seen

by working out the case p = 5 explicitly. In that case X1(p) is isomorphic

to P1 over Q and K2(X1(p)) ⊗ Q is known to be 0. In the general case

however, if we average under the action of Diamond operators (see below),

we can produce special elements in K2(X0(p))⊗Q together with a full set

of relations.

A theorem of Schappacher and Scholl [18, 1.1.2 (iii)] implies that γ(u, v)

belongs to the integral subsapce K2(X1(p))Z⊗Q, and we can ask about the

span of the elements γ(u, v). Let

(31) rp : K2(X1(p))Z ⊗Q→ HomQ(Ω1(X1(p)),R)

be the Beilinson regulator map, as defined in [5, §1].

Theorem 4.4. The Beilinson conjecture for L(h1(X1(p)), 2) implies that

K2(X1(p))Z ⊗Q is generated by the elements γ(u, v), with u, v ∈ (Z/pZ)∗.

Proof. Beilinson’s conjecture predicts that rp is injective and that its image

is a Q-structure of the target vector space. We already know that Beilin-

son’s conjecture implies that K2(X1(p))Z ⊗Q is generated by the elements

{uλ, uµ} [5, §8]. It is sufficient to show that each {uλ, uµ} is a Q-linear

combination of the elements γ(u, v). Let us consider
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θ =
∑

λ∈(Z/pZ)∗

B2(
λ

p
)[λ] ∈ Q[(Z/pZ)∗/± 1].

For every even Dirichlet character χ : (Z/pZ)∗ → C∗, we have

(32) χ(θ) =
∑

λ∈(Z/pZ)∗

B2(
λ

p
)χ(λ) =

{
1−p
6p

(χ = 1)
τ(χ)
π2 L(χ, 2) (χ 6= 1)

where τ(χ) =
∑p−1

a=1 χ(a)e2iaπ/p is the Gauß sum of χ. But for any char-

acter χ, we have L(χ, 2) 6= 0, so that θ is invertible in the group algebra

Q[(Z/pZ)∗/± 1]. �

We finally investigate the group K2(X0(p))⊗Q. The natural morphism

X1(p)→ X0(p) identifies K2(X0(p))⊗Q with the fixed part of K2(X1(p))⊗
Q under the Diamond operators.

Definition 4.5. For any x ∈ (Z/pZ)∗, let

(33) γ0(x) =
∑

u∈(Z/pZ)∗

γ(u, ux).

Besides, we define γ0(0) = γ0(∞) = 0.

Lemma 4.6. For any x ∈ (Z/pZ)∗, we have γ0(x) ∈ K2(X0(p))⊗Q.

Proof. It suffices to prove that π∗γ0(x) is invariant under any matrix t =(
a b
0 d

)
∈ GL2(Z/pZ). Because of (4), we have g0,β|t = g0,dβ. Using (29),

we remark that

p2

16
π∗γ0(x) =

∑
u∈(Z/pZ)∗

{g0,u

h
,
g0,ux

h
}

=
∑

u∈(Z/pZ)∗

{g0,u, g0,ux}

which is clearly invariant under t. �

Remark 4.7. The element γ0(x) ∈ K2(X0(p))⊗Q is defined only implicitly.

By this I mean that the actual definition uses Milnor symbols with functions

on X1(p), and not on X0(p), which only contains two cusps. It is posible to

rewrite γ0(x) as follows

γ0(x) =
∑

u∈(Z/pZ)∗

∑
λ,µ∈(Z/pZ)∗

B2(
λu

p
)B2(

µux

p
){uλ, uµ}

=
∑

ν∈(Z/pZ)∗

( ∑
u∈(Z/pZ)∗

B2(
u

p
)B2(

uνx

p
)
)( ∑

λ∈(Z/pZ)∗

{uλ, uλν}
)
.(34)
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In (34), each sum over λ already lies in K2(X0(p)) ⊗ Q. Moreover, we

recognize the sum over u to be a Dedekind sum.

For any x ∈ P1(Z/pZ), let ξ(x) ∈ H1(X0(p)(C), cusps,Z) be the modular

symbol {gx0, gx∞} where gx =

(
a b
c d

)
∈ SL2(Z) is any matrix satisfying

x = c/d mod p. Let ξ±(x) = 1
2

(
ξ(x) + ξ(−x)

)
. For any cusp form f ∈

S2(Γ1(p)), we define ξf (x) =
∫
ξ(x)

ωf and ξ±f (x) =
∫
ξ±(x)

ωf where ωf =

2iπf(z)dz.

Theorem 4.8. (1) For any newform f ∈ S2(Γ0(p)), we have

(35) 〈rp(γ0(x)), f〉 =
8(p− 1)

pπ
L(f, 2)ξ+

f (x) (x ∈ (Z/pZ)∗).

(2) For any x ∈ P1(Z/pZ), the following relations hold

γ0(x) = γ0(−x)

γ0(x) + γ0(−1/x) = 0(36)

γ0(x) + γ0(−
1

x− 1
) + γ0(1−

1

x
) = 0.

(3) The equations (36) make up a complete set of relations for the ele-

ments γ0(x).

Proof. The point (1) will be a consequence of the explicit computation of

Beilinson’s regulator for the modular curve X1(p) [5, Thm 1.1]. Let X be

the set of even non-trivial characters of (Z/pZ)∗. For any χ ∈ X, we define

a modular unit uχ ∈ O∗(Y1(p))⊗C by

(37) uχ =
∏

λ∈(Z/pZ)∗

uλ ⊗
(
−L(χ, 2)χ(λ)

2π2

)
.

Now let us compute the following element in K2(X1(p))⊗C

γx =
∑
χ∈X

χ(x){uχ, uχ} (x ∈ (Z/pZ)∗).

Using (37) gives

(38) γx =
1

4π4

∑
λ,µ∈(Z/pZ)∗

(∑
χ∈X

χ(
xµ

λ
)L(χ, 2)L(χ, 2)

)
{uλ, uµ}.

The inner sum can be computed using the formula (32), which gives
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(39)
π4(p− 1)

2p

∑
α,β∈(Z/pZ)∗

αxµ=±βλ

B2(
α

p
)B2(

β

p
)− π4

p

∑
α,β∈(Z/pZ)∗

B2(
α

p
)B2(

β

p
).

The second term of (39) contributes to zero in (38) by antisymmetry of the

Milnor symbol. Finally, we get

γx =
p− 1

4p

∑
α,β,λ,µ∈(Z/pZ)∗

αxµ=βλ

B2(
α

p
)B2(

β

p
){uλ, uµ} =

p− 1

4p
γ0(x).

In order to use [5, Thm 1.1], we have to take care of the Atkin-Lehner

involution Wp. Let w(f) be the Wp-eigenvalue of f . We let temporarily ũχ

(resp. ũλ) be the modular unit defined in [5, (5)] (resp. in [5, (95)]). We

have uλ|Wp = ũλ−1 and for any χ ∈ X

{uχ, uχ}|Wp =
L(χ, 2)L(χ, 2)

4π4

∑
λ,µ∈(Z/pZ)∗

χ(λ)χ(µ){uλ, uµ}|Wp

=
L(χ, 2)L(χ, 2)

4π4

∑
λ,µ∈(Z/pZ)∗

χ(λ/µ){ũλ, ũµ}

= {ũχ, ũχ}

because of [5, Prop 5.4]. Let f ∈ S2(Γ0(p)) be a newform and w(f) be the

Wp-eigenvalue of f . Using [5, Thm 1.1], we have

〈rp({uχ, uχ}), f〉 = 〈rp({uχ, uχ}|Wp),Wpf〉

= w(f)〈rp({ũχ, ũχ}), f〉

=
2(p− 1)w(f)

pπτ(χ)
L(f, 2)L(f, χ, 1).

A classical computation [14] yields

L(f, χ, 1) = −w(f)τ(χ)

p

∑
a∈(Z/pZ)∗

χ(a)ξ+
f (a) (χ ∈ X).

By taking the sum over characters χ, we obtain

〈rp(γx), f〉 =
2(p− 1)2

p2π
L(f, 2)ξ+

f (x).

This proves (35).

The relations (36) are an easy consequence of Theorem 4.2 and the defini-

tion (33) of γ0(x). Note that they are consistent with the regulator formula

(35).

Finally, for the point (3), let γ̃0 be the map
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γ̃0 : Q[(Z/pZ)∗]→ K2(X0(p))⊗Q

[x] 7→ γ0(x).

Let R be the kernel of γ̃0. We wish to show that R is generated by the

relations (36). For this we use the theory of Manin symbols. For any

x ∈ (Z/pZ)∗, the cycle ξ(x) has trivial boundary. Thus we have a map

ξ+ : Q[(Z/pZ)∗]→ H+
1 (X0(p)(C),Q).

Manin’s theorem implies that the kernel of ξ+ is generated by the relations

(36), so that ker ξ+ ⊂ R. In order to prove the reverse inclusion, it suffices to

consider the dimensions. Let g(X0(p)) be the genus of X0(p). From (35) we

know that the image of γ̃0 has dimension at least g(X0(p)). Manin’s theorem

implies that the dimension of the image of ξ+ is precisely g(X0(p)) (the

element ξ(0) = {0,∞} = −ξ(∞) has non-trivial boundary). We conclude

that dimR ≤ dim ker ξ+, so that R is generated by (36). �
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